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Abstract

A number of researchers have recently ques-
tioned the necessity of increasingly complex
neural network (NN) architectures. In partic-
ular, several recent papers have shown that
simpler, properly tuned models are at least
competitive across several NLP tasks. In
this work, we show that this is also the case
for text generation from structured and un-
structured data. We consider neural table-
to-text generation and neural question gener-
ation (NQG) tasks for text generation from
structured and unstructured data, respectively.
Table-to-text generation aims to generate a de-
scription based on a given table, and NQG
is the task of generating a question from a
given passage where the generated question
can be answered by a certain sub-span of
the passage using NN models. Experimen-
tal results demonstrate that a basic attention-
based seq2seq model trained with the expo-
nential moving average technique achieves the
state of the art in both tasks. Code is avail-
able at https://github.com/h-shahidi/
2birds-gen.

1 Introduction

Recent NLP literature can be characterized as in-
creasingly complex neural network architectures
that eke out progressively smaller gains over previ-
ous models. Following a previous line of research
(Melis et al., 2018; Mohammed et al., 2018; Ad-
hikari et al., 2019), we investigate the necessity of
such complicated neural architectures. In this work,
our focus is on text generation from structured and
unstructured data by considering description gener-
ation from a table and question generation from a
passage and a target answer.

More specifically, the goal of the neural table-
to-text generation task is to generate biographies
based on Wikipedia infoboxes (structured data). An
infobox is a factual table with a number of fields

Target Output:
Sir Bernard Augustus Keen FRS (5 September 1890 –

5 August 1981) was a British soil scientist and Fellow of

University College London.

Figure 1: An example infobox from the WIKIBIO
dataset and the corresponding target output description.

Passage: Hydrogen is commonly used in power
stations as a coolant in generators due to a num-
ber of favorable properties that are a direct result
of its light diatomic molecules.
Answer: as a coolant in generators
Question: How is hydrogen used at power sta-
tions?

Table 1: A sample (passage, answer, question) triple
from the SQuAD dataset.

(e.g., name, nationality, and occupation) describing
a person. For this task, we use the WIKIBIO dataset
(Lebret et al., 2016) as the benchmark dataset. Fig-
ure 1 shows an example of a biographic infobox as
well as the target output textual description.

Automatic question generation aims to gener-
ate a syntactically correct, semantically meaning-
ful and relevant question from a natural language
text and a target answer within it (unstructured
data). This is a crucial yet challenging task in NLP
that has received growing attention due to its ap-
plication in improving question answering systems
(Duan et al., 2017; Tang et al., 2017, 2018), provid-
ing material for educational purposes (Heilman and

https://github.com/h-shahidi/2birds-gen
https://github.com/h-shahidi/2birds-gen
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Smith, 2010), and helping conversational systems
to start and continue a conversation (Mostafazadeh
et al., 2016). We adopt the widely used SQuAD
dataset (Rajpurkar et al., 2016) for this task. Ta-
ble 1 presents a sample (passage, answer, question)
triple from this dataset.

Prior work has made remarkable progress on
both of these tasks. However, the proposed models
utilize complex neural architectures to capture nec-
essary information from the input(s). In this paper,
we question the need for such sophisticated NN
models for text generation from inputs comprising
structured and unstructured data.

Specifically, we adopt a bi-directional, attention-
based seq2seq model (Bahdanau et al., 2015)
equipped with a copy mechanism (Gu et al., 2016)
for both tasks. We demonstrate that this model, to-
gether with the exponential moving average (EMA)
technique, achieves the state of the art in both neu-
ral table-to-text generation and NQG. Interestingly,
our model is able to achieve this result even without
using any linguistic features.

Our contributions are two-fold: First, we pro-
pose a unified NN model for text generation from
structured and unstructured data and show that
training this model with the EMA technique leads
to the state of the art in neural table-to-text genera-
tion as well as NQG. Second, because our model
is, in essence, the primary building block of previ-
ous models, our results show that some previous
papers propose needless complexity, and that gains
from these previous complex neural architectures
are quite modest. In other words, the state of the
art is achieved by careful tuning of simple and well-
engineered models, not necessarily by adding more
complexity to the model, echoing the sentiments
of Lipton and Steinhardt (2018).

2 Related Work

In this section, we first discuss previous work for
neural table-to-text generation and then NQG.

2.1 Neural Table-to-Text Generation

Recently, there have been a number of end-to-end
trainable NN models for table-to-text generation.
Lebret et al. (2016) propose an n-gram statistical
language model that incorporates field and position
embeddings to represent the structure of a table.
However, their model is not effective enough to
capture long-range contextual dependencies while
generating a description for the table.

To address this issue, Liu et al. (2018) suggest
a structure-aware seq2seq model with local and
global addressing on the table. While local address-
ing is realized by content encoding of the model’s
encoder and word-level attention, global address-
ing is accomplished by field encoding using a field-
gating LSTM and field-level attention. The field-
gating mechanism incorporates field information
when updating the cell memory of the LSTM units.

Liu et al. (2019b) utilize a two-level hierarchi-
cal encoder with coarse-to-fine attention to model
the field-value structure of a table. They also pro-
pose three joint tasks (sequence labeling, text auto-
encoding, and multi-label classification) as auxil-
iary supervision to capture accurate semantic rep-
resentations of the tables.

In this paper, similar to Lebret et al. (2016), we
use both content and field information to represent
a table by concatenating the field and position em-
beddings with the word embedding. Unlike Liu
et al. (2018), we don’t separate local and global
addressing by using specific modules for each, but
rather adopt the EMA technique and let the bi-
directional model accomplish this implicitly, ex-
ploiting the natural advantages of the model.

2.2 Neural Question Generation

Previous NQG models can be classified into rule-
based and neural-network-based approaches. Du
et al. (2017) propose a seq2seq model that is able to
achieve better results than previous rule-based sys-
tems without taking the target answer into consider-
ation. Zhou et al. (2017) concatenate answer posi-
tion indicators with the word embeddings to make
the model aware of the target answer. They also
use lexical features (e.g., POS and NER tags) to en-
rich their model’s encoder. In addition, Song et al.
(2018) suggest using a multi-perspective context
matching algorithm to further leverage information
from explicit interactions between the passage and
the target answer.

More recently, Kim et al. (2019) use answer-
separated seq2seq, which replaces the target an-
swer in the passage with a unique token to avoid
using the answer words in the generated question.
They also make use of a module called keyword-
net to extract critical information from the target
answer. Similarly, Liu et al. (2019a) propose using
a clue word predictor by adopting graph convolu-
tion networks to highlight the imperative aspects
of the input passage.



3866

Figure 2: An overview of our model.

Our model is architecturally more similar to
Zhou et al. (2017), but with the following distinc-
tions: (1) we do not use additional lexical features,
(2) we utilize the EMA technique during training
and use the averaged weights for evaluation, (3)
we do not make use of the introduced maxout hid-
den layer, and (4) we adopt LSTM units instead of
GRU units. These distinctions, along with some
hyperparameter differences, notably the optimizer
and learning rate, have a considerable impact on
the experimental results (see Section 5).

3 Model: Seq2Seq with Attention and a
Copy Mechanism

In this section, we introduce a simple but effec-
tive attention-based seq2seq model for both neural
table-to-text generation and NQG. Figure 2 pro-
vides an overview of our model.

3.1 Encoder

Our encoder is a bi-directional LSTM (BiLSTM)
whose input xt at time step t is the concatenation
of the current word embedding et with some addi-
tional task-specific features.

For neural table-to-text generation, additional
features are field name ft and position information
pt, following Lebret et al. (2016). The position in-
formation itself is the concatenation of p+t , which
is the position of the current word in its field when
counting from the left, and p−t , when counting from
the right. Considering the word University, in Fig-
ure 1, as an example, it is the first word from the
left and the third word from the right in the Insti-
tutions field. Hence, the structural information of
this word would be {Institutions, 1, 3}. Thus, the
input to the encoder at time step t for this task is

xt = [et; ft; p
+
t ; p

−
t ], where [.; .] denotes concate-

nation along the feature dimension.
For NQG, similar to Zhou et al. (2017), we use

a single bit bt, indicating whether the tth word in
the passage belongs to the target answer, as an
additional feature. Hence, the input at time step
t is xt = [et; bt]. Remarkably, unlike previous
work (Song et al., 2018; Kim et al., 2019), we do
not use a separate encoder for the target answer to
have a unified model for both tasks.

3.2 Attention-Based Decoder
Our decoder is an attention-based LSTM model
(Bahdanau et al., 2015). Due to the considerable
overlap between input and output words, we use a
copy mechanism (Gu et al., 2016) that integrates
the attention distribution over the input words with
the vocabulary distribution.

3.3 Exponential Moving Average
The exponential moving average (EMA) technique,
also referred to as temporal averaging, was initially
introduced to be used in optimization algorithms
for better generalization performance and reducing
noise from stochastic approximation in recent pa-
rameter estimates by averaging model parameters
(Polyak and Juditsky, 1992; Moulines and Bach,
2011; Kingma and Ba, 2015).

In applying the technique, we maintain two sets
of parameters: (1) training parameters θ that are
trained as usual, and (2) evaluation parameters θ
that are an exponentially weighted moving average
of the training parameters. The moving average is
calculated using the following expression:

θ ←− β × θ + (1− β)× θ (1)

where β is the decay rate. Previous work (Szegedy
et al., 2016; Merity et al., 2018; Adhikari et al.,
2019; Liu et al., 2019a) has used this technique for
different tasks to produce more stable and accurate
results. In Section 5, we show that using this simple
technique considerably improves the performance
of our model in both of the tasks.

4 Experimental Setup

In this section, we introduce the datasets first, then
explain additional implementation details, and fi-
nally describe the evaluation metrics.

4.1 Datasets
We use the WIKIBIO dataset (Lebret et al., 2016)
for neural table-to-text generation. This dataset
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contains 728,321 articles from English Wikipedia
and uses the first sentence of each article as the
ground-truth description of the corresponding in-
fobox. The dataset has been divided into training
(80%), validation (10%), and test (10%) sets.

For NQG, we use the SQuAD dataset v1.1 (Ra-
jpurkar et al., 2016) in our experiments, containing
536 Wikipedia articles with over 100K question-
answer pairs. The test set of the original dataset
is not publicly available. Thus, Du et al. (2017)
and Zhou et al. (2017) re-divide available data into
training, validation, and test sets, which we call
split-1 and split-2, respectively. In this paper, we
conduct experiments and evaluate our model on
both of the data splits.

4.2 Implementation Details

For the sake of reproducibility, we discuss imple-
mentation details for achieving the results shown
in Tables 2 and 3. We train the model using cross-
entropy loss and retain the model that works best on
the validation set during training for both tasks. We
replace unknown tokens with a word from the input
having the highest attention score. In addition, a
decay rate of 0.9999 is used for the exponential
moving average in both of the tasks.

For the neural table-to-text generation task, we
train the model up to 10 epochs with three different
seeds and a batch size of 32. We use a single-layer
BiLSTM for the encoder and a single-layer LSTM
for the decoder and set the dimension of the LSTM
hidden states to 500. Optimization is performed
using the Adam optimizer with a learning rate of
0.0005 and gradient clipping when its norm ex-
ceeds 5. The word, field, and position embeddings
are trainable and have a dimension of 400, 50, and
5, respectively. The maximum position number is
set to 30. Any higher position number is therefore
counted as 30. The most frequent 20,000 words
and 1,480 fields in the training set are selected as
word vocabulary and field vocabulary, respectively,
for both the encoder and the decoder. Ultimately,
we conduct greedy search to decode a description
for a given input table.

For the NQG task, we use a two-layer BiLSTM
for the encoder and a single-layer LSTM for the
decoder. We set the dimension of the LSTM hid-
den states to 350 and 512 for split-1 and split-2,
respectively. Optimization is performed using the
AdaGrad optimizer with a learning rate of 0.3 and
gradient clipping when its norm exceeds 5. The

word embeddings are initialized with pre-trained
300-dimensional GloVe embeddings (Pennington
et al., 2014), which are frozen during training. We
train the model up to 20 epochs with five different
seeds and a batch size of 50. We further employ
dropout with a probability of 0.1 and 0.3 for data
split-1 and split-2, respectively. Moreover, we use
the vocabulary set released by Song et al. (2018)
for both the encoder and the decoder. During de-
coding, we perform beam search with a beam size
of 20 and a length penalty weight of 1.75.

4.3 Evaluation

Following previous work, we use BLEU-4 (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), ROUGE-4, and ROUGE-L (Lin, 2004) to
evaluate the performance of our model. BLEU
and METEOR were originally designed to evalu-
ate machine translation systems, and ROUGE was
designed to evaluate text summarization systems.

5 Results and Discussion

In this section, we present our experimental results
for both neural table-to-text generation and NQG.
We report the mean and standard deviation of each
metric across multiple seeds to ensure robustness
against potentially spurious conclusions (Crane,
2018). In Tables 2 and 3, we compare previous
work with our results for NQG and neural table-to-
text generation, respectively. All results are copied
from the original papers except for Liu et al. (2018)
in Table 3, where Repl. refers to scores from ex-
periments that we conducted using the source code
released by the authors, and Orig. refers to scores
taken from the original paper.

It is noteworthy that a similar version of our
model has served as a baseline in previous papers
(Liu et al., 2018; Kim et al., 2019; Liu et al., 2019a).
However, the distinctions discussed in Section 2,
especially the EMA technique, enable our model to
achieve the state of the art in all cases but BLEU-4
on the SQuAD split-2, where our score is very com-
petitive; furthermore, Liu et al. (2019a) only report
results from a single trial. Our results indicate that
a basic seq2seq model is able to effectively learn
the underlying distribution of both datasets.

6 Conclusions and Future Work

In this paper, we question the necessity of com-
plex neural architectures for text generation from
structured data (neural table-to-text generation) and
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Models Split-1 Split-2
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

Heilman (2011) - - - 9.47 18.97 31.68
Du et al. (2017) 12.28 16.62 39.75 - - -
Zhou et al. (2017) - - - 13.29 - -
Zhou et al. (2018) - - - 13.02 - 44.0
Yao et al. (2018) - - - 13.36 17.70 40.42
Song et al. (2018) 13.98 18.77 42.72 13.91 - -
Zhao et al. (2018) 15.32 19.29 43.91 15.82 19.67 44.24
Sun et al. (2018) - - - 15.64 - -
Kumar et al. (2018) 16.17 19.85 43.90 - - -
Kim et al. (2019) 16.20 ± 0.32 19.92 ± 0.20 43.96 ± 0.25 16.17 ± 0.35 - -
Liu et al. (2019a) - - - 17.55 21.24 44.53
Our Model 14.81 ± 0.47 19.69 ± 0.24 43.01 ± 0.28 16.14 ± 0.25 20.44 ± 0.20 43.95 ± 0.26
+ EMA 16.29 ± 0.04 20.70 ± 0.08 44.18 ± 0.15 17.47 ± 0.10 21.37 ± 0.06 45.18 ± 0.22

Table 2: Experimental results for NQG on the test sets.

Models BLEU-4 ROUGE-4
KN* 2.21 0.38
Template KN** 19.80 10.70
Lebret et al. (2016) 34.70 ± 0.36 25.80 ± 0.36
Bao et al. (2018) 40.26 -
Sha et al. (2018) 43.91 37.15
Liu et al. (2018) Orig. 44.89 ± 0.33 41.21 ± 0.25
Liu et al. (2018) Repl. 44.45 ± 0.11 39.65 ± 0.10
Liu et al. (2019b) 45.14 ± 0.34 41.26 ± 0.37
Our Model 46.07 ± 0.17 41.53 ± 0.30
+ EMA 46.76 ± 0.03 43.54 ± 0.07

Table 3: Experimental results for neural table-to-text
generation on the test set. *KN is Kneser-Ney language
model (Heafield et al., 2013). **Template KN is a KN
language model over templates. Both models are pro-
posed by Lebret et al. (2016) as baselines.

unstructured data (NQG). We then propose a sim-
ple yet effective seq2seq model trained with the
EMA technique. Empirically, our model achieves
the state of the art in both of the tasks. Our results
highlight the importance of thoroughly exploring
simple models before introducing complex neural
architectures, so that we can properly attribute the
source of performance gains. As a potential di-
rection for future work, it would be interesting to
investigate the use of the EMA technique on trans-
former models as well and conduct similar studies
to examine needless architectural complexity in
other NLP tasks.
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