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Abstract

Pre-trained language models have achieved
huge improvement on many NLP tasks. How-
ever, these methods are usually designed for
written text, so they do not consider the prop-
erties of spoken language. Therefore, this
paper aims at generalizing the idea of lan-
guage model pre-training to lattices generated
by recognition systems. We propose a frame-
work that trains neural lattice language models
to provide contextualized representations for
spoken language understanding tasks. The pro-
posed two-stage pre-training approach reduces
the demands of speech data and has better ef-
ficiency. Experiments on intent detection and
dialogue act recognition datasets demonstrate
that our proposed method consistently outper-
forms strong baselines when evaluated on spo-
ken inputs.1

1 Introduction

The task of spoken language understanding (SLU)
aims at extracting useful information from spoken
utterances. Typically, SLU can be decomposed
with a two-stage method: 1) an accurate automatic
speech recognition (ASR) system transcribes the
input speech into texts, and then 2) language under-
standing techniques are applied to the transcribed
texts. These two modules can be developed sepa-
rately, so most prior work developed the backend
language understanding systems based on manual
transcripts (Yao et al., 2014; Guo et al., 2014; Mes-
nil et al., 2014; Goo et al., 2018).

Despite the simplicity of the two-stage method,
prior work showed that a tighter integration be-
tween two components can lead to better perfor-
mance. Researchers have extended the ASR 1-best
results to n-best lists or word confusion networks
in order to preserve the ambiguity of the transcripts.

1The scource code is available at: https://github.
com/MiuLab/Lattice-ELMo.
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Figure 1: Illustration of a lattice.

(Tur et al., 2002; Hakkani-Tür et al., 2006; Hender-
son et al., 2012; Tür et al., 2013; Masumura et al.,
2018). Another line of research focused on using
lattices produced by ASR systems. Lattices are
directed acyclic graphs (DAGs) that represent mul-
tiple recognition hypotheses. An example of ASR
lattice is shown in Figure 1. Ladhak et al. (2016) in-
troduced LatticeRNN, a variant of recurrent neural
networks (RNNs) that generalize RNNs to lattice-
structured inputs in order to improve SLU. Zhang
and Yang (2018) proposed a similar idea for Chi-
nese name entity recognition. Sperber et al. (2019);
Xiao et al. (2019); Zhang et al. (2019) proposed ex-
tensions to enable the transformer model (Vaswani
et al., 2017) to consume lattice inputs for machine
translation. Huang and Chen (2019) proposed to
adapt the transformer model originally pre-trained
on written texts to consume lattices in order to
improve SLU performance. Buckman and Neu-
big (2018) also found that utilizing lattices that
represent multiple granularities of sentences can
improve language modeling.

With recent introduction of large pre-trained lan-
guage models (LMs) such as ELMo (Peters et al.,
2018), GPT (Radford, 2018) and BERT (Devlin
et al., 2019), we have observed huge improvements
on natural language understanding tasks. These
models are pre-trained on large amount of written
texts so that they provide the downstream tasks
with high-quality representations. However, ap-
plying these models to the spoken scenarios poses

https://github.com/MiuLab/Lattice-ELMo
https://github.com/MiuLab/Lattice-ELMo
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several discrepancies between the pre-training task
and the target task, such as the domain mismatch
between written texts and spoken utterances with
ASR errors. It has been shown that fine-tuning
the pre-trained language models on the data from
the target tasks can mitigate the domain mismatch
problem (Howard and Ruder, 2018; Chronopoulou
et al., 2019). Siddhant et al. (2018) focused on
pre-training a language model specifically for spo-
ken content with huge amount of automatic tran-
scripts, which requires a large collection of in-
domain speech.

In this paper, we propose a novel spoken lan-
guage representation learning framework, which
focuses on learning contextualized representations
of lattices based on our proposed lattice language
modeling objective. The proposed framework con-
sists of two stages of LM pre-training to reduce
the demands for lattice data. We conduct experi-
ments on benchmark datasets for spoken language
understanding, including intent classification and
dialogue act recognition. The proposed method
consistently achieves superior performance, with
relative error reduction ranging from 3% to 42%
compare to pre-trained sequential LM.

2 Neural Lattice Language Model

The two-stage framework that learns contextual-
ized representations for spoken language is pro-
posed and detailed below.

2.1 Problem Formulation

In the SLU task, the model input is an utter-
ance X containing a sequence of words X =
[x1, x2, · · · , x|X|], and the goal is to map X to
its corresponding class y. The inputs can also
be stored in a lattice form, where we use edge-
labeled lattices in this work. A lattice L =
{N,E} is defined by a set of |N | nodes N =
{n1, n2, · · · , n|N |} and a set of |E| transitions
E = {e1, e2, · · · , e|E|}. A weighted transition
is defined as e = {prev[e], next[e], w[e], P (e)},
where prev[e] and next[e] denote the previous
node and next node respectively, w[e] denotes the
associated word, and P (e) denotes the transition
probability. We use in[n] and out[n] to denote the
sets of incoming and outgoing transitions of a node
n. L<n = {N<n, E<n} denotes the sub-lattice
which consists of all paths between the starting
node and a node n.

2.2 LatticeRNN

The LatticeRNN (Ladhak et al., 2016) model gen-
eralizes sequential RNN to lattice-structured inputs.
It traverses the nodes and transitions of a lattice
in a topological order. For each transition e, Lat-
ticeRNN takes w[e] as input and the representation
of its previous node h[prev[e]] as the previous hid-
den state, and then produces a new hidden state of
e, h[e]. The representation of a node h[n] is ob-
tained by pooling the hidden states of the incoming
transitions. In this work, we employ the Weight-
edPool variant proposed by Ladhak et al. (2016),
which computes the node representation as

h[n] =
∑

e∈in[n]

P (e) · h[e].

Note that we can represent any sequential text as
a linear-chain lattice, so LatticeRNN can be seen
as a strict generalization of RNNs to DAG-like
structures. This property enables us to initialize
the weights in a LatticeRNN with the weights of a
RNN as long as they use the same recurrent cell.

2.3 Lattice Language Modeling

Language models usually estimate p(X) by factor-
izing it into

p(X) =

|X|∏
t=0

p(xt | X<t),

where X<t = [x1, · · · , xt−1] denotes the previous
context. Training a LM is essentially asking the
model to predict a distribution of the next word
given the previous words. We extend the sequen-
tial LM analogously to lattice language modeling,
where the model is expected to predict the next
transitions of a node n given L<n. The ground
truth distribution is therefore defined as:

p(w | L<n)

=

{
P (e), if ∃e ∈ out[n] s.t. w[e] = w

0, otherwise.

LatticeRNN is adopted as the backbone of our
lattice language model. Since the node representa-
tion h[n] encodes all information of L<n, we pass
h[n] to a linear decoder to obtain the distribution
of next transitions:

pθ(w | h[n]) = softmax(W Th[n]),
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Figure 2: Illustration of the proposed framework. The weights of the pre-trained LatticeLSTM LM are fixed when
training the target task classifier (shown in white blocks), while the weights of the newly added LatticeLSTM
classifier are trained from scratch (shown in colored block).

where θ denotes the parameters of the LatticeRNN
and W denotes the trainable parameters of the de-
coder. We train our lattice language model by mini-
mizing the KL divergence between the ground truth
distribution p(w | L<n) and the predicted distribu-
tion pθ(w | h[n]).

Note that the objective for training sequential
LM is a special case of the lattice language model-
ing objective defined above, where the inputs are
linear-chain lattices. Hence, a sequential LM can
be viewed as a lattice LM trained on linear-chain
lattices only. This property inspires us to pre-train
our lattice LM in a 2-stage fashion described below.

2.4 Two-Stage Pre-Training
Inspired by ULMFiT (Howard and Ruder, 2018),
we propose a two-stage pre-training method to train
our lattice language model. The proposed method
is illustrated in Figure 2.

• Stage 1: Pre-train on sequential texts
In the first stage, we follow the recent trend
of pre-trained LMs by pre-training a bidi-
rectional LSTM (Hochreiter and Schmidhu-
ber, 1997) LM on general domain text cor-
pus. Here the cell architecture is the same as
ELMo (Peters et al., 2018).

• Stage 2: Pre-train on lattices
In this stage, we use a bidirectional LatticeL-
STM with the same cell architecture as the
LSTM pre-trained in the previous stage. Note
that in the backward direction we use reversed

lattices as input. We initialize the weights
of the LatticeLSTM with the weights of the
pre-trained LSTM. The LatticeLSTM is fur-
ther pre-trained on lattices from the training
set of the target task with the lattice language
modeling objective described above.

We consider this two-stage method more ap-
proachable and efficient than directly pre-training
a lattice LM on large amount of lattices because
1) general domain written data is much easier to
collect than lattices which require spoken data, and
2) LatticeRNNs are considered less efficient than
RNNs due to the difficulty of parallelization in
computing.

2.5 Target Task Classifier Training
After pre-training, our model is capable of provid-
ing representations for lattices. Following (Peters
et al., 2018), the pre-trained lattice LM is used to
produce contextualized node embeddings for down-
stream classification tasks, as illustrated in the right
part of Figure 2. We use the same strategy as Peters
et al. (2018) to linearly combine the hidden states
from different layers into a representation for each
node. The classifier is a newly added 2-layer Lat-
ticeLSTM, which takes the node representations
as input, followed by max-pooling over nodes, a
linear layer and finally a softmax layer. We use
the cross entropy loss to train the classifier on each
target classification tasks. Note that the parameters
of the pre-trained lattice LM are fixed during this
stage.
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ATIS SNIPS SWDA MRDA

Manual
(a) biLSTM - 97.00 71.19 79.99
(b) (a) + ELMo - 96.80 72.18 81.48

Lattice oracle
(c) biLSTM 92.97 94.02 63.92 70.49
(d) (c) + ELMo 96.21 95.14 65.14 73.34

ASR 1-Best
(e) biLSTM 91.60 91.89 60.54 67.35
(f) (e) + ELMo 94.99 91.98 61.65 68.52
(g) BERT-base 95.97 93.29 61.23 67.90

Lattices

(h) biLatticeLSTM 91.69 93.43 61.29 69.95
(i) Proposed 95.84 95.37 62.88 72.04
(j) (i) w/o Stage 1 94.65 95.19 61.81 71.71
(k) (i) w/o Stage 2 95.35 94.58 62.41 71.66
(l) (i) evaluated on 1-best 95.05 92.40 61.12 68.04

Table 2: Results of our experiments in terms of accuracy (%). Some audio files in ATIS are missing, so the testing
sets of manual transcripts and ASR transcripts are different. Hence, we do not report the results for ATIS using
manual transcripts. The best results obtained by using ASR output for each dataset are marked in bold.

ATIS SNIPS SWDA MRDA
Train 4,478 13,084 103,326 73,588
Valid 500 700 8,989 15,037
Test 869 700 15,927 14,800
#Classes 22 7 43 5
WER(%) 15.55 45.61 28.41 32.04
Oracle WER 9.19 18.79 17.15 21.53

Table 1: Data statistics.

3 Experiments

In order to evaluate the quality of the pre-trained
lattice LM, we conduct the experiments for two
common tasks in spoken language understanding.

3.1 Tasks and Datasets
Intent detection and dialogue act recognition are
two common tasks about spoken language under-
standing. The benchmark datasets used for intent
detection are ATIS (Airline Travel Information Sys-
tems) (Hemphill et al., 1990; Dahl et al., 1994; Tur
et al., 2010) and SNIPS (Coucke et al., 2018). We
use the NXT-format of the Switchboard (Stolcke
et al., 2000) Dialogue Act Corpus (SWDA) (Cal-
houn et al., 2010) and the ICSI Meeting Recorder
Dialogue Act Corpus (MRDA) (Shriberg et al.,
2004) for benchmarking dialogue act recognition.
The SNIPS corpus only contains written text, so
we synthesize a spoken version of the dataset us-
ing a commercial text-to-speech service. We use
an ASR system trained on WSJ (Paul and Baker,
1992) with Kaldi (Povey et al., 2011) to transcribe
ATIS, and an ASR system released by Kaldi to
transcribe other datasets. The statistics of datasets
are summarized in Table 1. All tasks are evaluated

with overall classification accuracy.

3.2 Model and Training Details

In order to conduct fair comparison with ELMo (Pe-
ters et al., 2018), we directly adopt their pre-trained
model as our pre-trained sequential LM. The hid-
den size of the LatticeLSTM classifier is set to 300.
We use adam as the optimizer with learning rate
0.0001 for LM pre-training and 0.001 for training
the classifier. The checkpoint with the best valida-
tion accuracy is used for evaluation.

3.3 Results

The results in terms of the classification accuracy
are shown in Table 2. All reported numbers are
averaged over at least three training runs. Rows
(a) and (b) can be considered as the performance
upperbound, where we use manual transcripts to
train and evaluate the models. We also use BERT-
base (Devlin et al., 2019) as a strong baseline,
which takes ASR 1-best as the input (row (g)).
Compare with the results on manual transcripts, us-
ing ASR results largely degrades the performance
due to recognition errors, as shown in rows (e)-(g).
In addition, adding pre-trained ELMo embeddings
brings consistent improvement over the biLSTM
baseline, except for SNIPS when using manual
transcripts (row (b)). The baseline models trained
on ASR 1-best are also evaluated on lattice oracle
paths. We report the results as the performance
upperbound for the baseline models (rows (c)-(d)).

In the lattice setting, the baseline bidirectional
LatticeLSTM (Ladhak et al., 2016) (row (h)) con-
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sistently outperforms the biLSTM with 1-best in-
put (row (e)), demonstrating the importance of tak-
ing lattices into account. Our proposed method
achieves the best results on all datasets except for
ATIS (row(i)), with relative error reduction rang-
ing from 3.2% to 42% compare to biLSTM+ELMo
(row(f)). The proposed method also achieves per-
formance comparable to BERT-base on ATIS. We
perform ablation study for the proposed two-stage
pre-training method and report the results in rows
(j) and (k). It is clear that skipping either stage
degrades the performance on all datasets, demon-
strating that both stages are crucial in the proposed
framework. We also evaluate the proposed model
on 1-best results (row (l)). The results show that
it is still beneficial to use lattice as input after fine-
tuning.

4 Conclusion

In this paper, we propose a spoken language repre-
sentation learning framework that learns contextu-
alized representation of lattices. We introduce the
lattice language modeling objective and a two-stage
pre-training method that efficiently trains a neural
lattice language model to provide the downstream
tasks with contextualized lattice representations.
The experiments show that our proposed frame-
work is capable of providing high-quality represen-
tations of lattices, yielding consistent improvement
on SLU tasks.
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Grégoire Mesnil, Yann Dauphin, Kaisheng Yao,
Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xi-
aodong He, Larry Heck, Gokhan Tur, Dong Yu, and
Geoffrey Zweig. 2014. Using recurrent neural net-
works for slot filling in spoken language understand-
ing. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 23(3):530–539.

Douglas B. Paul and Janet M. Baker. 1992. The de-
sign for the wall street journal-based csr corpus. In
Proceedings of the Workshop on Speech and Natural
Language, HLT ’91.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. ACL.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, et al. 2011. The Kaldi speech recognition
toolkit. Technical report.

Alec Radford. 2018. Improving language understand-
ing by generative pre-training.

Elizabeth Shriberg, Raj Dhillon, Sonali Bhagat, Jeremy
Ang, and Hannah Carvey. 2004. The ICSI meeting
recorder dialog act (MRDA) corpus. In Proceedings
of the 5th SIGdial Workshop on Discourse and Di-
alogue at HLT-NAACL 2004, pages 97–100, Cam-
bridge, Massachusetts, USA. ACL.

Aditya Siddhant, Anuj Goyal, and Angeliki Metallinou.
2018. Unsupervised transfer learning for spoken
language understanding in intelligent agents. arXiv
preprint arXiv:1811.05370.

Matthias Sperber, Graham Neubig, Ngoc-Quan Pham,
and Alex Waibel. 2019. Self-attentional models for
lattice inputs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1185–1197. ACL.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-
beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and
Marie Meteer. 2000. Dialogue act modeling for au-
tomatic tagging and recognition of conversational
speech. Computational Linguistics, 26(3):339–374.

Gökhan Tür, Anoop Deoras, and Dilek Z. Hakkani-Tür.
2013. Semantic parsing using word confusion net-
works with conditional random fields. In Proceed-
ings of INTERSPEECH.

Gokhan Tur, Dilek Hakkani-Tür, and Larry Heck. 2010.
What is left to be understood in ATIS? In Proceed-
ings of 2010 IEEE Spoken Language Technology
Workshop (SLT), pages 19–24.

Gokhan Tur, Jerry Wright, Allen Gorin, Giuseppe Ric-
cardi, and Dilek Hakkani-Tür. 2002. Improving spo-
ken language understanding using word confusion
networks. In Seventh International Conference on
Spoken Language Processing.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, pages 6000–6010. Curran Associates Inc.

Fengshun Xiao, Jiangtong Li, Hai Zhao, Rui Wang,
and Kehai Chen. 2019. Lattice-based transformer
encoder for neural machine translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3090–
3097. ACL.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Ge-
offrey Zweig, and Yangyang Shi. 2014. Spoken lan-
guage understanding using long short-term memory
neural networks. In 2014 IEEE Spoken Language
Technology Workshop, pages 189–194.

Pei Zhang, Niyu Ge, Boxing Chen, and Kai Fan. 2019.
Lattice transformer for speech translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6475–
6484. ACL.

Yue Zhang and Jie Yang. 2018. Chinese NER using
lattice LSTM. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1554–1564.
ACL.


