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Abstract

We propose SentiBERT, a variant of BERT

that effectively captures compositional sen-

timent semantics. The model incorporates

contextualized representation with binary con-

stituency parse tree to capture semantic com-

position. Comprehensive experiments demon-

strate that SentiBERT achieves competi-

tive performance on phrase-level sentiment

classification. We further demonstrate that

the sentiment composition learned from the

phrase-level annotations on SST can be trans-

ferred to other sentiment analysis tasks as

well as related tasks, such as emotion clas-

sification tasks. Moreover, we conduct ab-

lation studies and design visualization meth-

ods to understand SentiBERT. We show

that SentiBERT is better than baseline ap-

proaches in capturing negation and the con-

trastive relation and model the compositional

sentiment semantics.

1 Introduction

Sentiment analysis is an important language pro-

cessing task (Pang et al., 2002, 2008; Liu, 2012).

One of the key challenges in sentiment analysis is

to model compositional sentiment semantics. Take

the sentence “Frenetic but not really funny.” in Fig-

ure 1 as an example. The two parts of the sentence

are connected by “but”, which reveals the change

of sentiment. Besides, the word “not” changes the

sentiment of “really funny”. These types of nega-

tion and contrast are often difficult to handle when

the sentences are complex (Socher et al., 2013; Tay

et al., 2018; Xu et al., 2019).

In general, the sentiment of an expression is de-

termined by the meaning of tokens and phrases and

the way how they are syntactically combined. Prior

studies consider explicitly modeling compositional

sentiment semantics over constituency structure

with recursive neural networks (Socher et al., 2012,
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Figure 1: Illustration of the challenges of learning sen-

timent semantic compositionality. The blue nodes rep-

resent token nodes. The colors of phrase nodes in

the binary constituency tree represent the sentiment

of phrases. The red boxes show that the sentiment

changes from the child node to the parent node due to

negation and contrast.

2013). However, these models that generate repre-

sentation of a parent node by aggregating the local

information from child nodes, overlook the rich

association in context.

In this paper, we propose SentiBERT to in-

corporate recently developed contextualized rep-

resentation models (Devlin et al., 2019; Liu et al.,

2019) with the recursive constituency tree structure

to better capture compositional sentiment seman-

tics. Specifically, we build a simple yet effective

attention network for composing sentiment seman-

tics on top of BERT (Devlin et al., 2019). During

training, we follow BERT to capture contextual

information by masked language modeling. In ad-

dition, we instruct the model to learn composition

of meaning by predicting sentiment labels of the

phrase nodes.

Results on phrase-level sentiment classification

on Stanford Sentiment Treebank (SST) (Socher

et al., 2013) indicate that SentiBERT improves

significantly over recursive networks and the base-
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Figure 2: The architecture of SentiBERT. Module I is the BERT encoder; Module II denotes the semantic

composition module based on an attention mechanism; Module III is a predictor for phrase-level sentiment. The

semantic composition module is a two layer attention-based network (see Section 3.1) The first layer (Attention
to Tokens) generates representation for each phrase based on the token it covers and the second layer (Attention
to Children) refines the phrase representation obtained from the first layer based on its children.

line BERT model. As phrase-level sentiment labels

are expensive to obtain, we further explore if the

compositional sentiment semantics learned from

one task can be transferred to others. In particular,

we find that SentiBERT trained on SST can be

transferred well to other related tasks such as twit-

ter sentiment analysis (Rosenthal et al., 2017) and

emotion intensity classification (Mohammad et al.,

2018) and contextual emotion detection (Chatter-

jee et al., 2019). Furthermore, we conduct com-

prehensive quantitative and qualitative analyses to

evaluate the effectiveness of SentiBERT under

various situations and to demonstrate the seman-

tic compositionality captured by the model. The

source code is available at https://github.com/

WadeYin9712/SentiBERT.

2 Related Work

Sentiment Analysis Various approaches have

been applied to build a sentiment classifier, includ-

ing feature-based methods (Hu and Liu, 2004; Pang

and Lee, 2004), recursive neural networks (Socher

et al., 2012, 2013; Tai et al., 2015), convolution

neural networks (Kim, 2014) and recurrent neu-

ral networks (Liu et al., 2015). Recently, pre-

trained language models such as ELMo (Peters

et al., 2018), BERT (Devlin et al., 2019) and Sen-

tiLR (Ke et al., 2019) achieve high performance in

sentiment analysis by constructing contextualized

representation. Inspired by these prior studies, we

design a transformer-based neural network model

to capture compositional sentience semantics by

leveraging binary constituency parse tree.

Semantic Compositionality Semantic composi-

tion (Pelletier, 1994) has been widely studied in

NLP literature. For example, Mitchell and Lap-

ata (2008) introduce operations such as addition

or element-wise product to model compositional

semantics. The idea of modeling semantic compo-

sition is applied to various areas such as sentiment

analysis (Socher et al., 2013; Zhu et al., 2016),

semantic relatedness (Marelli et al., 2014) and cap-

turing sememe knowledge (Qi et al., 2019). In this

paper, we demonstrate that the syntactic structure

can be combined with contextualized representa-

tion such that the semantic compositionality can

be better captured. Our approach resembles to a

few recent attempts (Harer et al., 2019; Wang et al.,

2019) to integrate tree structures into self-attention.

However, our design is specific for the semantic

composition in sentiment analysis.

3 Model

We introduce SentiBERT, a model that captures

compositional sentiment semantics based on con-

stituency structures of sentences. SentiBERT
consists of three modules: 1) BERT; 2) a semantic

composition module based on an attention network;

3) phrase and sentence sentiment predictors. The

three modules are illustrated in Figure 2 and we

provide an overview in below.

BERT We incorporate BERT (Devlin et al.,

2019) as the backbone to generate contextualized
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representation of input sentence.

Semantic Composition Module This module

aims to obtain effective phrase representation

guided by the contextualized representation and

constituency parsing tree. To refine phrase repre-

sentation based on the structural information and

its constituencies, we design a two-level attention

mechanism: 1) Attention to Tokens and 2) Attention
to Children.

Phrase Node Prediction SentiBERT is super-

vised by phrase-level sentiment labels. We use

cross-entropy as the loss function for learning the

sentiment predictor.

3.1 Attention Networks for Sentiment
Semantic Composition

In this section, we describe the attention networks

for sentiment semantic composition in detail.

We first introduce the notations. s =
[w1, w2, ..., wn] denotes a sentence which consists

of n words. phr = [phr1, phr2, ..., phrm] denotes

the phrases on the binary constituency tree of sen-

tence s. h = [h1,h2, ...,hn] is the contextualized

representation of tokens after forwarding to a fully-

connected layer, where ht ∈ R
d. Suppose sti and

eni are beginning and end indices of the i-th phrase

where wsti , wsti+1, ..., weni are constituent tokens

of the i-th phrase. The corresponding token repre-

sentation is [hsti ,hsti+1, ...,heni ]. pi is the phrase

representation of the i-th phrase.

Attention to Tokens Given the contextualized

representations of the tokens covered by a phrase.

We first generate phrase representation vi for a

phrase i by the following attention network.

qi =
1

eni − sti + 1

eni∑

j=sti

hj ,

tj = Attention(qi,hj), sti ≤ j ≤ eni,

aj =
exp(tj)∑eni

k=sti
exp(tk)

,

oi =

eni∑

j=sti

aj · hj .

(1)

In Eq. (1), we first treat the averaged representa-

tion for each token as the query, and then allocate

attention weights according to the correlation with

each token. aj represents the weight distributed

to the j-th token. We concatenate the weighted

sum oi and qi and feed it to forward networks.

Lastly, we obtain the initial representation for the

phrase vi ∈ R
d based on the representation of

constituent tokens. The detailed computation of

attention mechanism is shown in Appendix A.1.

Attention to Children Furthermore, we refine

phrase representations in the second layer based on

constituency parsing tree and the representations

obtained in the first layer. To aggregate information

based on hierarchical structure, we develop the

following network. For each phrase, the attention

network computes correlation with its children in

the binary constituency parse tree and itself.

Assume that the indices of child nodes of the

i-th phrase are lson and rson. Their representa-

tions generated from the first layer are vi, vlson,

and vrson, respectively. We generate the attention

weights rlson, rrson and ri over the i-th phrase and

its left and right children by the following.

clson = Attention(vi,vlson),

crson = Attention(vi,vrson),

ci = Attention(vi,vi),

rlson, rrson, ri = Softmax(clson, crson, ci).

(2)

Then the refined representation of phrase i is com-

puted by

fi = rlson · vlson + rrson · vrson + ri · vi.

Finally, we concatenate the weighted sum fi
and vi and feed it to forward networks with

SeLU (Klambauer et al., 2017) and GeLU acti-

vations (Hendrycks and Gimpel, 2017) and layer

normalization (Ba et al., 2016), similar to Joshi

et al. (2020) to generate the final phrase represen-

tation pi ∈ R
d. Note that when the child of i-th

phrase is token node, the attention mechanism will

attend to the representation of all the subtokens the

token node covers.

3.2 Training Objective of SentiBERT
Inspired by BERT, the training objective of

SentiBERT consists of two parts: 1) Masked Lan-

guage Modeling. Some texts are masked and the

model learn to predict them. This objective allows

the model learn to capture the contextual informa-

tion as in the original BERT model. 2) Phrase Node

Prediction. We further consider training the model

to predict the phrase-level sentiment label based on

the aforementioned phrase representations. This

allows SentiBERT lean to capture the composi-

tional sentiment semantics. Similar to BERT, in the
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transfer learning setting, pre-trained SentiBERT
model can be used to initialize the model parame-

ters of a downstream model.

4 Experiments

We evaluate SentiBERT on the SST dataset. We

then evaluate SentiBERT in a transfer learning

setting and demonstrate that the compositional sen-

timent semantics learned on SST can be transferred

to other related tasks.

4.1 Experimental Settings

We evaluate how effective SentiBERT captures

the compositional sentiment semantics on SST

dataset (Socher et al., 2013).

The SST dataset has several variants.

• SST-phrase is a 5-class classification task

that requires to predict the sentiment of all

phrases on a binary constituency tree. Dif-

ferent from Socher et al. (2013), we test the

model only on phrases (non-terminal con-

stituents) and ignore its performance on to-

kens.

• SST-5 is a 5-class sentiment classification task

that aims at predicting the sentiment of a sen-

tence. We use it to test if SentiBERT learns

a better sentence representation through cap-

turing compositional sentiment semantics.

• Similar to SST-5, SST-2 and SST-3 are 2-

class and 3-class sentiment classification tasks.

However, the granularity of the sentiment

classes is different.

Besides, to test the transferability of

SentiBERT, we consider several related datasets,

including Twitter Sentiment Analysis (Rosenthal

et al., 2017), Emotion Intensity Classification (Mo-

hammad et al., 2018) and Contextual Emotion

Detection (EmoContext) (Chatterjee et al., 2019).

Details are shown in Appendix A.2.

We build SentiBERT on the HuggingFace li-

brary1 and initialize the model parameters using

pre-trained BERT-base and RoBERTa-base models

whose maximum length is 128, layer number is 12,

and embedding dimension is 768. For the train-

ing on SST-phrase, the learning rate is 2 × 10−5,

batch size is 32 and the number of training epochs

is 3. For masking mechanism, to put emphasis on

1https://github.com/huggingface

modeling sentiments, the probability of masking

opinion words which can be retrieved from Senti-

WordNet (Baccianella et al., 2010) is set to 20%,

and for the other words, the probability is 15%. For

fine-tuning on downstream tasks, the learning rate

is {1×10−5−1×10−4}, batch size is {16, 32} and

the number of training epochs is 1−5. We use Stan-

ford CoreNLP API (Manning et al., 2014) to obtain

binary constituency trees for the sentences of these

tasks to keep consistent with the settings on SST-

phrase. Note that when fine-tuning on sentence-

level sentiment and emotion classification tasks,

the objective is to correctly label the root of tree,

instead of targeting at the [CLS] token representa-

tion as in the original BERT.

4.2 Effectiveness of SentiBERT
We first compare the proposed attention networks

(SentiBERT w/o BERT) with the following base-

line models trained on SST-phrase corpus to evalu-

ate the effectiveness of the architecture design: 1)

Recursive NN (Socher et al., 2013); 2) GCN (Kipf

and Welling, 2017); 3) Tree-LSTM (Tai et al.,

2015); 4) BiLSTM (Hochreiter and Schmidhuber,

1997) w/ Tree-LSTM. To further understand the

effect of using contextualized representation, we

compare SentiBERT with the vanilla pre-trained

BERT and its variants which combine the four men-

tioned baselines and BERT. The training settings

remain the same with SentiBERT. We also ini-

tialize SentiBERTwith pre-trained parameters of

RoBERTa (SentiBERTw/ RoBERTa) and further

compare it with its variants.

As shown in Table 1, SentiBERT and

SentiBERT w/ RoBERTa substantially outper-

forms their corresponding variants and the net-

works merely built on the tree. Specifically,

we first observe that though our attention net-

work (SentiBERT w/o BERT) is simple, it is

competitive with Recursive NN, GCN and Tree-

LSTM. Besides, SentiBERT largely outperforms

SentiBERT w/o BERT by leveraging contextual-

ized representation. Moreover, the results manifest

that SentiBERT and SentiBERT w/ RoBERTa

outperform the BERT and RoBERTa, indicating the

importance of incorporating syntactic guidance.

4.3 Transferability of SentiBERT
Though the designed models are effective, we are

curious how beneficial the compositional sentiment

semantics learned on SST can be transferred to

other tasks. We compare SentiBERT with pub-
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Models SST-phrase SST-5

Recursive NN 58.33 46.53

GCN 60.89 49.34

Tree-LSTM 61.71 50.07

BiLSTM w/ Tree-LSTM 61.89 50.45

BERT w/ Mean pooling 64.53 50.68

BERT w/ GCN 65.23 54.56

BERT w/ Tree-LSTM 67.39 55.89

RoBERTa w/ Mean pooling 67.73 56.34

SentiBERT w/o BERT 61.04 50.31

SentiBERT 68.31 56.10

SentiBERT w/ RoBERTa 68.98 56.87

Table 1: The averaged accuracies on SST-phrase and

SST-5 tasks (%) for 5 runs. For baselines vanilla BERT

and RoBERTa, we use mean-pooling on token repre-

sentation of top layer to get phrase and sentence repre-

sentation.

Models SST-2 (Dev) SST-3 Twitter

BERT 92.39 73.78 70.0

BERT w/ Mean pooling 92.33 74.35 69.7

XLNet 93.23 75.89 70.7

RoBERTa 94.31 78.04 71.1

SentiBERT w/o BERT 86.57 68.32 64.9

SentiBERT w/o Masking 92.48 76.95 70.7

SentiBERT w/o Pre-training 92.44 76.78 70.8

SentiBERT 92.78 77.11 70.9

SentiBERT w/ RoBERTa 94.72 78.69 71.5

Table 2: The averaged results on sentence-level senti-

ment classification (%) for 5 runs. For SST-2,3, the

metric is accuracy; for Twitter Sentiment Analysis, we

use averaged recall value.

lished models BERT, XLNet, RoBERTa and their

variants on benchmarks mentioned in Section 4.1.

Specifically, ‘BERT’ indicates the model trained on

the raw texts of the SST dataset. ‘BERT w/ Mean

pooling’ denotes the model trained on SST, whose

phrase and sentence representation is computed by

mean pooling on tokens. ‘BERT w/ Mean pooling’

merely leverages the phrases’ range information

rather than syntactic structural information.

Sentiment Classification Tasks The evaluation

results of sentence-level sentiment classification

on the three tasks are shown in Table 2. Despite

the difference among tasks and datasets, from ex-

perimental results, we find that SentiBERT has

competitive performance compared with various

baselines. SentiBERT achieves higher perfor-

mance than the vanilla BERT and XLNet in tasks

such as SST-3 and Twitter Sentiment Analysis.

Besides, SentiBERT significantly outperform

Models Emotion Intensity EmoContext

BERT 65.2 73.49

RoBERTa 66.4 74.20

SentiBERT w/o Pre-training 66.0 73.81

SentiBERT 66.5 74.23

SentiBERT w/ RoBERTa 67.2 74.67

Table 3: The averaged results on several emotion clas-

sification tasks (%) for 5 runs. For Emotion Intensity

Classification task, the metric is averaged Pearson Cor-

relation value of the four subtasks; for EmoContext,

we follow the standard metrics used in Chatterjee et al.

(2019) and use F1 score as the evaluation metric.

SentiBERT w/o BERT. This demonstrates the

importance of leveraging pre-trained BERT model.

Moreover, SentiBERT outperforms BERT w/

Mean pooling. This indicates the importance of

modeling the compositional structure of sentiment.

Emotion Classification Tasks Emotion detec-

tion is different from sentiment classification. How-

ever, these two tasks are related. The task aims

to classify fine-grained emotions, such as happi-

ness, fearness, anger, sadness, etc. It is challenging

compared to sentiment analysis because of vari-

ous emotion types. We fine-tune SentiBERT and

SentiBERT w/ RoBERTa on Emotion Intensity

Classification and EmoContext. Table 3 shows the

results on the two emotion classification tasks. Sim-

ilar to the results in sentiment classification tasks,

SentiBERT obtains the best results, further justi-

fying the transferability of SentiBERT.

5 Analysis

We conduct experiments on SST-phrase us-

ing BERT-base model as backbone to demon-

strate the effectiveness and interpretability of the

SentiBERT architecture in terms of semantic

compositionality. We also explore potential of the

model when lacking phrase-level sentiment infor-

mation. In order to simplify the analysis of the

change of sentiment polarity, we convert the 5-class

labels to to 3-class: the classes ‘very negative’ and

‘negative’ are converted to be ‘negative’; the classes

‘very positive’ and ‘positive’ are converted to be

‘positive’; the class ‘neutral’ remains the same. The

details of statistical distribution in this part is shown

in Appendix A.3.

We consider the following baselines to eval-

uate the effectiveness of each component in

SentiBERT. First we design BERT w/ Mean

pooling as a base model, to demonstrate the ne-
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Figure 3: Evaluation for local difficulty. The figure

shows the accuracy difference on phrase node senti-

ment prediction with BERT w/ Mean pooling for dif-

ferent local difficulty.

cessity of incorporating syntactic guidance and

implementing aggregation on it. Then we com-

pare SentiBERT with alternative aggregation ap-

proaches, Tree-LSTM, GCN and w/o Attention to

Children.

5.1 Semantic Compositionality

We investigate how effectively SentiBERT cap-

tures compositional sentiment semantics. We focus

on how the representation in SentiBERT captures

the sentiments when the children and parent in the

constituency tree have different sentiments (i.e.,

sentiment switch) as shown in the red boxes of Fig-

ure 1. Here we focus on the sentiment switches

between phrases. We assume that the more the

sentiment switches, the harder the prediction is.

We analyze the model under the following two

scenarios: local difficulty and global difficulty. Lo-

cal difficulty is defined as the number of sentiment

switches between a phrase and its children. As we

consider binary constituency tree. The maximum

number of sentiment switches for each phrase is

2. Global difficulty indicates number of sentiment

switches in the entire constituency tree. The maxi-

mum number of sentiment switches in the test set

is 23. The former is a phrase-level analysis and the

latter is sentence level.

We compare SentiBERT with aforementioned

baselines. We group all the nodes and sentences

in the test set by local and global difficulty. Re-

sults are shown in Figure 3 and Figure 4. Our

model achieves better performance than baselines

in all situations. Also, we find that with the in-

crease of difficulty, the gap between our models

Figure 4: Evaluation for global difficulty. The figure

shows the accuracy difference on phrase node senti-

ment prediction with BERT w/ Mean pooling for dif-

ferent global difficulty.

and baselines becomes larger. Especially, when the

sentiment labels of both children are different from

the parent node (i.e., local difficulty is 2), the per-

formance gap between SentiBERT and BERT w/

Tree-LSTM is about 7% accuracy. It also outper-

forms the baseline BERT model with mean pooling

by 15%. This validates the necessity of structural

information for semantic composition and the ef-

fectiveness of our designed attention networks for

leveraging the hierarchical structures.

5.2 Negation and Contrastive Relation

Next, we investigate how SentiBERT deals with

negations and contrastive relation.

Negation: Since the negation words such as ‘no’,
‘n’t’ and ‘not’ will cause the sentiment switches,

the number of negation words also reflects the diffi-

culty of understanding sentence and its constituen-

cies. We first group the sentences by the number of

negation words, and then calculate the accuracy of

the prediction on their constituencies respectively.

In test set, as there are at most six negation words

and the amount of sentences with above three nega-

tion words is small, we separate all the data into

three groups.

Results are provided in Figure 5. We observe

SentiBERT performs the best among all the mod-

els. Similar to the trend in local and global diffi-

culty experiments, the gap between SentiBERT
and other baselines becomes larger with increase

of negation words. The results show the ability of

SentiBERT when dealing with negations.
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Figure 5: Evaluation for negation. We show the accu-

racy difference with BERT w/ Mean pooling.

Models Accuracy

BERT w/ Mean pooling 26.1

BERT w/ Tree-LSTM 28.5

BERT w/ GCN 29.4

SentiBERT w/o Attention to Children 29.8

SentiBERT 30.7

Table 4: Evaluation for contrastive relation (%). We

show the accuracy for triple-lets (‘X but Y’, ‘X’, ‘Y’).

X and Y must be phrases in our experiments.

Contrastive Relation: We evaluate the effective-

ness of SentiBERT with regards to tackling con-

trastive relation problem. Here, we focus on the

contrastive conjunction “but”. We pick up the

sentences containing word ‘but’ of which the sen-

timents of left and right parts are different. In our

analysis, a ‘X but Y’ can be counted as correct if

and only if the sentiments of all the phrases in triple-

let (‘X but Y’, ‘X’ and ‘Y’) are predicted correctly.

Table 4 demonstrates the results. SentiBERT out-

performs other variants of BERT about 1%, demon-

strating its ability in capturing contrastive relation

in sentences.

5.3 Case Study

We showcase several examples to demonstrate how

SentiBERT performs sentiment semantic compo-

sition. We observe the attention distribution among

hierarchical structures. In Figure 7, we demonstrate

two sentences of which the sentiments of all the

phrases are predicted correctly. We also visualize

the attention weights distributed to the child nodes

and the phrases themselves to see which part might

contribute more to the sentiment of those phrases.

SentiBERT performs well in several aspects.

First, SentiBERT tends to attend to adjectives

such as ‘frenetic’ and ‘funny’, which contribute to

the phrases’ sentiment. Secondly, facing negation

words, SentiBERT considers them and a switch

can be observed between the phrases with and with-

out negation word (e.g., ‘not really funny’ and ‘re-
ally funny’). Moreover, SentiBERT can correctly

analyze the sentences expressing different senti-

ments in different parts. For the first case, the

model concentrates more on the part after ‘but’.

5.4 Amount of Phrase-level Supervision

We are also interested in analyzing how much

phrase-level supervision SentiBERT needs in or-

der to capture the semantic compositionality. We

vary the amount of phrase-level annotations used

in training SentiBERT. Before training, we ran-

domly sample 0% to 100% with a step of 10% of

labels from SST training set. After pre-training

on them, we fine-tune SentiBERT on tasks SST-

5, SST-3 and Twitter Sentiment Analysis. During

fine-tuning, for the tasks which use phrase-level an-

notation, such as SST-5 and SST-3, we use the same

phrase-level annotation during pre-training and the

sentence-level annotation; for the tasks which do

not have phrase-level annotation, we merely use

the sentence-level annotation.

Results in Figure 6 show that with about 30%-

50% of the phrase labels on SST-5 and SST-3, the

model is able to achieve competitive results com-

pared with XLNet. Even without any phrase-level

supervision, using 70%-80% of phrase labels in

pre-training allows SentiBERT competitive with

XLNet on the Twitter Sentiment Analysis dataset.

Furthermore, we find the confidence of about

40-50% of phrase nodes in SST-3 task is above

0.9 and the accuracy of predicting these phrases is

above 90% on the SST dataset. Considering the

previous results, we speculate if we produce part

of the phrase labels on generic texts, choose the

predicted labels with high confidence and add them

to the original SST training set during the training

process, the results might be further improved.

6 Conclusion

We proposed SentiBERT, an architecture de-

signed for capturing better compositional sentiment

semantics. SentiBERT considers the necessity of

contextual information and explicit syntactic guide-

lines for modeling semantic composition. Exper-

iments show the effectiveness and transferability
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(a) SST-5 (b) SST-3 (c) Twitter Sentiment Analysis

Figure 6: The results of SentiBERT trained with part of the phrase-level labels on SST-5, SST-3 and Twitter

Sentiment Analysis. We show the averaged results of 5 runs.
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Figure 7: Cases for interpretability of compositional

sentiment semantics. The three color blocks between

parents and children are the attention weights dis-

tributed to left child, the phrase itself and right child.

of SentiBERT. Further analysis demonstrates its

interpretability and potential with less supervision.

For future work, we will extend SentiBERT to

other applications involving phrase-level annota-

tions.
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A Appendix

A.1 Details of Correlation Computation in
Attention Networks

For vectors a and b, the correlation between them

is computed as below:

Attention(a,b) =tanh(
1

α
SeLU((W1 × a)T ×W3

× SeLU(W2 × b))),
(3)

where SeLU (Klambauer et al., 2017) is an activa-

tion function and α equals 4. The two layers of

attention networks do not share the parameters.

A.2 Details of Downstream Tasks

We adopt the following tasks for evaluation of

sentence-level sentiment classifications:

SST-2,3 (Socher et al., 2013) These tasks all

share with the text of the SST dataset and are single-

sentence sentiment classification task, of which the

numbers behind indicate the number of classes.

Since two of five classes in SST-5 correspond to

positive and another two indicate negative, with ad-

ditional neutral ones, the dataset is separated into

three groups in SST-3 task. We convert the 5-class

phrase-level labels in SST-5 into three classes and

leverage them in the training of SST-3 task.

Twitter Sentiment Analysis (Rosenthal et al.,
2017) For Twitter Sentiment Analysis, given a

tweet, model needs to decide which sentiment it

expresses: positive, negative or neutral.

Emotion Intensity Ordinal Classification (Mo-
hammad et al., 2018) The task is, given a tweet

and an emotion, categorizing the tweet into one

of four classes of intensity that best represents

tweeter’s mental state. For Emotion Intensity Clas-

sification task, the metric is averaged Pearson Cor-

relation value of the four subtasks, ‘happiness’,

‘sadness’, ‘anger’ and ‘fearness’.

Emotions in Textual Conversations (Chatterjee
et al., 2019) In a dialogue, given a sentence with

two turns of conversation, the models needs to clas-

sify the emotion expressed in the last sentence. For

EmoContext, we follow the standard metrics used

in Chatterjee et al. (2019) and use F1 score on the

three classes ‘happy’, ‘sad’ and ‘angry’, except

‘others’ class, as the evaluation metric.

The statistics of datasets is shown in Table 5.

Dataset Data Split # of Classes

SST-phrase 8379 / 2184 5

SST-2 66475 / 859 2

SST-3 8379 / 2184 3

SST-5 8379 / 2184 5

Twitter 50284 / 12273 3

EmoContext 30141 / 2754 3

EmoInt

sad: 1533 / 975

4
angry: 1701 / 1001

fear: 2252 / 986

joy: 1616 / 1105

Table 5: Statistics of benchmarks.

Local Difficulty 0 1 2

Number 28136 10174 1342

Table 6: The distribution of nodes in terms of local dif-

ficulty.

Global Difficulty 0-4 5-9 10-14 15-19 20-23

Number 930 861 326 59 8

Table 7: The distribution of nodes in terms of global

difficulty.

# of Negation Words 0 1 2-

Number 1825 325 34

Table 8: The distribution of nodes in terms of negation

words.
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Models SST-phrase SST-5

SentiBERT w/ token 68.23 56.02

SentiBERT w/ token and RoBERTa 68.78 56.91

SentiBERT 68.31 56.10

SentiBERT w/ RoBERTa 68.98 56.87

Table 9: The results after incorporating token node pre-

diction. ‘Token’ denotes token node prediction.

A.3 Details of Analysis Part
The distribution of nodes and sentences in terms

of local difficulty, global difficulty and negation

words is shown in Table 6, 7 and 8, respectively.

A.4 Incorporating Token Node Prediction
Since the SST dataset also provides token-level

sentiment labels, we combine the token node pre-

diction with phrase node prediction learning ob-

jective together to model compositional sentiment

semantics.

Results are shown in Table 9. We observe that

the results drops a bit after additionally incorporat-

ing token-level sentiment information. This may be

because the phrase sentiment is composed but the

token sentiment mainly depends on the meaning

of the lexicon itself rather than a kind of compo-

sitional sentiment semantics. The inconsistency

of the training objectives may result in the perfor-

mance drop.


