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Abstract

In the literature, existing studies always con-

sider Aspect Sentiment Classification (ASC)

as an independent sentence-level classification

problem aspect by aspect, which largely ig-

nore the document-level sentiment preference

information, though obviously such informa-

tion is crucial for alleviating the information

deficiency problem in ASC. In this paper, we

explore two kinds of sentiment preference in-

formation inside a document, i.e., contextual

sentiment consistency w.r.t. the same aspect

(namely intra-aspect sentiment consistency)

and contextual sentiment tendency w.r.t. all

the related aspects (namely inter-aspect sen-

timent tendency). On the basis, we propose

a Cooperative Graph Attention Networks (Co-

GAN) approach for cooperatively learning the

aspect-related sentence representation. Specif-

ically, two graph attention networks are lever-

aged to model above two kinds of document-

level sentiment preference information respec-

tively, followed by an interactive mechanism

to integrate the two-fold preference. Detailed

evaluation demonstrates the great advantage of

the proposed approach to ASC over the state-

of-the-art baselines. This justifies the impor-

tance of the document-level sentiment prefer-

ence information to ASC and the effectiveness

of our approach capturing such information.

1 Introduction

Aspect Sentiment Classification (ASC), a fine-

grained sentiment classification task in the field of

sentiment analysis (Pang and Lee, 2007; Li et al.,

2010), aims to identify the sentiment polarity (e.g.,

positive, negative or neutral) for each aspect dis-

cussed inside a sentence. For example, the sentence

“The restaurant has quite low price but the food
tastes not good” would be assigned with a positive
polarity for the aspect price and with a negative

∗Corresponding Author: Jingjing Wang.

Intra-Aspect Sentiment Consistency
Document 1:
S1: Excellent food, although the interior could use some help.
- Category = FOOD#QUALITY, polarity = positive
- Category = AMBIENCE#GENERAL, polarity = negative
S2: The space kind of feels like an Alice in Wonderland setting, 
without it trying to be that.
- Category = AMBIENCE#GENERAL, polarity = negative
S3: I paid just about $60 for a good meal, tough :)
- Category = FOOD#QUALITY, polarity = positive
- Category = FOOD#PRICES, polarity = positive

Inter-Aspect Sentiment Tendency
Document 2:
S1: If you've ever been along with the river in Weehawken you 
have an idea of the top of view the chart house has to offer. 
- Category = LOCATION#GENERAL,  polarity = positive
S2: Add to that great service and great food at a reasonable 
price and you have yourself the beginning of a great evening.
- Category = SERVICE#GENERAL, polarity = positive
- Category = FOOD#QUALITY, polarity = positive
- Category = FOOD#PRICES, polarity = positive
S3: The lava cake dessert was incredible and I recommend it.
- Category = FOOD#QUALITY, polarity = positive

Figure 1: Two documents from SemEval 2016 (Pontiki

et al. (2016)) datasets, where aspect category is defined

as the entity E and attribute A pair (i.e., E#A). Red lines

denote the intra-aspect sentiment consistency and blue

lines denote the inter-aspect sentiment tendency.

polarity for the aspect food. Over the past decade,

the ASC task has been drawing more and more

interests (Tang et al., 2016b; Wang et al., 2018)

due to its wide applications, such as e-commerce

customer service (Jing et al., 2015), public opinion

mining (Wang et al., 2019c) and Question Answer-

ing (Wang et al., 2019a).

In the literature, given the ASC datasets (Pon-

tiki et al. (2016)) where aspects (i.e., entity and

attribute) are manually annotated comprehensively

sentence by sentence, previous studies model the

aspect sentiment independently sentence by sen-

tence, which suffer from the problem of ignoring

the document-level sentiment preference informa-

tion. In this study, we argue that such document-

level sentiment preference information is crucial to
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remedy the information deficiency issue in ASC.

Especially, we explore two kinds of sentiment pref-

erence information inside a document.

On one hand, we assume that the sentences in a

document involving the same aspect tend to have

the same sentiment polarity on this aspect. For

instance, in Document 1, both the sentence S1
and S2 involve aspect AMBIENCE#GENERAL. Al-

though it is difficult to infer the negative senti-

ment for aspect AMBIENCE#GENERAL through

the clause “without it trying to be that” in S2,

we can infer that the sentiment of aspect AMBI-
ENCE#GENERAL is more likely to be negative
according to S1. This is because it is easier to

infer negative for aspect AMBIENCE#GENERAL
through the clause “interior could use some help”
in S1. Therefore, a well-behaved approach should

capture the contextual sentiment consistency w.r.t.

the same aspect (namely intra-aspect consistency

for short) information.

On the other hand, we assume that the sentences

in a document tend to have the same sentiment po-

larity on all the related aspects. For the example of

Document 2 where the sentence S2 involves multi-

ple aspects, it is really hard to precisely predict the

sentiment polarity for each aspect. However, when

taken the context into consideration, the sentiment

polarity for each aspect in S2 is largely possible

to be positive, since all the neighboring sentences

express the positive sentiment polarity for their as-

pects. Therefore, a well-behaved model should

capture the contextual sentiment tendency w.r.t. all

the related aspects (namely inter-aspect tendency

for short) information.

To well accommodate the above two kinds of

document-level sentiment preference information,

we propose a Cooperative Graph Attention Net-

works (CoGAN) approach to ASC. Specifically,

two graph attention networks are constructed to

model the two-fold sentiment preference with the

attention weight to measure the preference-degree.

Furthermore, considering that the two-fold prefer-

ence can jointly influence the sentiment polarities

for aspects, we propose an interactive mechanism

to jointly model the two-fold preference for obtain-

ing better aspect-related sentence representation.

Detailed evaluation shows our proposed CoGAN

approach significantly outperforms the state-of-the-

art baselines, including the three top-performed

systems from SemEval-2015 Task 12 and SemEval-

2016 Task 5 (Pontiki et al., 2015, 2016).

2 Related Work

In this section, we first review the Aspect Sentiment

Classification (ASC) task, and then introduce the

related studies on graph-based neural networks.

Aspect Sentiment Classification. The ASC

task aims to predict the sentiment polarity for each

aspect discussed inside a sentence. Existing stud-

ies mainly focus on utilizing various approaches

(e.g., attention mechanism and memory network)

to align each aspect and the sentence for learn-

ing aspect-related sentence representation. Wang

et al. (2016) propose an attention-based LSTM

in order to explore the potential correlation of as-

pects and sentiment polarities in ASC. Wang et al.

(2018) propose a hierarchical attention network to

incorporate both words and clauses information for

ASC. He et al. (2018a) propose an attention-based

approach to incorporate the aspect-related syntac-

tic information for ASC. Tang et al. (2016b) and

Chen et al. (2017) design deep memory networks

to align the aspect and sentence for ASC. Lin et al.

(2019) propose a semantic and context-aware mem-

ory network to integrate aspect-related semantic

parsing information for performing ASC. Wang

et al. (2019a) and Wang et al. (2019b) leverage

reinforcement learning grounded approaches to se-

lect aspect-relevant words for ASC. Recently, a few

studies have recognized the information deficiency

problem in ASC and attempted to using external in-

formation to improve the performance of ASC. He

et al. (2018b) and Chen and Qian (2019) incorpo-

rate the knowledge from document-level sentiment

classification to improve the performance of ASC.

Ma et al. (2018) propose an extension of LSTM to

integrate the commonsense knowledge into the re-

current encoder for improving the performance of

ASC. In addition, it is worthwhile to note that Haz-

arika et al. (2018) also investigate the inter-aspect

sentiment dependency for ASC, but is limited to

capture this information inside a single sentence.

In summary, all the above studies ignore the

document-level sentiment preference information,

which can be leveraged to effectively mitigate the

information deficiency problem in ASC.

Graph-based Neural Networks. In recent

years, graph-based neural networks have received

more and more attentions. As a pioneer, Kipf and

Welling (2017) present a simplified graph neural

network model, called graph convolutional net-

works (GCN), which has been exported to several

tasks such as scene recognition (Yuan et al., 2019),
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semi-supervised node classification (Zhang et al.,

2019b), text-to-SQL parsing (Bogin et al., 2019)

and relation extraction (Sahu et al., 2019). On this

basis, some other improved Graph-based Neural

Networks are proposed. Morris et al. (2019) pro-

pose a generalization of Graph-based Neural Net-

works, so-called k-dimensional GNNs (k-GNNs),

which can take higher-order graph structures at

multiple scales into account. Cao et al. (2019)

propose a novel Multi-channel Graph Neural Net-

work model to learn alignment-oriented knowl-

edge graph embeddings by robustly encoding two

knowledge graphs via multiple channels. More

recently, there exist several studies also adopting

graph-based neural networks to ASC. For instance,

Hou et al. (2019) and Zhang et al. (2019a) build

GCN over the dependency tree of a sentence to

exploit syntactical information and word depen-

dencies for learning better aspect-related sentence

representation for ASC.

Different from all the above studies, this paper

proposes a novel Cooperative Graph Attention Net-

works approach to capture the document-level sen-

timent preference information in ASC. To our best

knowledge, this is the first attempt to incorporate

this information for the ASC task.

3 Cooperative Graph Attention
Networks (CoGAN)

In this section, we formulate the Aspect Senti-

ment Classification (ASC) task as follows. In

each document D with sentences1 {s1, s2, ..., sI},

given a sentence si, i ∈ {1, 2, ..., I} and its as-

pect ak, k ∈ {1, 2, ...,K}, the ASC task aims to

predict the sentiment polarity � for aspect ak by

automatically learning the aspect-related sentence

representation ri of sentence si. Here, I is the num-

ber of sentence si , and K is the number of aspect

ak inside the document.

In this paper, we propose a Cooperative Graph

Attention Networks (CoGAN) approach with two

types of Graph Attention Networks (GAN) to incor-

porate the two-fold preference information respec-

tively. Figure 2 shows the overall architecture of

the CoGAN approach which consists of five major

blocks: 1) Encoding Block; 2) Intra-Aspect Consis-

tency Modeling Block; 3) Inter-Aspect Tendency

Modeling Block; 4) Interaction Block. 5) Softmax

1Like Pontiki et al. (2015), all aspects of every sentence
are unrolled in a document. For instance, a sentence with two
aspects occurs twice in succession, once with each aspect.

Decoding Block. Before introducing our CoGAN

approach, we first give an overview of the basic

Graph Attention Network (GAN).

3.1 Basic Graph Attention Network
Graph Attention Network (GAN) (Velickovic et al.,

2017) is a new graph neural network architecture in-

cluding attention mechanism, which enables spec-

ifying different attention weights to different ver-

tices in a neighborhood. In principle, GAN can

aggregate the features of neighboring nodes and

also can propagate the information of a vertex to

its nearest neighbors. From this regard, GAN is

capable of sufficiently modeling local contextual

information for learning the representation of each

vertex. Formally, given a graph G(V,E) where V
and E denote the vertices and edges respectively,

GAN updates each new vertex vector ĥi of ver-

tex vi by considering neighboring vertices’ vectors

{hj}Ij=1 with the following formulas:

ĥi = tanh(
I∑

j=1

αijWhj + b)

αij =
exp(f(w�[Whi;Whj ]))∑I
t=1 exp(f(w

�[Whi;Wht]))

(1)

where αij is the attention weight (i.e., the edge

weight) between vertex vi and vertex vj . f(·) is a

LeakyReLU activation function. [; ] denotes vector

concatenation. W ∈ R
d×d and w ∈ R

2d are the

trainable parameters.

In the following, we will illustrate the five main

components of our CoGAN approach respectively.

3.2 Encoding Block
As a text encoding mechanism, BERT (Devlin et al.,

2019) can be fine-tuned to create state-of-the-art

models for a range of NLP tasks, e.g., text clas-

sification and natural language inference. In our

approach, we use BERT-base2 (uncased) model to

encode both the aspect and the sentence as follows.

• Aspect Encoding. Since an aspect ak consists

of an entity eentity and an attribute eattribute (Pon-

tiki et al., 2015), we process the entity-attribute

pair (eentity, eattribute) into the input pair format

of BERT as:

[CLS] eentity [SEP] eattribute [SEP]

Then, we feed the entity-attribute pair into BERT

and regard the mark “[CLS]” representation as the

aspect vector ek ∈ R
d of the aspect ak.

2https://github.com/google-research/bert
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Sentence Input: “Excellent food, although the 
interior could use some help.”

Aspect Input: FOOD#QUALITY

[CLS] [SEP] [SEP]

question )

Excellent food …

[CLS] [SEP] [SEP]food

… …

Shared BERT… …

Sentence Encoding
Inter-Aspect Tendency

Modeling Block

Intra-Aspect Consistency 
Modeling Block

Layer 1

Layer 2

Layer L

…

Interaction Block

Softmax Decoding Block

aspect vector

sentence vector

Aspect Encoding

Adaptive Layer-Fusion

sentence representation 

Encoding Block

What do you …

quality

… …

Pyramid Layers

Figure 2: The overall framework of our proposed Cooperative Graph Attention Networks (CoGAN).

• Sentence Encoding. We borrow the approach

proposed by Sun et al. (2019) to generate the aspect-

related sentence representation, which has achieved

promising performance for the ASC task. Follow-

ing Sun et al. (2019), we first process the sentence

si and its corresponding aspect ak into the input

pair format of BERT as:

[CLS] si [SEP] question(ak) [SEP]

where question(·) denotes the construction of aux-

iliary question sentence for aspect ak proposed by

Sun et al. (2019). For example, the auxiliary sen-

tence for aspect FOOD#PRICE is constructed as

“what do you think of the food and price?”. Then,

we similarly feed the above pair into BERT (shared

with aspect encoding) and obtain the aspect-related

sentence vector vi ∈ R
d of the sentence si. Further,

we fine-tune BERT and update both the aspect vec-

tor ek and sentence vector vi according to Eq.(8).

3.3 Intra-Aspect Consistency Modeling Block
In our approach, we propose a consistency-aware

GAN to model the intra-aspect consistency. Given

a document D with sentences {s1, s2, ..., sI}, the

consistency-aware GAN is denoted as a bipartite

graph G(S
⋃

A,Esa). Here, S and A are two dis-

joint sets of vertices, denoting the sentence vertices

and the aspect vertices respectively. Esa is the set

of the edge between the sentence si ∈ S and its

corresponding aspect ak ∈ A in the document D.

On the basis, the intra-aspect consistency is for-

mulated as that sentence vertices {si}I′i=1 sharing

the same neighboring aspect vertex ak and located

in the same document tend to have the same sen-

timent for this aspect ak. Here, I ′ denotes the

number of sentences sharing the same aspect ak.

Nevertheless, there still possibly exist some senti-

ment inconsistency cases.

Considering all the scenarios above, we use the

graph attention mechanism (Velickovic et al., 2017)

to measure the preference-degree, where the atten-

tion weight (preference-degree) is computed as the

edge weight between the sentence vertex si and the

aspect vertex ak in a document. Specifically, ac-

cording to Eq.(1), the attention weight αik between

sentence si and aspect ak is computed as follows:

αik =
exp(f(w�[Wvvi;Week]))∑I′
t=1 exp(f(w

�[Wvvt;Week]))
(2)

where Wv,We ∈ R
d×d and w ∈ R

2d are the

trainable parameters.

As a vertex in G(S
⋃

A,Esa), the sentence si is

then encoded as the aspect-related sentence repre-

sentation v̂
(intra)
i according to the following pro-

posed formula by modifying Eq.(1).

v̂
(intra)
i = tanh((vi + αik(

I′∑

j=1

αjkW vj)) + b)

(3)

where
∑I′

j=1 αjkW vj is the vector representation

of the aspect vertex ak, which is weighted added

to the sentence vector vi for enhancing the aspect-

related sentence representation. W ∈ R
d×d, b ∈

R
d are trainable parameters.

3.4 Inter-Aspect Tendency Modeling Block
In our approach, we leverage a tendency-aware

GAN to model the inter-aspect tendency. Given

a document D with sentences {s1, s2, ...sI}, the
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tendency-aware GAN is denoted as an undirected

graph G(S,Ess). Here, S is the set of sentence ver-

tices. Ess is the set of the edge between sentence

si ∈ S and sentence sj ∈ S in the document D.

On the basis, the inter-aspect tendency assump-

tion is formulated as that the sentence vertex si tend

to have the same sentiment with the neighboring

sentence vertices {sj}Ij=1 inside a same document.

Similar to intra-aspect consistency modeling

block, according to Eq.(1), the following formula

is applied to compute the attention weight αij be-

tween the sentence vertex si and the sentence ver-

tex sj from the same document:

αij =
exp(f(w�[W1vi;W2vj ]))∑I
t=1 exp(f(w

�[W1vi;W2vt]))
(4)

where W1,W2 ∈ R
d×d and w ∈ R

2d are the

trainable parameters.

As a vertex in G(S,Ess), according to Eq.(1),

sentence si is encoded as the new sentence repre-

sentation v̂
(inter)
i , i.e.,

v̂
(inter)
i = tanh(

I∑

j=1

αijWαvj + bα) (5)

where Wα ∈ R
d×d, bα ∈ R

d are the parameters.

3.5 Interaction Block
Since the above two-fold preference can jointly af-

fect the sentiment for aspect ak in si, we make the

two-fold preference pairwisely interact with each

other for cooperatively boosting the performance.

Especially, after obtaining the two sentence repre-

sentations v̂
(inter)
i and v̂

(intra)
i of sentence si from

the above two-fold preference modeling blocks,

we propose an interactive mechanism to make an

interaction between the two vectors instead of sim-

ply concatenating them. This is because a simple

vector concatenation does not account for any inter-

actions between the latent features of the two-fold

preference, which is insufficient for cooperatively

modeling the two-fold preference. In detail, this

interactive mechanism leverages two strategies to

learn the sentence representation.

• Pyramid Layers. As proposed in He et al.

(2016), the model using a small number of hidden

units for higher layers can learn more abstractive

features. Inspired by this, we add pyramid hidden

layers (see Figure 2) on the concatenated vector

for interacting the latent features of the two-fold

preference, where the bottom layer is the widest

and each successive layer has a smaller number

of neurons. More specifically, the sentence vector

v̂li ∈ R
2d·( 1

2
)l−1

of the l-th layer is defined as:

v̂li = tanh(W lv̂l−1
i + bl) (6)

where v̂1i = [v̂
(inter)
i ; v̂

(intra)
i ] and adding one layer

will make the dimension of the sentence vector half.

W l ∈ R
2d·( 1

2
)l−1×2d·( 1

2
)l−2

and bl are the trainable

parameters. l ∈ [1, L] denotes the layer index.

• Adaptive Layer-Fusion. To sufficiently fuse

the sentence representations at different level of

abstractions, an adaptive fusion mechanism is pro-

posed to fuse the representations of all layers for

computing the final sentence vector ri ∈ R
d of

vertex si as follows:

ri = tanh(Wr(

L∏

l=1

αiv̂
l
i) + br) (7)

where
∏

denotes the concatenation of multiple

vectors. Wr and br ∈ R
d are the trainable param-

eters. L is the number of added layers and set to

be 4 fine-tuned according to the development data.

α = [α1, ..., αL] is a normalized weights vector to

weigh each layer, which is learned during training.

3.6 Softmax Decoding Block
After obtaining the final sentence vector ri of

sentence si, we feed it to a softmax classifier

m = W ri + b, where m ∈ R
C is output vector;

W and b are the trainable parameters.

Then, the probability of labeling sentence with

sentiment polarity � ∈ [1, C] is computed by

pθ(�|ri) = exp(m�)∑C
η=1 exp(mη)

. Finally, the label with

the highest probability stands for the predicted sen-

timent polarity for the aspect ak.

3.7 Model Training
We use cross-entropy loss function to train our

model end-to-end given a set of training data

(si, ak, yi) from corpus C, where si is the i-th sen-

tence to be predicted, ak is its corresponding aspect

and yi is the ground-truth sentiment polarity for as-

pect ak. The objective of learning θ is to minimize

the loss function as follows:

J(θ) = E(si,ak,yi)∼C [− log pθ(yi|ri)]+ δ

2
||θ||22 (8)

where E denotes the expectation-maximization. ∼
denotes the sampling operation. θ denotes all the

trainable parameters of our CoGAN approach. δ is

a L2 regularization.
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4 Experimentation

4.1 Experimental Settings

Data Settings. We conduct experiments on four

datasets3, i.e., two datasets (restaurant15 and lap-
top15) released by SemEval-2015 Task 12 (Pontiki

et al., 2015) and the other two datasets (restau-
rant16 and laptop16) released by SemEval-2016

Task 5 (Pontiki et al., 2016), to verify the effec-

tiveness of our proposed approach. Wherein, each

dataset averagely consists of about 442 documents

and one document averagely contains 4.9 sentences.

Moreover, each sentence is annotated with one or

multiple aspects and a sentiment polarity (i.e., posi-
tive, negative or neutral) for each aspect. Addition-

ally, we set aside 10% from the training set as the

development data to tune the hyper-parameters.

Implementation Details. In our experiments,

all hyper-parameters are tuned according to the de-

velopment set. Specifically, BERT is optimized by

the Adam optimizer (Kingma and Ba, 2015), where

β1 = 0.9 and the initial learning rate is 10−4. Other

parameters of BERT are following (Devlin et al.,

2019). For our CoGAN approach, we adopt an-

other Adam optimizer with an initial learning rate

of 10−3 and β1 = 0.95 for cross-entropy training.

The regularization weight of parameters is 10−5.

The dropout rate is 0.25. All matrix and vector pa-

rameters of the layers are initialized by the Glorot

uniform (Glorot and Bengio, 2010).

Evaluation Metrics. The performance is evalu-

ated using standard Accuracy (Acc.) and Macro-F1
(F1) (Wang et al., 2017). Moreover, t-test is used

to evaluate the significance of the performance dif-

ference (Yang and Liu, 1999).

Baselines. We give the following baseline ap-

proaches for comparison in order to comprehen-

sively evaluate the performance of our approach. 1)
TC-LSTM. This approach extends LSTM by con-

sidering the aspect information where a forward

LSTM and a backward one towards the aspect are

adopted (Tang et al., 2016). 2) ATAE-LSTM. This

approach models the aspect-related context words

via attention-based LSTM (Wang et al., 2016). 3)
RAM. This approach captures importance of con-

text words for a specific aspect with a deep mem-

ory network and the results of multiple attentions

are non-linearly combined with a recurrent neu-

ral network (Chen et al., 2017). 4) IAN. This ap-

proach is an interactive learning approach, which

3Detail statistics can be seen in Pontiki et al. (2015, 2016).

models the contexts and aspects via LSTM and

then interactively learns attentions in the contexts

and aspects (Ma et al., 2017). 5) Clause-Level
ATT. This approach employs hierarchical atten-

tion to incorporate the clause information for ASC

(Wang et al., 2018). 6) LSTM+synATT+TarRep.
This approach employs syntax-aware attention to

learn aspect-related representation for ASC. This

is a state-of-the-art approach proposed by He et al.

(2018a). 7) BERT. This approach transforms ASC

from a single sentence classification task to a sen-

tence pair classification task. In our implementa-

tion, we regard the pair of sentence and its aspect

as the input pair of BERT-base model (Devlin et al.,

2018) for performing ASC. 8) CADMN. This ap-

proach employs attention model to attend on rele-

vant aspects for enhancing the aspect representa-

tion. This is a state-of-the-art approach proposed

by Song et al. (2019). 9) IMN. This approach is

a multi-task learning approach, which employs a

novel message passing mechanism to better exploit

the correlation among the tasks related to ASC.

This is a state-of-the-art approach proposed by He

et al. (2019). 10) BERT-QA. This approach is an

extension of the above BERT baseline proposed by

Sun et al. (2019). In this study, we adopt BERT-

pair-QA-M in our implementation. This is another

state-of-the-art approach for ASC. 11) Sentiue.
This is the best-performed system in SemEval-2015

Task 12 (Saias, 2015), which achieves the best accu-

racy scores in both the laptop15 and restaurant15
domains. 12) XRCE. This is the best-performed

system in SemEval-2016 Task 5 (Pontiki et al.,

2016), which achieves the best accuracy score in

the restaurant16 domain. 13) IIT-TUDA. This is

also the best-performed system in SemEval-2016

Task 5 (Pontiki et al., 2016), while achieving the

best accuracy score in the laptop16 domain. 15)
CoGAN w/o Intra-Aspect Consistency. Our ap-

proach only modeling Inter-Aspect Tendency. 16)
CoGAN w/o Inter-Aspect Tendency. Our ap-

proach only modeling Intra-Aspect Consistency.

17) CoGAN w/o Interactive Mechanism. Our ap-

proach only concatenating the two vectors v̂
(inter)
i

and v̂
(intra)
i instead of using interaction block to

integrate them.

4.2 Experimental Results

Table 1 shows the performance comparison of dif-

ferent approaches. From the table, we can see

that, all state-of-the-art approaches, such as Clause-
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Approaches Restaurant15 Laptop15 Restaurant16 Laptop16
Acc. F1 Acc. F1 Acc. F1 Acc. F1

TC-LSTM (Tang et al., 2016) 0.747† 0.634† 0.745† 0.622† 0.813 0.629 0.766 0.578

ATAE-LSTM (Wang et al., 2016) 0.752† 0.641† 0.747† 0.637† 0.821 0.644 0.781 0.591

RAM (Chen et al., 2017) 0.767† 0.645† 0.759† 0.639† 0.839 0.661 0.802 0.627

IAN (Ma et al., 2017) 0.755† 0.639† 0.753† 0.625† 0.836 0.652 0.794 0.622

Clause-Level ATT (Wang et al., 2018) 0.809† 0.685† 0.816† 0.667† 0.841 0.667 0.809 0.634

LSTM+synATT+TarRep (He et al., 2018a) 0.817‡ 0.661‡ 0.822 0.649 0.846‡ 0.675‡ 0.813 0.628

BERT (Devlin et al., 2018) 0.811 0.647 0.809 0.683 0.884 0.729 0.811 0.670

CADMN (Song et al., 2019) - - - - 0.879� 0.700� - -

IMN (He et al., 2019) 0.856� 0.718� 0.831 0.654 0.892 0.710 0.802 0.623

BERT-QA (Sun et al., 2019) 0.824 0.650 0.827 0.595 0.896 0.715 0.812 0.596

Sentiue (Saias, 2015) 0.787† 0.660† 0.793† 0.634† - - - -

XRCE (Brun et al., 2016) - - - - 0.881∗ - - -

IIT-TUDA (Kumar et al., 2016) - - - - - - 0.828§ -

CoGAN w/o Intra-Aspect Consistency 0.857 0.707 0.846 0.722 0.907 0.769 0.839 0.706

CoGAN w/o Inter-Aspect Tendency 0.854 0.716 0.841 0.708 0.915 0.770 0.811 0.676

CoGAN w/o Interactive Mechanism 0.864 0.704 0.839 0.698 0.908 0.788 0.839 0.700

CoGAN 0.872 0.732 0.851 0.745 0.920 0.816 0.842 0.707

Table 1: Comparison of all the approaches. The results with symbol † are retrieved from Wang et al. (2018); those

with ‡ are from He et al. (2018a); those with � are from Song et al. (2019); those with � are from He et al. (2019);

those with ∗ are from Brun et al. (2016) and those with § are from Kumar et al. (2016). The symbol - denotes both

the results and codes are not reported by these papers.
.

Level ATT, CADMN and IMN, perform better

than TC-LSTM. This result demonstrates the ef-

fectiveness of using a proper attention mechanism

to learn the aspect-related sentence representation

for performing the ASC task.

The BERT-based approaches, i.e., BERT and

BERT-QA, perform better than the above ap-

proaches on almost all datasets. This result en-

courages to utilize the pre-trained BERT model as

the aspect and sentence encoder for the ASC task.

Furthermore, our approach CoGAN w/o Intra-
Aspect Consistency and CoGAN w/o Inter-
Aspect Tendency outperform most of the above

state-of-the-art approaches. This encourages to

model the intra-aspect consistency or inter-aspect

tendency information for the ASC task.

In comparison, when incorporating both the

two-fold sentiment preference information, our ap-

proach CoGAN outperforms all the above base-

line approaches and even significantly outperforms

(p-value < 0.05) all three top-performed systems

from SemEval-2015 Task 12 and SemEval-2016

Task 5, i.e., Sentiue, XRCE and IIT-TUDA on

all four datasets. Impressively, compared to TC-
LSTM, our approach achieves the average im-

provement of 11.6% (Accuracy), 14.3%(Macro-
F1) on the two restaurant datasets and 9.1% (Accu-
racy), 12.6%(Macro-F1) on the two laptop datasets.

Significance test shows that these improvements

are all significant (p-value < 0.01). These results

highlight the importance of incorporating both the

intra-aspect consistency and inter-aspect tendency

information in a document for the ASC task.

In addition, it is worthwhile to note that CoGAN
outperforms CoGAN w/o Interactive Mecha-
nism, which encourages to employ the proposed

interactive mechanism to cooperatively integrate

the two-fold sentiment preference information.

5 Analysis and Discussion

5.1 Case Study

We provide a qualitative analysis of our CoGAN
approach on the test sets of the restaurant16 and

laptop16 datasets respectively. Figure 3 shows two

documents, along with their predicted sentiment

for each aspect, and probabilities of the ground-

truth label by different approaches. From this fig-

ure, we can see that: 1) For the example of Doc-

ument 1, it is difficult to infer the sentiment for

aspect LAPTOP#MISCELLANEOUS (to classify)

in S1 since the long sentence S1 involves syntac-

tic complications. Despite this, S8 expresses ex-

plicit negative polarity for the same aspect LAP-
TOP#MISCELLANEOUS. Considering this intra-

aspect consistency information, our CoGAN ap-

proach can still give the correct negative for aspect

LAPTOP#MISCELLANEOUS, while both BERT
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Document 1 (Intra-Aspect Consistency) Document 2 (Inter-Aspect Tendency)

BERT
(positive)✘

P(negative)=0.21

IMN
(positive)✘

P(negative)=0.26

CoGAN(Our Approach)
(negative)✔

P(negative)=0.82 

BERT
(negative)✘

P(positive)=0.25

IMN
(neutral)✘

P(positive)=0.28

CoGAN(Our Approach)
(positive)✔

P(positive)=0.87

S1: I would’ve given 5 stars, had it not been for the hours of 
updates I’ve had to do to this upon arrival.
- Category = LAPTOP#GENERAL
- Category = LAPTOP#MISCELLANEOUS

S2: It’s portable, reliable, and great for what I use it for. 
- Category = LAPTOP#GENERAL

……

S8: Negatives: As aforementioned, my only con was the updates.
- Category = LAPTOP#MISCELLANEOUS

S1: hidden little jem.
- Category = RESTAURANT#GENERAL

S2: Never too crowded and always great service.
- Category = SERVICE#GENERAL
- Category = RESTAURANT#MISCELLANEOUS

S3: I think I have probably tried each item on their menu at least 
once it is all excellent.
- Category = FOOD#QUALITY

……  

To classify

positive

positive

positive

negative

To classify
positive

positive

Figure 3: Examples from the test data with their polarities predicted by different approaches (i.e., BERT, IMN and

our approach). � (or �) denotes that the predicted sentiment polarity is correct (or wrong).

0.613

0.476
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Restaurant15 Laptop15 Restaurant16 Laptop16

R
at

io

Randomly Sampling Inter-Aspect Tendency Sampling

Intra-Aspect Consistency Sampling

Figure 4: Ratios that two sentences have an identical

sentiment polarity for their corresponding aspects.

and IMN give wrong predictions. This justifies

the effectiveness of the intra-aspect consistency

information for ASC. 2) For the example of Docu-

ment 2, it is rather difficult to infer the sentiment

for aspect RESTAURANT#GENERAL (to classify)

in S1, since the sentence S1 “hidden little jem.”
is too short and can not provide sufficient infor-

mation to predict the positive polarity for aspect

RESTAURANT#GENERAL. Despite this, CoGAN
considering the inter-aspect tendency information

can still give the positive for aspect RESTAU-
RANT#GENERAL. This is reasonable because take

the whole context into consideration, this restaurant

has good reputations due to its service and food.

5.2 Effectiveness Study
To better illustrate the effectiveness of modeling the

intra-aspect consistency and inter-aspect tendency

information, we systematically investigate both sen-

timent preference phenomena in all the four evalu-

ation datasets respectively. Specifically, we sample

200 sentence4 pairs inside each dataset and calcu-

late the ratio that the two sentences in the pair have

4Sentences are repeated in a document according to the
unrolled aspects. For instance, a sentence with two aspects
will be repeated twice, each sentence with only one aspect.

the same sentiment for their corresponding aspects.

Especially, we propose three sampling strategies

as follows. 1) Randomly Sampling: randomly se-

lecting sentence pairs inside each dataset. 2) Inter-

Aspect Tendency Sampling: randomly selecting

the sentence pairs under the premise that each two

sentences should be located in the same document.

3) Intra-Aspect Consistency Sampling: randomly

selecting the sentence pairs under the premise that

each two sentences should be located in the same

document and should have the same aspect. Figure

4 shows the statistical results of the three sampling

strategies on all four datasets. From this figure,

we can see that Inter-Aspect Tendency Sampling
and Intra-Aspect Consistency Sampling impres-

sively outperform Randomly Sampling by 27.9

% and 34% respectively. Moreover, the average

ratio of the two highest sampling strategies is up

to 84.1%. This is the reason for the effectiveness

of our CoGAN approach to ASC, and encourages

to leverage CoGAN for incorporating the two-fold

sentiment preference information.

5.3 Error Analysis

We randomly analyzed 100 error cases and roughly

categorized them into 5 classes briefly introduced

as follows. (1) 29% of errors are due to the oc-

currence of negation words, e.g., “Nothing really
came across as outstanding.”. CoGAN incorrectly

predicts positive polarity, inspiring us to optimize

CoGAN for capturing negation scope better. (2)

27% are due to incorrectly recognizing neutral in-

stances. The shortage of neutral training examples

makes it hard to recognize neutral instances, inspir-

ing us to use data augmentation to enlarge the scale

of neutral data. (3) 24% are due to the implicit sen-

timent expression, e.g., “There is definitely more to
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say...”. CoGAN incorrectly predicts positive polar-

ity instead of negative. (4) 12% are due to too short

sentences (e.g. with less than 5 words), inspiring us

to incorporate external ConceptNet knowledgebase

to enhance the semantic representation. (5) 8% are

due to comparative opinions, e.g., “I’ve had better
frozen pizza”. CoGAN incorrectly predicts positive,

inspiring us to investigate whether incorporating

syntactic information can remedy this issue.

6 Conclusion

In this paper, we propose a novel Cooperative

Graph Attention Networks (CoGAN) approach to

Aspect Sentiment Classification (ASC). The main

idea of the proposed approach is to incorporate two

kinds of sentiment preference information (i.e., the

intra-aspect consistency and inter-aspect tendency)

in a document for remedying the information de-

ficiency problem in ASC. Experimental results on

four datasets from SemEval-2015 and 2016 demon-

strate that our approach significantly outperforms a

number of competitive baselines, including all the

three best-performed systems in the shared tasks of

both SemEval-2015 and 2016.

In our future work, we would like to improve

the performance of the ASC task by using unla-

beled data since our graph-based neural network

approach is easy to add unlabeled data. Moreover,

we would like to apply our approach to other senti-

ment analysis tasks, e.g., aspect-oriented opinion

summarization and multi-label emotion detection.
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