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Abstract

This paper presents an investigation on the dis-
tribution of word vectors belonging to a cer-
tain word class in a pre-trained word vector
space. To this end, we made several assump-
tions about the distribution, modeled the distri-
bution accordingly, and validated each assump-
tion by comparing the goodness of each model.
Specifically, we considered two types of word
classes — the semantic class of direct objects
of a verb and the semantic class in a thesaurus
— and tried to build models that properly esti-
mate how likely it is that a word in the vector
space is a member of a given word class. Our
results on selectional preference and WordNet
datasets show that the centroid-based model
will fail to achieve good enough performance,
the geometry of the distribution and the exis-
tence of subgroups will have limited impact,
and also the negative instances need to be con-
sidered for adequate modeling of the distribu-
tion. We further investigated the relationship
between the scores calculated by each model
and the degree of membership and found that
discriminative learning-based models are best
in finding the boundaries of a class, while mod-
els based on the offset between positive and
negative instances perform best in determining
the degree of membership.

1 Introduction

Several studies have been successful in represent-
ing the meaning of a word with a vector in a con-
tinuous vector space (e.g., Mikolov et al. 2013a;
Pennington et al. 2014). These representations
are useful for a range of natural language process-
ing (NLP) tasks. The interpretation and geometry
of the word embeddings have also attracted atten-
tion (e.g., Kim and de Marneffe 2013; Mimno and
Thompson 2017). However, little attention has
been paid to the distribution of words belonging to
a certain word class in a word vector space, though
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Figure 1: 2D t-SNE projection of GloVe vectors. The
200 plus symbols (+) represent the word vectors that
can be a direct object of the verb play (positive in-
stances) and the 1000 squares (=) represent other word
vectors (negative instances).

empirical analysis of such a distribution provides
a better understanding of word vector spaces and
insight into algorithmic choices for several NLP
tasks, including selectional preference acquisition
and entity set expansion.

Figure 1 shows a 2D projection of word em-
beddings. We extracted 200 words that can be a
direct object of the verb play (positive instances)
and 1000 other words (negative instances) and pro-
jected their GloVe vectors (Pennington et al., 2014)
into two dimensions using t-distributed Stochastic
Neighbor Embedding (t-SNE) (van der Maaten and
Hinton, 2008). The plus symbols (+) represent the
positive instances, and the squares (=) represent
the negative instances. This figure shows that the
positive instances tend to be densely distributed
around their centroid but they are not evenly dis-
tributed near the centroid in the 2D spaces. In this
study, we aimed to understand how these positive
instances are distributed in the pre-trained word
vector spaces built by three representative general-
purpose models: CBOW, skip-gram (Mikolov et al.,
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2013a), and GloVe.

More specifically, we attempted to determine the
following: whether or not a simple centroid-based
approach can provide a reasonably good model,
whether or not considering the geometry of the
distribution and the existence of subgroups is useful
for modeling the distribution, and whether or not
considering the negative instances is essential to
achieve adequate modeling. To this end, we first
tackled properly modeling the vector distribution
to distinguish a possible member of a word class
from others when a subset of the class members is
given. Note that although various approaches have
been proposed to improve word vectors by taking
knowledge related to word classes into account
(Faruqui et al., 2015; Rothe and Schiitze, 2015;
Mrksic et al., 2017), we explored ways to model the
distribution of word vectors rather than attempting
to improve the word vectors themselves.

We started with a centroid-based model, which
is a simple but widely used way of representing a
set of word vectors (e.g., Baroni et al. 2014; Wood-
send and Lapata 2015) and assumes that how likely
a word in the vector space is a member of a word
class is proportional to the proximity to the centroid
vectors of the class members. We then explored
models that take the geometry of the distribution
and the existence of subgroups into account. Here,
we made two assumptions: vectors of words be-
longing to a certain word class are distributed with
different variances depending on the direction, and
most word sets will consist of several subgroups.
We then explored the models that also consider
negative instances. We assumed that the vectors
of the words that do not belong to the target word
class can be essential clues to distinguish a possible
member of a word class from others. Specifically,
we explored a model based on the offset between
positive and negative instances and discriminative
learning-based models to investigate the impact of
negative instances.

Furthermore, we investigated the relationship
between the scores calculated by each model and
the degree of membership using the Rosch (1975)
dataset. The dataset contains typicality ratings for
some instances of a category. Through experiments,
we found that discriminative learning-based models
perform better at distinguishing a possible member
of a word class from others, while the offset-based
model achieves higher correlations with the degree
of membership.

2 Related Work

The interpretation and geometry of word embed-
dings have attracted attention. Mimno and Thomp-
son (2017) reported that vector positions trained
with skip-gram negative sampling (SGNS) do not
span the possible space uniformly but occupy a nar-
row cone instead. Mikolov et al. (2013b) showed
that constant vector offsets of word pairs can repre-
sent linguistic regularities. Kim and de Marneffe
(2013) demonstrated that vector offsets can be used
to derive a scalar relationship amongst adjectives.
Yaghoobzadeh and Schiitze (2016) performed an
analysis of subspaces in word embedding. These
analyses suggest that a certain direction or sub-
space in the word vector space represents an aspect
of the words and the possibility that a word class is
distributed with different variances depending on
the direction in the vector space.

While we investigated ways to model the distri-
bution of a set of words in pre-trained word vec-
tor spaces to validate several assumptions about
the distribution, various approaches have been pro-
posed to improve word embeddings by considering
knowledge related to word classes into account. For
example, Faruqui et al. (2015) proposed a method
of refining vector representations using relational
information from semantic lexicons by encourag-
ing linked words to have similar vector representa-
tions. Mrksi€ et al. (2017) proposed an algorithm
for improving the semantic quality of word vectors
by injecting constraints extracted from lexical re-
sources. Glavas and Vuli¢ (2018) use the linguistic
constraints as training examples to learn an explicit
specialization function with deep neural network
architecture.

There are also several studies that expand the
method for acquiring a word vector to consider the
uncertainty of a word meaning via Gaussian mod-
els (Vilnis and McCallum, 2015; Athiwaratkun and
Wilson, 2017) and word polysemy by introducing
several vectors for each word (Chen et al., 2014,
Neelakantan et al., 2014; Tian et al., 2014; Athi-
waratkun et al., 2018). In this study, we only con-
sidered a vector for representing each word, but
inspired by these studies, we explored models that
can consider the geometry of the distribution and
the existence of subgroups.

The problem we tackled is similar to a selec-
tional preference acquisition task. There have been
a number of studies on selectional preference ac-
quisition. Resnik (1996) presented an information-
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Figure 2: Examples of distributions modeled by (a) CENT, (b) GM, (c) GMM, and (d) OffSet.

theoretic approach that inferred selectional pref-
erences based on the WordNet hypernym hierar-
chy. Erk et al. (2010) described a method that uses
corpus-driven distributional similarity metrics for
selectional preference induction. Van de Cruys
(2014) investigated the use of neural networks for
selectional preference acquisition.

An entity set expansion task (Pantel et al., 2009)
is also similar to our problem and has been well
studied. For example, Sadamitsu et al. (2011) dis-
ambiguated entity word senses and alleviated se-
mantic drift by extracting topic information from
LDA for entity set expansion. Zhang et al. (2016)
proposed a joint model for entity set expansion and
attribute extraction. In this study, we seek to un-
derstand how these vectors are distributed in the
pre-trained word vector space without using con-
textual or lexical information. A comparison with
the state-of-the-art models for selectional prefer-
ence induction and entity set expansion is beyond
the scope of this work.

3 Problem Formulation

First, let us introduce the notation. W, is a subset
of words that belong to the target word class c¢. W,
is a subset of words that do not belong to the word
class. w; is a target word that can be a member of
the word class ¢ but is not included in W.. v, € V,,
is a pre-trained vector for word w. We normalize all
the word vectors to unit length.! Note that we select
the words in W, to share the same grammatical
category as the words in W.,.

"We also performed experiments with original vectors but
obtain similar results in most cases.

Our objective is to distinguish the word w; from
the words in W,, given W, and V,,,. More specif-
ically, we aim to find a scoring function f(w, W,)
that assigns a higher score to w; and lower scores to
the words in W,. For example, suppose c is a class
of words that can be a direct object of the verb play;
W., W, and w; will be as follows: W, = {role,
part, game, golf, tennis}, W, = {school, apple,
milk, arch, idea}, and w; = basketball. Our ob-
jective is to find a scoring function that assigns a
higher score to basketball than to school, apple,
milk, arch, and idea.

4 Models

We will start with a centroid-based model (CENT)
that measures the score between a word w and a
word set W, by calculating the cosine similarity
between the word vector and the centroid vector
of the word vectors in the word set (Figure 2-(a)).
The scoring function can be written as:

1
fCENT<w,WC>:cos(ajw,W > vw). (D)
¢ chWc

CENT provides a reasonable baseline, but it does
not take the geometry of the distribution of the
word vectors into account. Therefore, we introduce
a simple Gaussian model (GM) to represent the
distribution of word vectors belonging to a word
class ¢ (Figure 2-(b)). The scoring function is as
follows:

fGM(w7 WC) = N(Uw|/~L7 E)a (2)
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where mean . and covariance matrix X are esti-
mated from {v,, |w. € W,}. We select the con-
straint on covariance matrices for Gaussian distri-
bution from {spherical, diagonal, full} by perform-
ing cross-validation on W,.. GM is identical with
CENT when the covariance matrix is an identity
matrix.

Next, we introduce a Gaussian mixture model
(GMM) to take the existence of subgroups in a
word class c¢ into account (Figure 2-(c)). The scor-
ing function can be written as:

K
foama(w, We) =Y mN (vwlir, Bx), (3
k=1

where weights m, means pu, and covariance ma-
trices X, are estimated from {v,,, |w. € W.}. We
select the number of components of a Gaussian
mixture K from {1,2,...,10} and the constraint
on covariance matrices from {spherical, diagonal,
full} by performing cross-validation on W,.. GMM
can be considered an extension of CENT because
it is identical to the CENT when K is 1 and the
covariance matrix is an identity matrix.
Furthermore, we will consider another extension
of CENT that only considers the existence of sub-
groups. Since all word vectors are normalized to
unit length, fegnt(w, W) can also be written as:

Z co8(Vi, V),  (4)

weEWe

«
fCENT(wywc) = ‘ WC‘
Cc

where o, is a normalization term depending only
on W, and thus does not affect the ranking. That is,
we can consider that CENT takes the average of the
cosine similarities between a word vector v,, and
all word vectors in the given word set .. If the
words in the word set consist of several subgroups,
it would be more plausible to consider only the
top-k most similar words for scoring. Accordingly,
we introduce the k-nearest neighbor model (KNN),
which takes the average of only the top k& similar
vectors. The scoring function can be written as:

1

finn (0, We) = 2 D cos(vu, v,), (5)

WeELNNy (We)

where kNN, (WW.) is a function returning a set of
words in W, that take the top-k highest cosine sim-
ilarities against the word w. The number of k is
selected from {1,2,22, ..., |W,|} by performing
cross-validation on W,... kNN is identical to CENT
when |W,| is selected as k.

As the last model without negative instances,
we adopt a one-class support vector machine
(SVM) (Scholkopf et al., 2001)-based model
(1-SVM) to clarify the importance of the neg-
ative instances. We select the kernel from
{linear, cubic polynomial, RBF} and tune the pa-
rameter nu € {0.05,0.10,...,0.50} by perform-
ing cross-validation. Note that models without neg-
ative instances learn a decision function for outlier
detection: classifying new data as similar or differ-
ent to the given positive instances.

Next, we explore models that also leverage neg-
ative instances. Here, we introduce a word set W,
as negative instances, where W,, consists of words
that are not included in either W, or W,. We select
the words in W, to share the same grammatical
category as the words in W, as well as W,. Both
W, and W,, consist of words that are not included
in W,, but their roles are different. While words
in W, are used as negative instances in the estima-
tion, words in W,, are used as negative instances
for modeling the word-class distribution.

As the first model with negative instances, we
introduce a model based on the offset between pos-
itive and negative instances (OffSet). This model
is inspired by the Kim and de Marneffe (2013)’s
work, which demonstrates that vector offsets can be
used to derive adjectival scales. We assume that the
vector offset between the centroid of the positive
instances and that of the negative instances repre-
sents the degree of membership in the vector space
(Figure 2-(d)). The scoring function of OffSet is as
follows:

fOffSet(w;WmWn) — COS(U’wa UEC - UZn )7 (6)

’ Ec| | Zn’

where v = E Viey Vs, = g Vawy, -

UJCEWC UJnEWn

Now let us move on to discriminative learning-
based models. In this study, we chose a sup-
port vector machine with a linear kernel (SVM7,)
or a radial basis function (RBF) kernel (SVMR).
We only used word vectors as the input of
these models and regard the decision function as
the scoring function. We tuned the parameter
C € {0.1,0.2,0.5,1,2,5,10} and class weight
for positive instances P € {1,2,4,8} for SVM,
and the parameter C' € {0.2,0.5,1,2,5}, v €
{0.2,0.5,1,2}, and class weight for positive in-
stances P € {1,2,4,8} for SVMp by perform-
ing cross-validation on W, and W,,. Note that
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we wanted to determine the usefulness of nega-
tive instances in modeling the distribution of word
vectors; thus we make no assertions that these are
optimal models.

5 Experiments

5.1 Word embeddings

We used three publicly available pre-trained word
vectors for English: the 300-dimensional embed-
dings trained on the Google News corpus with the
CBOW model (CBOW),? the 300-dimensional em-
beddings trained on Wikipedia with the skip-gram
model (SGNS),? and the 300-dimensional embed-
dings trained on Wikipedia and Gigaword with the
GloVe model (GloVe).* For Japanese, we trained
300-dimensional embeddings on an approximately
1.5 billion word corpus collected from the Web,
with the CBOW model (CBOW), the skip-gram
model (SGNS),” and the GloVe model (GloVe).®
We also trained 50-, 100-, and 200-dimensional
embeddings on the same corpus for each model in
order to investigate the effect of the vector size.

5.2 Datasets

For the evaluation, we used two types of datasets
for English and Japanese, respectively.

5.2.1 SP dataset

As the first type, we used word sets that consist
of words which can be a direct object of a certain
verb. For example, suppose a word set consists of
{role, part, game, golf, tennis, etc.}, where each
word can be a direct object of the verb play. We
did not use the verb itself for evaluation but we can
regard this as a selectional preference (SP) task.
For the English SP dataset, we extracted pairs
of verbs and their direct objects from the Google
Books Syntactic N-grams dataset (Goldberg and
Orwant, 2013). We first extracted verbs with the
POS tag of VBD, VBP or VBZ that have direct
objects at a rate of more than 40%. We decided on
a threshold of 40% empirically to extract transitive
verbs only. Then, we listed the extracted verbs in
descending order of the number of the different
direct objects and chose the top 1,000 of them.

Zhttps://code.google.com/archive/p/word2vec/

3https://github.com/jhlau/doc2vec

*http://nlp.stanford.edu/data/glove.6B.zip

Shttps://code.google.com/archive/p/word2vec/. We used
the default parameters except for the vector size.

Shttps://nlp.stanford.edu/projects/glove/. We used the
same parameters as demo.sh except for setting the window
size to 5 and the vector size to 300.

Target synset

placental, etc. (id:01886756)

carnivore

_______________________

Distance from
the target synset

Figure 3: The pair of a synset and a set of its hyponyms
in a distance of at most five. The hyponyms are sur-
rounded by a broken line.

For the Japanese SP dataset, we extracted pairs
of verbs and their accusative arguments from the
predicate-argument data used by Sasano and Oku-
mura (2016). First, we extracted verbs that have
accusative arguments at a rate of more than 70%.
Again, we decided on a threshold of 70% empir-
ically to extract transitive verbs only. Then, we
listed the extracted verbs in descending order of
the number of the different accusative arguments
and chose the top 1,000 of them.

Both datasets consisted of 1,000 verbs with at
least 250 unique direct objects. We selected 200
direct objects as W, from the most frequent 250
direct objects and the other 50 direct objects as
wy for each verb. Thus, the number of tasks N
was 50,000, i.e., 50 tasks for each of the 1,000
verbs. We used 2,000 negative instances against
200 positive instances to build models with nega-
tive instances.

5.2.2 WordNet datasets

We used word sets extracted from English and
Japanese WordNet (Fellbaum, 1998; Isahara et al.,
2008) as the second type. For example, a word
set consists of {dog, Ilama, hedgehog, wolf, etc.},
which are all hyponyms of the same synonym set
(synset n01886756, placental). We extracted the
pair of a synset ID and a set of words in the synset
and its hyponyms in a distance of at most five from
the target synset in the WordNet hyponym tree,
as shown in Figure 3. We did not use multiword
expressions or words whose word vectors are not
included in any of the three pre-trained word em-
beddings.

We extracted synsets that have at least 250 words.
There are 109 word sets for English datasets and
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120 word sets for Japanese datasets. We selected
200 words as W, and the other 50 words as w; for
each synset. The number of tasks N was 5,450, i.e.,
50 tasks for each of the 109 synsets for English,
and 6,000, i.e., 50 tasks for each of the 120 synsets
for Japanese. We used 2,000 negative instances
against 200 positive instances to build models with
negative instances as well as the SP datasets.

5.3 Experimental settings

We compared eight models: CENT, GM, GMM,
kNN, 1-SVM, OffSet, SVM;,, and SVMp. For
each dataset, we made W, by extracting 999 words
from the other word sets; that is, the number of
words for scoring was 1,000, including the target
word w;. For OffSet, SVM;,, and SVMpg, we make
W, by extracting words from the other word sets
subject to the constraint W, N W,, = {}.

We regarded the problem as a ranking task and
adopted the mean reciprocal rank (MRR) as the
metric for evaluation. The MRR is calculated by
the following equation:

e 1
MRR = — _— 7
N ; rank(wy, )’ ™

where rank(wy,) is the rank of the target word wy,
for each task. We tune the parameters to maximize
the MRR in parameter tuning.

We measured the statistical significance with an
approximate randomization test (Chinchor, 1992)
with 99,999 iterations and significance level @ =
0.05 after Bonferroni correction. To satisfy the
independence assumption, we treated each verb
(for the SP datasets) or synset (for the WordNet
datasets) as the unit of a randomization test.

5.4 Experimental results
5.4.1 Results on the SP datasets

Tables 1 and 2 show the experimental results on the
SP dataset for English and Japanese, respectively.
In these tables, the best scores for each word em-
bedding model and the scores with no significant
difference from the best score are indicated in bold.
In addition, the CENT score and the scores with
no significant difference from the CENT score are
italicized.

The results in these tables indicate that the mod-
els considering the geometry of the distribution or
the existence of subgroups in the word class outper-
form the centroid-based model (CENT) for both
the English and Japanese SP datasets. In particular,

Model ‘CENT GM GMM kNN 1-SVM OftSet SVM, SVM R

CBOW| .1642 2539 .2360 .2097 .1726 .2782 .3397 .3905
SGNS |.1887 2461 .2308 .1918 .2252 .2189 .3365 .3608
GloVe |.1925 2596 .2462 .2245 2295 .1150 .3554 .3800
Ave. ‘.1818 2532 2377 2087 .2091 .2040 .3439 .3771

Table 1: Results on the English SP dataset.

Model ‘CENT GM GMM ENN 1-SVM OffSet SVWM [, SVWM g

CBOW| .2600 .3151 .2947 .2783 .2812 .2516 .4371 .4922
SGNS |.0789 .2231 .2039 .1757 .1249 2594 4173 .4510
GloVe | .1643 .2489 .2377 .2016 .1927 .2088 .3264 .3632

Ave. ‘.1677 2624 2454 2185 .1996 2399 .3936 .4355

Table 2: Results on the Japanese SP dataset.

a simple Gaussian model (GM) performed the best
among the models that only depend on positive
instances. This indicates that these word sets are
distributed with different variances depending on
the direction in the vector space and it is useful to
consider the geometry of the distribution.

The two discriminative learning-based mod-
els with negative instances, SVMr, and SVMp,
achieved much higher performance, whereas 1-
SVM yielded a limited improvement over CENT.
This demonstrates that modeling the distribution
with only positive instances has an obvious limi-
tation, and it is essential to leverage the negative
instances as well. OffSet with CBOW or SGNS
achieved a relatively good performance, but OffSet
with GloVe did not, which suggests that the useful-
ness of the offset depends on the word embedding
model.

5.4.2 Results on the WordNet datasets

Tables 3 and 4 show the experimental results on
the WordNet dataset for English and Japanese, re-
spectively. The meaning of bold and italic fonts is
identical to that on the SP dataset.

The two discriminative learning-based models
with negative instances and OffSet with CBOW or
SGNS achieved a relatively high performance. This
demonstrates that the negative instances must be
taken into account to model the distribution prop-
erly. On the other hand, in contrast with the SP
datasets, there were no significant improvements
when the geometry of the distribution and the exis-
tence of subgroups were considered.

The scores were generally lower than those of
the SP datasets. We conjecture that this is because
WordNet is developed manually and reflects human
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Model ‘CENT GM GMM kNN 1-SVM OffSet SVM, SVM i

CBOW | .1435 1320 .1460 .1473 .1541 2263 .2564 .2678
SGNS | .1767 .1679 .1573 .1625 .1704 .1998 .2292 .2357
GloVe |.1792 .1694 .1562 .1744 .1684 .1310 .2075 .2264
Ave. ‘.]665 1564 1532 .1614 .1643 .1857 .2310 .2433

Table 3: Results on the English WordNet dataset.

Model ‘CENT GM GMM ENN [-SVM OffSet SVWM [, SVM i

CBOW | .1996 .1991 .1918 2169 .2082 .2656 .2730 .2961
SGNS | .0466 .0521 .0774 .0768 .0701 .2367 .2686 .2862
GloVe |.1055 .1050 .1021 .0987 .0984 .0681 .2033 .2189
Ave. ‘.1172 1187 1238 .1308 .1256 .1901 .2483 .2671

Table 4: Results on the Japanese WordNet dataset.

intuition, whereas the SP datasets are automatically
built from the corpus and are highly compatible
with the pre-trained word vectors. In addition, we
examined which types of words tend to rank low
and found that words extracted from a synset cor-
responding to their infrequent sense such as stock
in the sense of livestock tend to rank low. We leave
further exploration for future work.

5.4.3 Discussion

It is interesting that although SVM, is effectively
just a linear classifier, SVM[, achieves a relatively
high performance. This is likely due to the rela-
tively large vector size compared to the number
of positive instances and indicates that the posi-
tive instances occupy a certain span in the vector
space though such a span cannot be determined by
only using positive instances. We confirmed two
desirable properties of the discriminative learning-
based models with negative instances for practical
applications. One is that since we used simple mod-
els, they do not require much training time. The
other is that their performance is relatively stable
among the different word embeddings and datasets
compared to the other models.

We also investigated the effect of the vector
size and the number of positive instances on the
Japanese SP dataset. Table 5 shows the averaged
CBOW, SGNS, and GloVe scores for different vec-
tor dimensions, 50, 100, 200, and 300. We found
that while CENT and 1-SVM were not affected
much by the vector size, the other models, particu-
larly OffSet, SVMr,, and SVMp, were significantly
affected by the vector size. Table 6 shows the av-
eraged CBOW, SGNS, and GloVe scores for the
different number of positive instances, 25, 50, 100,

Size|CENT GM GMM kNN 1-SVM OffSet SVM [, SVM r

3568
4044
4340
4355

50 |.1686
100 | .1738
200 | .1724
300 | .1677

2360 .2055 .1909 .1825 .1769 .2842
2557 2177 2075 .1954 2189 .3366
2697 2233 2178 .2005 .2363 .3813
2624 2454 2185 .1996 .2399 .3936

Table 5: The average scores of different vector size
with the Japanese SP dataset.

[We| ‘CENT GM GMM ENN 1-SVM OffSet SVWM [, SVM

25 1563 1728 .1522 .1635 .1562 .1880 .2326 .2600
50 1612 2008 1779 .1795 .1722 2144 2898 .3157
100 | .1652 .2388 .2098 .1988 .1880 .2307 .3475 .3790

200 |.1677 .2624 .2454 2185 .1996 .2399 .3936 .4355

Table 6: The average scores of different word set size
with the Japanese SP dataset.

and 200. We can conclude that all the models per-
form at a higher level based on the larger number
of positive instances, especially for GM, GMM,
SVMy, and SVMp. This is not surprising, since
these models have a large number of parameters
and can extract a rich variety of information from
the large number of positive instances. Similar ten-
dencies were also observed with the other dataset.
These results demonstrate that we can obtain rel-
atively high performance by using discriminative
learning-based models with a large enough vector
and training data size.

5.5 Degree of membership

Rosch (1975) developed the prototype concept and
proved that not all members of a category are
equally representative of the category. Here, we
are interested in the relationship between the scores
calculated by each model and the degree of mem-
bership. We thus investigated how consistent the
score calculated by each model is with human intu-
ition on the degree of membership.

For this experiment, we used the typicality data
by Rosch (1975). Rosch asked 209 college students
to use a 7-point scale to rate the extent to which
each instance represents their idea or image of the
meaning of the category term, and reported the rank
orders with the mean ratings for ten categories.’
For example, for the Furniture category, 60 exam-
ples are ranked with the mean ratings, chair and
sofa are top-ranked with the score of 1.04, and

"To test the reliability of ratings, Rosch (1975) ob-
tained Spearman rank-order correlations and Pearson product-
moment correlations between sub-groups of students and re-
ported that consistency was extremely high.
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Category | SynsetID | |[Wg| |[W.| |WrNW,|

Furniture | n03405725 60 89 26
Fruit n13134947 51 165 41
Vehicle n04524313 50 346 34
Weapon n04565375 60 119 19
Vegetable | n07707451 56 102 27
Bird n01503061 54 330 51
Sport n00523513 59 106 33
Clothing | n03051540 55 409 31

Table 7: Statistics of the typicality dataset.

Model ‘CENT GM GMM ENN [-SVM OffSet SVWM [, SVM i

p
CBOW| .1736 .1905 .1706 .2417 .1160 .3224 .3176 .2562
SGNS | .2848 .3194 .4024 .3221 .1924 .2940 .3363 .3121
GloVe | .1458 .1949 .1448 .3204 .1780 .4383 .3367 .2702
Ave. 2014 2349 2393 .2947 .1621 .3516 .3302 .2795
T
CBOW| .1230 .1373 .1198 .1833 .0728 .2400 .2289 .1855
SGNS | .2101 .2400 .2945 .2355 .1400 .2066 .2390 .2180
GloVe | .1012 .1401 .1080 .2254 .1266 .3038 .2391 .1908

Ave. ‘.1448 1725 1741 2147 1131 .2501 .2357 .1981

Table 8: Averaged rank correlation coefficients against
the typicality data by Rosch.

stove is ranked as 50th with the score of 5.4.

In this study, we used eight categories that have
a corresponding synset in WordNet. Table 7 shows
the statistics of the dataset. In the table, |Wg|
denotes the number of examples in Rosch’s dataset,
|W,| denotes the number of words in the synset
and its hyponyms in the WordNet, and |Wx N W |
is the number of words included in both W and
W, which we try to rank here.

In this experiment, the objective was not to dis-
tinguish a possible member from others but to rank
the positive member w, in W, according to the
degree of membership. That is, we first formed
the scoring function by using W, and W,, and then
applied the function to each member of W N W,
to predict the typicality ranking. We evaluated the
ranking by calculating Spearman’s rank correla-
tion coefficient (p) and Kendall’s rank correlation
coefficient (7) against the ranking of the goodness-
of-example in Rosch’s dataset. We computed the
average rank correlation coefficient over the eight
categories for p and 7. Table 8 shows the experi-
mental results.

In contrast with the previous experiments, the
highest scores were achieved by OffSet. These re-
sults suggest that the vector offsets can be used to
derive the degree of membership. We can say that,
while discriminative learning-based models, espe-

cially SVMg, can find the boundary of a category
in a vector space with high accuracy, the vector off-
set between the centroid of positive instances and
that of negative instances can properly represent
the degree of membership in a category.

When we focused on each combination of the
embedding and distribution models, we found
that the highest and second highest scores were
achieved by OffSet with GloVe and GMM with
SGNS, respectively. In contrast, both achieved rela-
tively low performance in distinguishing a possible
member of a word class from others, as shown in
Table 3. These results demonstrate that the proper
models for finding the boundaries of a class and
those for determining the degree of membership
are different and that choosing a proper model de-
pending on the task is essential.

6 Conclusion and Future Work

We investigated the distribution of words that be-
long to a certain word class in a pre-trained general-
purpose word vector space. The experimental re-
sults show that a centroid-based approach cannot
provide a reasonably good model and considering
the geometry of the distribution and the existence
of subgroups is useful for modeling the distribu-
tion in some cases. However, the impact is limited,
and the negative instances must be taken into ac-
count for adequate modeling. The results indicate
that just observing the distribution of positive in-
stances is not enough to understand the geometry
of word embedding spaces. Furthermore, we in-
vestigated the relationship between the score cal-
culated by each model and the degree of member-
ship and demonstrated that, while discriminative
learning-based models can distinguish a possible
member of a word class from others, the offset-
based model achieves higher correlations with the
degree of membership.

The investigation in this study leveraged only
general-purpose word vectors to represent the
meaning of a word. However, several studies have
expanded the method for acquiring a word vector to
account for the uncertainty of word meanings and
word polysemy (e.g., Athiwaratkun et al. 2018).
In addition, contextualized word embeddings have
been shown to be very effective on a range of NLP
tasks (Peters et al., 2018; Devlin et al., 2019). Fur-
thermore, Gong et al. (2018) reported that word
embeddings learned in several tasks are biased to-
wards word frequency: the embeddings of high-
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frequency and low-frequency words lie in different
subregions of the embedding space. Thus, in the
future, we will take the uncertainty, polysemy, and
context sensitivity of the word meanings and the
frequency of words into account and explore better
ways of modeling the word-class distributions in
semantic vector spaces.
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