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Abstract

The standard training algorithm in neural ma-
chine translation (NMT) suffers from exposure
bias, and alternative algorithms have been pro-
posed to mitigate this. However, the practical
impact of exposure bias is under debate. In
this paper, we link exposure bias to another
well-known problem in NMT, namely the ten-
dency to generate hallucinations under domain
shift. In experiments on three datasets with
multiple test domains, we show that exposure
bias is partially to blame for hallucinations,
and that training with Minimum Risk Train-
ing, which avoids exposure bias, can mitigate
this. Our analysis explains why exposure bias
is more problematic under domain shift, and
also links exposure bias to the beam search
problem, i.e. performance deterioration with
increasing beam size. Our results provide a
new justification for methods that reduce ex-
posure bias: even if they do not increase per-
formance on in-domain test sets, they can in-
crease model robustness to domain shift.

1 Introduction

Neural Machine Translation (NMT) has advanced
the state of the art in MT (Sutskever et al., 2014;
Bahdanau et al., 2015; Vaswani et al., 2017), but is
susceptible to domain shift. Koehn and Knowles
(2017) consider out-of-domain translation one of
the key challenges in NMT. Such translations may
be fluent, but completely unrelated to the input
(hallucinations), and their misleading nature makes
them particularly problematic.

We hypothesise that exposure bias (Ranzato
et al., 2016), a discrepancy between training and
inference, makes this problem worse. Specifi-
cally, training with teacher forcing only exposes
the model to gold history, while previous predic-
tions during inference may be erroneous. Thus, the
model trained with teacher forcing may over-rely

on previously predicted words, which would exac-
erbate error propagation. Previous work has sought
to reduce exposure bias in training (Bengio et al.,
2015; Ranzato et al., 2016; Shen et al., 2016; Wise-
man and Rush, 2016; Zhang et al., 2019). However,
the relevance of error propagation is under debate:
Wu et al. (2018) argue that its role is overstated in
literature, and that linguistic features explain some
of the accuracy drop at higher time steps.

Previous work has established a link between
domain shift and hallucination in NMT (Koehn
and Knowles, 2017; Müller et al., 2019). In this
paper, we will aim to also establish an empirical
link between hallucination and exposure bias. Such
a link will deepen our understanding of the hallu-
cination problem, but also has practical relevance,
e.g. to help predicting in which settings the use
of sequence-level objectives is likely to be helpful.
We further empirically confirm the link between
exposure bias and the ‘beam search problem’, i.e.
the fact that translation quality does not increase
consistently with beam size (Koehn and Knowles,
2017; Ott et al., 2018; Stahlberg and Byrne, 2019).

We base our experiments on German→English
IWSLT’14, and two datasets used to investigate
domain robustness by Müller et al. (2019): a selec-
tion of corpora from OPUS (Lison and Tiedemann,
2016) for German→English, and a low-resource
German→Romansh scenario. We experiment with
Minimum Risk Training (MRT) (Och, 2003; Shen
et al., 2016), a training objective which inherently
avoids exposure bias.

Our experiments show that MRT indeed im-
proves quality more in out-of-domain settings, and
reduces the amount of hallucination. Our analysis
of translation uncertainty also shows how the MLE
baseline over-estimates the probability of random
translations at all but the initial time steps, and how
MRT mitigates this problem. Finally, we show that
the beam search problem is reduced by MRT.
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2 Minimum Risk Training

The de-facto standard training objective in NMT
is to minimize the negative log-likelihood L(θ) of
the training data D1:

L(θ) =
∑

(x,y)∈D

|y|∑
t=1

− logP (yt|x,y<t;θ) (1)

where x and y are the source and target sequence,
respectively, yt is the tth token in y, and y<t de-
notes all previous tokens. MLE is typically per-
formed with teacher forcing, where y<t are ground-
truth labels in training, which creates a mismatch
to inference, where y<t are model predictions.

Minimum Risk Training (MRT) is a sequence-
level objective that avoids this problem. Specifi-
cally, the objective function of MRT is the expected
loss (risk) with respect to the posterior distribution:

R(θ) =
∑

(x,y)∈D

∑
ỹ∈Y(x)

P (ỹ|x;θ) ∆ (ỹ,y) (2)

in which the loss ∆ (ỹ,y) indicates the discrep-
ancy between the gold translation y and the model
prediction ỹ. Due to the intractable search space,
the posterior distribution Y(x) is approximated by
a subspace S(x) by sampling a certain number of
candidate translations, and normalizing:

P̃ (ỹ|x;θ, α) =
P (ỹ|x;θ)α∑

y′∈S(x) P (y′|x;θ)α
(3)

where α is a hyperparameter to control the sharp-
ness of the subspace. Based on preliminary results,
we use random sampling to generate candidate
translations, and following Edunov et al. (2018), do
not add the reference translation to the subspace.

3 Experiments

3.1 Data
To verify the effectiveness of our MRT implemen-
tation on top of a strong Transformer baseline
(Vaswani et al., 2017), we first conduct experi-
ments on IWSLT’14 German→English (DE→EN)
(Cettolo et al., 2014), which consists of 180 000
sentence pairs. We follow previous work for data
splits (Ranzato et al., 2016; Edunov et al., 2018).

For experiments with domain shift, we use data
sets and preprocessing as Müller et al. (2019)2.

1This is equivalent to maximizing the likelihood of the
data, hence Maximum Likelihood Estimation (MLE).

2https://github.com/ZurichNLP/
domain-robustness

For DE→EN, data comes from OPUS (Lison
and Tiedemann, 2016), and is comprised of five
domains: medical, IT, law, koran and subtitles.
We use medical for training and development,
and report results on an in-domain test set and
the four other domains (out-of-domain; OOD).
German→Romansh (DE→RM) is a low-resource
language pair where robustness to domain shift is
of practical relevance. The training data is from the
Allegra corpus (Scherrer and Cartoni, 2012) (law
domain) with 100 000 sentence pairs. The test do-
main are blogs, using data from Convivenza3. We
have access to 2000 sentences for development and
testing, respectively, in each domain.

We tokenise and truecase data sets with
Moses (Koehn et al., 2007), and use shared BPE
with 32 000 units (Sennrich et al., 2016).

3.2 Model

We implement4 MRT in the Nematus toolkit (Sen-
nrich et al., 2017). All our experiments use
the Transformer architecture (Vaswani et al.,
2017). Following Edunov et al. (2018), we use
1-BLEUsmooth (Lin and Och, 2004) as the MRT
loss. Models are pre-trained with the token-level
objective MLE and then fine-tuned with MRT.
Hyperparameters mostly follow previous work
(Edunov et al., 2018; Müller et al., 2019); for
MRT, we conduct limited hyperparameter search
on the IWSLT’14 development set, including learn-
ing rate, batch size, and the sharpness parameter
α. We set the number of candidate translations for
MRT to 4 to balance effectiveness and efficiency.
Detailed hyperparameters are reported in the Ap-
pendix.

3.3 Evaluation

For comparison to previous work, we report low-
ercased, tokenised BLEU (Papineni et al., 2002)
with multi-bleu.perl for IWSLT’14, and cased, deto-
kenised BLEU with SacreBLEU (Post, 2018)5 oth-
erwise. For settings with domain shift, we report
average and standard deviation of 3 independent
training runs to account for optimizer instability.

The manual evaluation was performed by two
native speakers of German who completed bilin-

3https://www.suedostschweiz.ch/blogs/
convivenza

4Code available at https:
//github.com/zippotju/
Exposure-Bias-Hallucination-Domain-Shift

5Signature: BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.2

https://github.com/ZurichNLP/domain-robustness
https://github.com/ZurichNLP/domain-robustness
https://www.suedostschweiz.ch/blogs/convivenza
https://www.suedostschweiz.ch/blogs/convivenza
https://github.com/zippotju/Exposure-Bias-Hallucination-Domain-Shift
https://github.com/zippotju/Exposure-Bias-Hallucination-Domain-Shift
https://github.com/zippotju/Exposure-Bias-Hallucination-Domain-Shift
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inter-annotator intra-annotator

annotation P (A) P (E) K P (A) P (E) K

fluency 0.66 0.38 0.44 0.87 0.42 0.77
adequacy 0.82 0.61 0.54 0.93 0.66 0.79

Table 1: Inter-annotator (N=250) and intra-annotator
agreement (N=617) of manual evaluation.

system BLEU

ConvS2S (MLE) (Edunov et al., 2018) 32.2
ConvS2S (MRT) (Edunov et al., 2018) 32.8 (+0.6)
Transformer (MLE) (Wu et al., 2019) 34.4
DynamicConv (MLE) (Wu et al., 2019) 35.2

MLE 34.7
MRT 35.2 (+0.5)

Table 2: Results for IWSLT’14 DE→EN with MLE
and MRT (in brackets, improvement over MLE).

gual (German/English) high school or University
programs. We collected∼3600 annotations in total,
spread over 12 configurations. We ask annotators
to evaluate translations according to fluency and
adequacy. For fluency, the annotator classifies a
translation as fluent, partially fluent or not fluent;
for adequacy, as adequate, partially adequate or
inadequate. We report kappa coefficient (K) (Car-
letta, 1996) for inter-annotator and intra-annotator
agreement in Table 1, and assess statistical signifi-
cance with Fisher’s exact test (two-tailed).

3.4 Results

Table 2 shows results for IWSLT’14. We compare
to results by Edunov et al. (2018), who use a convo-
lutional architecture (Gehring et al., 2017), and Wu
et al. (2019), who report results with Transfomer-
base and dynamic convolution.

With 34.7 BLEU, our baseline is competitive.
We observe an improvement of 0.5 BLEU from
MRT, comparable to Edunov et al. (2018), although
we start from a stronger baseline (+2.5 BLEU).

Table 3 shows results for data sets with do-
main shift. To explore the effect of label smooth-
ing (Szegedy et al., 2016), we train baselines with
and without label smoothing. MLE with label
smoothing performs better by itself, and we also
found MRT to be more effective on top of the ini-
tial model with label smoothing. For DE→EN,
MRT increases average OOD BLEU by 0.8 com-
pared to the MLE baseline with label smoothing;
for DE→RM the improvement is 0.7 BLEU. We
note that MRT does not consistently improve in-

domain performance, which is a first indicator that
exposure bias may be more problematic under do-
main shift.

Our OOD results lag slightly behind those of
Müller et al. (2019), but note that the techniques
employed by them, namely reconstruction (Tu
et al., 2017; Niu et al., 2019), subword regular-
ization (Kudo, 2018), and noisy channel modelling
(Li and Jurafsky, 2016) are orthogonal to MRT. We
leave the combination of these approaches to future
work.

4 Analysis

BLEU results indicate that MRT can improve do-
main robustness. In this section, we report on ad-
ditional experiments to establish more direct links
between exposure bias and domain robustness, hal-
lucination, and the beam search problem. Experi-
ments are performed on DE→EN OPUS data.

4.1 Hallucination

We manually evaluate the proportion of halluci-
nated translations on out-of-domain and in-domain
test sets. We follow the definition and evaluation
by Müller et al. (2019), considering a translation
a hallucination if it is (partially) fluent, but un-
related in content to the source text (inadequate).
We report the proportion of such hallucinations for
each system.

Results in Table 4 confirm that hallucinations
are much more pronounced in out-of-domain test
sets (33–35%) than in in-domain test sets (1–2%).
MRT reduces the proportion of hallucinations on
out-of-domain test sets (N=500 for each system;
reductions statistically significant at p < 0.05) and
improves BLEU. Note that the two metrics do not
correlate perfectly: MLE with label smoothing has
higher BLEU (+1) than MRT based on MLE with-
out label smoothing, but a similar proportion of
hallucinations. This indicates that label smooth-
ing increases translation quality in other aspects,
while MRT has a clear effect on the number of
hallucinations, reducing it by up to 21% (relative).

A closer inspection of segments where the MLE
system was found to hallucinate shows that some
segments were scored higher in adequacy with
MRT, others lower in fluency. One example for
each case is shown in Table 5. Even the example
where MRT was considered disfluent and inade-
quate actually shows an attempt to cover the source
sentence: the source word ‘Ableugner’ (denier) is
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DE→EN DE→RM

system in-domain average OOD in-domain average OOD

SMT (Müller et al., 2019) 58.4 11.8 45.2 15.5
NMT (Müller et al., 2019) 61.5 11.7 52.5 18.9
NMT+RC+SR+NC (Müller et al., 2019) 60.8 13.1 52.4 20.7

MLE w/o LS 58.3 (±0.53) 9.7 (±0.25) 52.2 (±0.19) 15.8 (±0.39)
+MRT 58.4 (±0.39) 10.2 (±0.26) 52.1 (±0.08) 15.9 (±0.28)
MLE w/ LS 58.9 (±0.45) 11.2 (±0.16) 53.9 (±0.16) 18.0 (±0.17)
+MRT 58.8 (±0.36) 12.0 (±0.29) 53.9 (±0.12) 18.7 (±0.09)

Table 3: Average BLEU and standard deviation on in-domain and out-of-domain test sets for models trained on
OPUS (DE→EN) and Allegra (DE→RM). RC: reconstruction; SR: subword regularization, NC: noisy channel.

% hallucinations (BLEU)

system out-of-domain in-domain

MLE w/o LS 35% (9.7) 2% (58.3)
+MRT 29% (10.2) -
MLE w/ LS 33% (11.2) 1% (58.9)
+MRT 26% (12.0) -

Table 4: Proportion of hallucinations and BLEU on out-
of-domain and in-domain test sets. DE→EN OPUS.

source Wir haben ihn gefunden.
reference We found him.
MLE Do not pass it.
MRT We have found it.

source So höre nicht auf die Ableugner.
reference So hearken not to those who deny (the Truth).
MLE Do not drive or use machines.
MRT Do not apply to dleugner.

Table 5: Out-of-domain translation examples. MLE
hallucinates in both examples; MRT was rated more
adequate in top example, less fluent in bottom one.

mistranslated into ‘dleugner’. We consider this
preferable to producing a complete hallucination.

4.2 Uncertainty Analysis

Inspired by Ott et al. (2018), we analyse the
model’s uncertainty by computing the average prob-
ability at each time step across a set of sentences.
Besides the reference translations, we also consider
a set of ‘distractor’ translations, which are random
sentences from the in-domain test set which match
the corresponding reference translation in length.

In Figure 1, we show out-of-domain results for
an MLE model and multiple checkpoints of MRT
fine-tuning. The left two graphs show probabil-
ities for references and distractors, respectively.
The right-most graph shows a direct comparison of
probabilities for references and distractors for the
MLE baseline and the final MRT model. The MLE

baseline assigns similar probabilities to tokens in
the references and the distractors. Only for the first
time steps is there a clear preference for the refer-
ences over the (mostly random!) distractors. This
shows that error propagation is a big risk: should
the model make a wrong prediction initially, this is
unlikely to be penalised in later time steps.

MRT tends to increase the model’s certainty at
later time steps6, but importantly, the increase is
sharper for the reference translations than for the
distractors. The direct comparison shows a widen-
ing gap in certainty between the reference and dis-
tractor sentences.7 In other words, producing a
hallucination will incur a small penalty at each
time step (compared to producing the reference),
presumably due to a higher reliance on the source
signal, lessening the risk of error propagation and
hallucinations.

Our analysis shows similar trends on in-domain
references. However, much higher probabilities are
assigned to the first few tokens of the references
than to the distractors. Hence, it is much less likely
that a hallucination is kept in the beam, or will
overtake a good translation in overall probability,
reducing the practical impact of the model’s over-
reliance on its history.8

4.3 Beam Size Analysis

Figure 1 shows that with MLE, distractor sentences
are assigned lower probabilities than the references
at the first few time steps, but are assigned similar,
potentially even higher probabilities at later time
steps. This establishes a connection between ex-
posure bias and the beam search problem, i.e. the
problem that increasing the search space can lead

6The uncertainty of the baseline is due to label smoothing.
7For intermediate checkpoints, see Appendix, Figure 2.
8Figures are shown in the Appendix (Figure 3).
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Figure 1: Per-token probability of out-of-domain reference translations and in-domain distractors (first two graphs
share legend). Rightmost plot shows direct comparison for MLE baseline and final MRT model. DE→EN OPUS .

to worse model performance.9 With larger beam
size, it is more likely that hallucinations survive
pruning at the first few time steps, and with high
probabilities assigned to them at later time steps,
there is a chance that they become the top-scoring
translation.

We investigate whether the beam search problem
is mitigated by MRT. In Table 6, we report OOD
BLEU and the proportion of hallucinations with
beam sizes of 1, 4 and 50. While MRT does not
eliminate the beam search problem, performance
drops less steeply as beam size increases. With
beam size 4, our MRT models outperform the MLE
baseline by 0.5-0.8 BLEU; with beam size 50, this
difference grows to 0.6-1.5 BLEU. Our manual
evaluation (N=200 for each system for beam size 1
and 50) shows that the proportion of hallucinations
increases with beam size, and that MRT consis-
tently reduces the proportion by 11-21% (relative).
For the system with label smoothing, the relative in-
crease in hallucinations with increasing beam size
is also smaller with MRT (+33%) than with MLE
(+44%).

BLEU (% hallucinations)

system k = 1 k = 4 k = 50

MLE w/o LS 8.9 (28%) 9.7 (35%) 9.3 (37%)
+MRT 9.1 (24%) 10.2 (29%) 9.9 (33%)
MLE w/ LS 10.6 (27%) 11.2 (33%) 9.4 (39%)
+MRT 11.3 (24%) 12.0 (26%) 10.9 (32%)

Table 6: Average OOD BLEU and proportion of hallu-
cinations with different beam sizes k. DE→EN OPUS.

9The beam search problem has previously been linked to
length bias (Yang et al., 2018; Murray and Chiang, 2018) and
the copy mode (Ott et al., 2018). We consider hallucinations
another result of using large search spaces with MLE models.

5 Conclusions

Our results and analysis show a connection be-
tween the exposure bias due to MLE training with
teacher forcing and several well-known problems
in neural machine translation, namely poor per-
formance under domain shift, hallucinated transla-
tions, and deteriorating performance with increas-
ing beam size. We find that Minimum Risk Train-
ing, which does not suffer from exposure bias, can
be useful even when it does not increase perfor-
mance on an in-domain test set: it increases per-
formance under domain shift, reduces the number
of hallucinations substantially, and makes beam
search with large beams more stable.

Our findings are pertinent to the academic de-
bate how big of a problem exposure bias is in prac-
tice – we find that this can vary substantially de-
pending on the dataset –, and they provide a new
justification for sequence-level training objectives
that reduce or eliminate exposure bias. Further-
more, we believe that a better understanding of the
links between exposure bias and well-known trans-
lation problems will help practitioners decide when
sequence-level training objectives are especially
promising, for example in settings where the test
domain is unknown, or where hallucinations are a
common problem.
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torož, Slovenia. European Language Resources As-
sociation (ELRA).

Mathias Müller, Annette Rios, and Rico Sennrich.
2019. Domain robustness in neural machine trans-
lation.

Kenton Murray and David Chiang. 2018. Correct-
ing length bias in neural machine translation. In
Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 212–223, Bel-
gium, Brussels. Association for Computational Lin-
guistics.

Xing Niu, Weijia Xu, and Marine Carpuat. 2019. Bi-
directional differentiable input reconstruction for
low-resource neural machine translation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 442–448,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, pages 160–167, Sapporo, Japan.
Association for Computational Linguistics.

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncer-
tainty in neural machine translation.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.pdf
https://www.aclweb.org/anthology/J96-2004
https://www.aclweb.org/anthology/J96-2004
http://isl.anthropomatik.kit.edu/pdf/Cettolo2014.pdf
http://isl.anthropomatik.kit.edu/pdf/Cettolo2014.pdf
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
http://dl.acm.org/citation.cfm?id=3305381.3305510
http://dl.acm.org/citation.cfm?id=3305381.3305510
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
http://arxiv.org/abs/1601.00372
http://arxiv.org/abs/1601.00372
http://arxiv.org/abs/1601.00372
https://www.aclweb.org/anthology/C04-1072
https://www.aclweb.org/anthology/C04-1072
https://www.aclweb.org/anthology/C04-1072
https://www.aclweb.org/anthology/L16-1147
https://www.aclweb.org/anthology/L16-1147
https://www.aclweb.org/anthology/L16-1147
http://arxiv.org/abs/1911.03109
http://arxiv.org/abs/1911.03109
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/N19-1043
https://doi.org/10.18653/v1/N19-1043
https://doi.org/10.18653/v1/N19-1043
https://doi.org/10.3115/1075096.1075117
https://doi.org/10.3115/1075096.1075117
http://arxiv.org/abs/1803.00047
http://arxiv.org/abs/1803.00047
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319


3550

Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Yves Scherrer and Bruno Cartoni. 2012. The trilingual
ALLEGRA corpus: Presentation and possible use
for lexicon induction. In Proceedings of the Eighth
International Conference on Language Resources
and Evaluation (LREC-2012), pages 2890–2896, Is-
tanbul, Turkey. European Languages Resources As-
sociation (ELRA).

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Valerio
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A Appendix

IWSLT OPUS/Allegra
General hyperparameters

embedding layer size 512
hidden state size 512

tie encoder decoder embeddings yes
tie decoder embeddings yes

loss function per-token-cross-entropy (MRT)
label smoothing 0.1

optimizer adam
learning schedule transformer (constant)

warmup steps 4000 6000
gradient clipping threshold 1 0
maximum sequence length 100

token batch size 4096
length normalization alpha 0.6 1

encoder depth 6
decoder depth 6

feed forward num hidden 1024 2048
number of attention heads 4 8

embedding dropout 0.3 0.1
residual dropout 0.3 0.1

relu dropout 0.3 0.1
attention weights dropout 0.3 0.1

beam size 4
beam search sampling random sampling

MRT-revelant hyperparameters
learning rate 0.00003 0.00001

batch size 8192 (tokens) 10 (sentences)
sharpness alpha 0.005 0.005

Table 7: Configurations of NMT systems used to pre-train and fine-tune over three datasets. Note in general
hyperparameters, the items in brackets denote the options that will be used in MRT fine-tuning.
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Figure 2: Per-token probability of out-of-domain reference translations and in-domain distractors for different
checkpoints in MRT training, showing a widening gap between references and distractors. DE→EN OPUS.
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Figure 3: Per-token probability of in-domain reference translations and distractors. Rightmost plot shows direct
comparison for MLE baseline and final MRT model. DE→EN OPUS.


