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Abstract

Unsupervised bilingual lexicon induction is
the task of inducing word translations from
monolingual corpora of two languages. Re-
cent methods are mostly based on unsuper-
vised cross-lingual word embeddings, the key
to which is to find initial solutions of word
translations, followed by the learning and re-
finement of mappings between the embedding
spaces of two languages. However, previous
methods find initial solutions just based on
word-level information, which may be (1) lim-
ited and inaccurate, and (2) prone to contain
some noise introduced by the insufficiently
pre-trained embeddings of some words. To
deal with those issues, in this paper, we pro-
pose a novel graph-based paradigm to induce
bilingual lexicons in a coarse-to-fine way. We
first build a graph for each language with its
vertices representing different words. Then we
extract word cliques from the graphs and map
the cliques of two languages. Based on that,
we induce the initial word translation solution
with the central words of the aligned cliques.
This coarse-to-fine approach not only lever-
ages clique-level information, which is richer
and more accurate, but also effectively reduces
the bad effect of the noise in the pre-trained
embeddings. Finally, we take the initial solu-
tion as the seed to learn cross-lingual embed-
dings, from which we induce bilingual lexi-
cons. Experiments show that our approach im-
proves the performance of bilingual lexicon in-
duction compared with previous methods.

1 Introduction

Bilingual lexicon induction (BLI) is an important
task of machine translation and becomes an essen-
tial part of recent unsupervised machine translation
approaches (Lample et al., 2018; Artetxe et al.,
2018c; Marie and Fujita, 2018; Ren et al., 2019;
Artetxe et al., 2019). Previous methods for BLI are

*Contribution during internship at MSRA.

mostly based on unsupervised cross-lingual word
embeddings (Zhang et al., 2017; Artetxe et al.,
2017; Conneau et al., 2017; Artetxe et al., 2018b;
Xu et al., 2018; Hoshen and Wolf, 2018; Alvarez-
Melis and Jaakkola, 2018), the goal of which is to
find a mapping function, typically a linear transfor-
mation (Mikolov et al., 2013), to map the source
embeddings into the target embedding spaces. To
do this, they first build a seed dictionary (known
as the initial solution) with different methods and
then learn the optimal mapping function that fits
the seed dictionary. Based on the mapping function,
a new dictionary of higher quality is inferred from
the cross-lingual word embeddings by finding near-
est neighbors in the target embedding space. With
the new dictionary, the mapping function is further
refined to fit it. The inference of the dictionary
and the refinement of the mapping function are
iteratively done until the final convergence. Dur-
ing the whole procedure, the initialization stage is
important and heavily focused in previous work.
Previous methods for finding the initial solution
fall into three categories. The first one is heuristic
rules such as treating identical words as the seed
(Artetxe et al., 2017), but this kind of method is
restricted to languages sharing the alphabet. The
second category is adversarial methods (Zhang
et al., 2017; Conneau et al., 2017; Xu et al., 2018;
Alvarez-Melis and Jaakkola, 2018), but suffering
from the drawbacks of generative adversarial mod-
els, i.e., the sensitivity of hyper-parameters, long
training time, etc. The third category is structure-
based methods (Artetxe et al., 2018b; Hoshen and
Wolf, 2018), which is more flexible and robust than
other categories, and achieve the state-of-the-art
BLI performance. In Artetxe et al. (2018b), they
first compute a similarity matrix of all words in
the vocabulary, and then represent each word with
the distribution of the similarity values, while in
Hoshen and Wolf (2018), they project the word
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vectors to the top 50 principal components of the
embedding spaces. After that, both of them directly
use the word representation of two languages to re-
trieve the initial bilingual lexicons by computing
the cosine distances of source and target word rep-
resentations. However, directly finding word align-
ments from scratch has some demerits. (1) The
information that a word can provide is limited and
independent of each other. (2) According to our
observation, there is some noise in the pre-trained
embeddings even for high-frequency words so that
the initial word alignments derived from them are
not accurate. Those mistakes in the initial word-
level alignments can hurt the performance in the
following iteration steps.

To solve those issues, we propose a novel graph-
based coarse-to-fine paradigm to generate initial
solutions for learning cross-lingual word embed-
dings, from which we induce bilingual lexicons.
Specifically, given source and target languages,
our method first uses pre-trained monolingual em-
beddings to construct a graph for each language,
with the vertices representing different words, so
that the mutual relationship between words is pre-
served. Next, we use the Bron—Kerbosch algorithm
(Akkoyunlu, 1973) to extract cliques (a subset of
vertices in which every two distinct vertices are ad-
jacent) in the source and target graphs. After that,
we calculate the clique embeddings and map the
cliques from two graphs. We then treat the central
words of the aligned cliques as the seeds to learn
the mapping of the two word embedding spaces.

Our contributions are threefold. (1) By building
word graphs, we leverage the clique-level informa-
tion extracted from them. The cliques cluster simi-
lar words and assemble their mutual relationship of
them, providing richer and more accurate informa-
tion. (2) We propose the coarse(clique extraction)-
to-fine(seed induction) procedure for the BLI task,
which effectively reduces the bad effect of the noise
in the pre-trained embeddings; (3) We improve the
BLI performance on the MUSE dataset with our
method, even compared with strong baselines.

2 Background

Unsupervised bilingual lexicon induction (BLI) is
the task of inducing word translations from mono-
lingual corpora of two languages. Recently pro-
posed methods follow the same procedure, i.e.,
first learning cross-lingual embeddings in an un-
supervised way (§2.1) and then inducing bilingual

lexicons from the embedding spaces (§2.2).

2.1 Unsupervised Cross-lingual Embeddings

Previous methods for learning cross-lingual embed-
dings can be roughly divided into two categories
(Ormazabal et al., 2019), i.e., mapping methods
and joint learning methods. As the second cate-
gory, the skip-gram (Luong et al., 2015) for exam-
ple, requires bilingual corpus during training, cur-
rent methods for unsupervised cross-lingual embed-
dings mainly fall into the first category. Given pre-
trained monolingual embeddings of two languages,
the mapping methods try to map the source and tar-
get embedding spaces through a linear transforma-
tion (Mikolov et al., 2013) W € M 4(R), where
M xq(R) is the space of d x d matrices of real
numbers and d is the dimension of the embeddings.
Based on that, Xing et al. (2015) propose to con-
strain W to be orthogonal, i.e., W' W = I, and
Conneau et al. (2017) find this is a Procrustes prob-
lem which advantageously offers a closed-form so-
Iution obtained from singular value decomposition
(SVD) of YX T as follows:

W* =—argmin |[WX — Y||p = UV,
w (D
with UXV' =SVD (YX")

where X and Y € M, (R) consist of the embed-
dings of the bilingual lexicons {z;,y;}/_; in the
seed dictionary.

Therefore, there are two steps to learn unsuper-
vised cross-lingual embeddings. The first step is
to find an initial solution (also known as the seed
dictionary), and the second one is to obtain the de-
sired W according to Eq. (1). The above two steps
can be iteratively done, by inducing new seed dic-
tionary from the learned cross-lingual embeddings
with the method introduced next, and using the new
dictionary to refine the matrix W (known as the
“refinement” process in some literature).

The first step, i.e., finding the initial solution,
is crucial because it decides the direction of the
following iteration. Loads of previous work are de-
voted to finding good initial solutions with different
methods, as is described in §1. But their methods
only exploit word-level information, which is lim-
ited and may be inaccurate due to the noise in pre-
trained monolingual embeddings, leading to mis-
takes in the initial word-level alignments. There-
fore, we propose a novel graph-based coarse-to-fine
paradigm to find the initial solution of higher qual-
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ity, leveraging clique-level information which we
think is richer and more accurate.

2.2 Bilingual Lexicon Induction

Based on the learned cross-lingual embeddings,
bilingual lexicons can be induced from the mapped
spaces via the nearest neighbor (NN) method by
calculating the cosine distance of the mapped
source embeddings and the target embeddings.
However, this method suffers from the “hubness”
problem (Dinu et al., 2014) such that some tar-
get words appear as the nearest neighbors of many
source words. To mitigate this problem, alterna-
tives of the distance function have been proposed,
such as invsoftmax (Smith et al., 2017), CSLS
(Conneau et al., 2017) and margin-based scores
(Artetxe and Schwenk, 2018). Among them, CSLS,
as a special case of margin-based scores, is widely
used in the SOTA embedding-based BLI methods.
Formally, CSLS calculates the distance between
the mapped and the target embeddings as follows:

CSLS(Wx,y) = 2cos(Wx,y)—rr(Wx)—rs(y)
(2)

where

1
7 cos(Wx,y)

yENT (Wx)

rr(Wx) = 3)

is the mean similarity of a source embedding x to
its K target neighborhoods (N (Wx)). Similarly,
rs(y) is the mean similarity of a target embedding
y to its neighborhoods.

3 Methodology

As is mentioned before, recent work on bilingual
lexicon induction (BLI) is mostly based on unsuper-
vised cross-lingual embeddings, whose key point is
to find initial solutions to learn the mapping func-
tion. However, previous methods find initial solu-
tions just based on word-level information, which
may be limited and inaccurate due to the noise
in pre-trained monolingual embeddings. There-
fore, we exploit the information provided by word
cliques and figure out a coarse-to-fine procedure
to denoise and find the initial solution of higher
quality. Based on that, we learn the cross-lingual
embeddings and induce word translations.

As shown in Figure 1, our method for BLI can
be roughly divided into several steps. Given the
source and target languages, we first build a graph
for each language. The graph vertex represents

the word. Next, we extract word cliques from the
graphs and map the cliques of two languages in
an unsupervised way. Then, we induce the seed
dictionary from the bilingual cliques by choosing
the respective central words of the aligned cliques.
After that, we learn cross-lingual embeddings with
the help of the induced seed dictionary. The above
steps can be iteratively done until the final con-
vergence. By building word graphs, we can use
the clique-level information which is richer and
more accurate than what a single word provides.
Besides, the whole coarse-to-fine procedure also re-
duces the bad effect of the noise in the pre-trained
embeddings, because the clique-level alignment
(coarse) is more accurate at the beginning and the
word alignments inferred from it (fine) are more
reasonable. We will next introduce each step.

3.1 Word Graph Construction

Given the pre-trained monolingual embeddings, we
can derive an edge-weighted graph from them by
regarding words as the vertices and their similari-
ties as edges. Formally, the graph is

G=<V,E> “4)

where V is the vertex set (vocabulary of each lan-
guage) and E is the edge set. The edges are built
with monolingual embedding similarities. For ex-
ample, for language x, to define the edges, we first
get the word-to-word similarity matrix M with

0, i=]

where x; and x; are the normalized embeddings of
two words respectively. We set the main diagonal
elements to zero to avoid self-loop. Theoretically,
there is one edge between any two arbitrary words
with the edge weight to be M ;, but if the weight
of an edge is too small, it will provide little in-
formation and introduce a lot of noise. Therefore,
we prune these non-informative edges with M, ;
less than a threshold of . Meanwhile, the prun-
ing greatly reduces the computation time of the
next step. We build two graphs G, and G, for two
languages = and y in this way respectively.

3.2 Clique Extraction and Mapping

Different from previous methods, we infer the ini-
tial solution not using word-level information but
from word cliques, which we think is richer and
more accurate. Following Wang et al. (2016), the
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Figure 1: Overview of our method. In each iteration, based on the word graphs, we first map the cliques of two
languages in an unsupervised way, and then infer the seed dictionary to learn cross-lingual word embeddings.

“clique” here means a maximum complete sub-
graph where every two distinct vertices in the
clique are adjacent. Extracting cliques from a
given graph is a nontrivial problem and is shown
to be NP-complete (Karp, 1972). In this paper, we
adopt Bron-Kerbosch (BK) algorithm (Akkoyunlu,
1973) with pivoting (Johnston, 1976) to extract the
cliques from a given graph. Having extracted the
word cliques of two languages, we calculate clique
embeddings by averaging the embedding vectors
of all words in each clique. We choose the word
whose embedding is closest to its clique embed-
ding as the central word of each clique. After that,
we follow Artetxe et al. (2018b) to map the cliques
of two languages in a fully unsupervised way, i.e.
to learn cross-lingual clique embeddings.

We use the clique extraction rather than clus-
tering methods because (1) a word may fall into
different categories because of polysemy, which
can be well modeled by the cliques, and (2) the BK
algorithm is much more efficient than clustering.

3.3 Seed Dictionary Induction

§3.2 maps the clique embeddings of two languages
into the same space so that we can retrieve aligned
cliques. For each source clique, we choose the near-
est target clique according to the CSLS similarity
score calculated by Eq. (2). Remember that we
have chosen the central word for each clique after
the clique extraction in §3.2, so the seed dictio-
nary inferring process is simply picking the central
words of the aligned cliques just as shown in Fig-
ure 1. Note that we remove the duplication of seed
word pairs in this process.

3.4 Cross-lingual Embedding Learning

Based on the initial solution (known as the seed
dictionary), we then learn cross-lingual word em-
beddings following the Procrustes and refinement

process introduced in §2.1. After obtaining the
learned cross-lingual word embeddings, we rebuild
the word graphs with the help of them and iterate
the whole process again until the final convergence
as shown in Figure 1.

Previously methods used a single matrix W as
transformation function between the embedding
spaces of two languages, based on the assumption
that the embedding spaces of different languages
are isomorphic (Mikolov et al., 2013). However,
this is doubtful because the isomorphic assumption
may not hold all the time (Sggaard et al., 2018).
Fortunately, the cliques we extracted naturally pro-
vide good local features for us, because they are
usually much different from each other in mean-
ings, which enables us to investigate alternatives
to a single mapping matrix W. Therefore, after
the final iteration, we divide all the cliques into K
groups via clustering, i.e., {L;}X, , and train an
individual matrix W for each of them. We de-
note this process as ‘“group mapping”. Each W;
is initialized with the learned W and fine-tuned as

W, = argmin ||W;X,; — Y}||r, s.t. WZTWZ =1
W,
(6)

where X; and Y; are the embedding matrices of
words belonging to L;. We divide each word into
the group closest to its word embedding. The whole
training procedure is shown in Algorithm 1.

3.5 Inference

After the training, we can obtain the renewed word
graphs of both languages as well as their cliques,
and get a set of group mapping matrices { W, }¥_,.
During the inference, for each source word x, we
first find its closest clique Cs by calculating the
similarities of x’s embeddings to all clique embed-
dings. Next, we retrieve the group L, that C be-
longs to, and choose the corresponding W . Then,
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Algorithm 1: Training procedure of the pro-
posed graph-based coarse-to-fine method.

Input: Monolingual embeddings of two languages X, Y
Output: Multiple local mapping matrices {W, };*;
while not convergence do

1 Build the word graphs G and G, by calculating
the embedding similarities of each language.

2 Extract cliques {C7 }i~ and {C} }]_, from each
graph using the Bron-Kerbosch algorithm.

3 Calculate the clique embeddings by averaging the
embeddings of all the words belonging to it.

4 Map the source and target cliques with the method
of Artetxe et al. (2018Db).

5 Build seed dictionary with the central words of the
aligned cliques.

6 Do the Procrustes and refinement iteration described
in §2.1 and learn the mapping matrix W.

7 Renew the embeddings of the source language as
X = WX.

8 Divide {C{ }2 into K groups via clustering. Initialize
{W,} £, with W.
10 Fine-tune each W; according to Eq. (6) and do the
refinement.
1 return {W,;}5,

-

we retrieve the translation of x by calculating the
CSLS score of W x and each target embedding y,
similar to Eq. (2) introduced in §2.2.

4 Experiment

4.1 Dataset

Bilingual lexicon induction (BLI) measures the
word translation accuracy in comparison to a gold
standard. We report results on the widely used
MUSE dataset (Conneau et al., 2017). This dataset
consists of monolingual fastText (Bojanowski et al.,
2017) embeddings of many languages and dictio-
naries for many language pairs divided into training
and test sets. The evaluation follows the setups of
Conneau et al. (2017).

4.2 Implementation Details

4.2.1 Pre-processing

We choose the top 10,000 word embeddings to
build word graph because the monolingual embed-
dings of low-frequency words may be trained in-
sufficiently. The embeddings are normalized fol-
lowing Artetxe et al. (2018b). Specifically, we first
apply length normalization to the embeddings, and
then mean center each dimension. After that, we
do length normalization again to ensure the word
embeddings have a unit length.

4.2.2 Clique Extraction

An efficient algorithm for clique extraction is the
Bron-Kerbosch (BK) algorithm, which is a recur-
sive backtracking algorithm that searches for all
maximal cliques in a given graph G. The pruning
operation described in §3.1 makes the word graph
a sparse graph, for which the BK algorithm can
be made to run in time O(dn3%3) (Eppstein and
Strash, 2011), where n is the number of vertexes
in G, and d is the degeneracy ' of the graph. We
choose a public efficient C implementation of BK
algorithm 2, and only extract the cliques that con-
tain no less than three words. According to our
observation, the cliques can be extracted within
several seconds with this code.

4.2.3 Clique and Word Embedding Mapping

In our experiment, the clique embeddings of two
languages are mapped with the method proposed
by Artetxe et al. (2018b). We use their public code
to finish this step. We initialized W with a ran-
dom orthogonal matrix. After building the seed
dictionary, we first solve the Procrustes problem
(Eq. (1)), followed by the refinement process.

4.3 Main Results
4.3.1 Baselines

We choose several supervised and unsupervised
methods to be our baselines. The supervised base-
lines include: (1) The iterative Procrustes method
proposed by Smith et al. (2017); (2) The multi-step
framework proposed by Artetxe et al. (2018a); (3)
a geometric method proposed by Jawanpuria et al.
(2019). The unsupervised baselines include (1)
MUSE proposed by Conneau et al. (2017), which
is a GAN based method followed by a refinement
process; (2) a Wasserstein GAN based method com-
bined with distribution matching and back transla-
tion, proposed by Xu et al. (2018); (3) a method
proposed by Alvarez-Melis and Jaakkola (2018)
that views the mapping problem as optimal trans-
portation and optimize the Gromov-Wasserstein
distance between embedding spaces; (4) A robust
self-learning method proposed by Artetxe et al.
(2018b), which leverages the intra-linguistic word
similarity information to infer initial solutions,
followed by a self-learning iteration; (5) A non-
adversarial method proposed by Hoshen and Wolf

'In graph theory, a k-degenerate graph is an undirected
graph in which every subgraph has a vertex of degree < k
*https://github.com/aaronmedaid/MaximalCliques

3480



Method enfr [ en-de | enes | enit [ enru [ enzh
e e e R
Supervised
(Smith et al., 2017) 81.1 824 735 724 814 829 43.1 38.0 51.7 63.7 427 36.7
(Artetxe et al., 2018a) 80.5 83.1 735 735 80.5 83.8 613 39.6 505 673 323 434
(Joulin et al., 2018) 833 84.1 791 763 84.1 863 - - 579 672 459 464
(Jawanpuria et al., 2019) 82.1 842 749 76.7 819 855 - - 528 67.6 49.1 453
Unsupervised
(Conneau et al., 2017) 823 8I.1 740 722 81.7 833 774 76.1 440 59.1 325 314
(Xu et al., 2018) 779 755 693 67.0 795 778 726 734 - - - -
(Alvarez-Melis and Jaakkola, 2018) | 81.3 78.9 71.9 72.8 81.7 804 789 752 451 437 - -
(Artetxe et al., 2018b) 823 836 75.1 743 823 847 788 795 492 65.6 - -
(Hoshen and Wolf, 2018) 823 84.1 747 73.0 82.1 84.1 779 775 475 61.8 - -
Ours (without GM) 82.7 834 755 757 82.6 848 78.6 79.5 489 639 38.1 352
Ours (with GM) 829 839 753 761 829 853 79.1 799 49.7 647 389 359

Table 1: Precision@1 for the MUSE BLI task.

All baselines leverage CSLS to be the retrieve metric during

inference except for Xu et al. (2018) which uses cosine similarity. The bold numbers indicate the best results of
supervised and unsupervised methods. “GM” means applying the group mapping technique described in §3.4.

(2018), which uses PCA-based alignment to initial-
ize and iteratively refine the alignment.

4.3.2 Results of Common Languages

We report the result of the BLI task on the MUSE
dataset (Conneau et al., 2017). The language pairs
we choose are French (fr), German (de), Spanish
(es), Italian (it), Russian (ru), Chinese (zh) from
and to English(en), as shown in Table 1.

From Table 1, we find that our proposed method
significantly outperforms previous methods on
nearly all directions, especially on en-de and en-
zh pairs, with the improvements of 2 to 6 points
compared with previous state-of-the-art unsuper-
vised approaches. The results on some language
pairs such as en-fr, en-de and en-es are remarkably
competitive with strong supervised methods.

We also see that for distant languages, i.e., en-
ru and en-zh, our method achieves good results,
on which some unsupervised baselines fail to con-
verge. However, the results are still far lagging
behind the supervised methods, indicating that the
seed dictionaries built with our method may not be
perfect for these distant languages. This may root
in the original diversified training data of the mono-
lingual embeddings on those pairs. Even so, we
still significantly outperforms the MUSE (Conneau
et al., 2017) for the en-ru and en-zh pairs.

4.3.3 Results of Morphologically Rich
Languages

We also list results of some morphologically rich
languages, i.e., Finnish (fi), Polish (pl) and Turkish
(tr) in Table 2, which are selected by Sggaard et al.
(2018). They find that these languages are differ-

Method en-i_ [ enpl | en-tr |
=« o« =«
Supervised

Sk+Pro.+Ref. [47.3 59.5 582 66.9 46.3 59.2

Unsupervised
0.1 59.8 539 0.0 454 0.0
45.0 59.1 57.3 66.7 45.4 61.4

47.1 59.2 59.7 68.4 50.2 59.7
48.1 60.4 60.8 69.0 51.4 60.9

(Conneau et al., 2017)
(Sggaard et al., 2018)
Ours (without GM)
Ours (with GM)

Table 2: Precision@1 for the MUSE BLI task of mor-
phologically rich languages. The bold numbers indi-
cate the best results of all methods. Pro.: Procrustes;
Ref.: Refinement.

ent in morphological traits from commonly bench-
marked languages which are morphological poor
isolating or exclusively concatenating languages.
For these languages, Sggaard et al. (2018) lever-
age identical tokens in both languages as the seeds
(Artetxe et al., 2017), followed by the Procrustes
solution plus the refinement process, which gener-
ates relatively good results. We compare our results
with the supervised method, i.e., use Sk dictionary
to start up followed by Procrustes + refinement,
MUSE (Conneau et al., 2017) and Sggaard et al.
(2018) on these languages.

From the table, we see that the GAN-based
method (MUSE) fails to give good results of some
directions, maybe due to its unstable training. Us-
ing identical tokens as the seed gives good results
(S¢gaard et al., 2018) and compares with the su-
pervised method. Our method performs well on
these morphologically rich languages, and even
outperforms the supervised method. We also con-
duct experiments on other morphologically rich
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languages such as Estonian, Greek, and Hungarian,
but fail to converge.

4.3.4 Effect of Group Mapping

From Table 1 and Table 2, we also find that lever-
aging the group mapping (GM, §3.4) contributes
to bilingual lexicon induction, especially for some
distant languages such as en-ru, en-zh, and mor-
phologically rich languages, with the improvement
from 0.7 to 1.2 points. This result indicates the
assumption that the embedding spaces of different
languages are isomorphic may only hold locally.
With the help of the cliques we extracted, we can
find those locality features via clustering.

4.4 Sensitivity to Hyper-parameters

Notice that our method depends on three major
hyper-parameters: (1) the number of words N we
use to build word graphs; (2) the threshold 6 to
prune the edges in the graphs; (3) the number of
iterations I we do. In this subsection, we discuss
the impact of these hyper-parameters on the BLI
results, taking en2fr as an example. We depict the
precision@1 on different hyper-parameter settings
in Figure 2.
0=0.8, I=5

Ig N=4, =5 Ig N=4,0=0.8

100
80
§60
40
20

0

22533544550 04081216 0 2 4 6 8 10
g N 0 I

Figure 2: Influence of the hyper-parameters.

From the figure, we find that the performance of
our method is sensitive to the choice of NV and 6. If
N is too small, the cliques extracted cannot reach
agreement semantically across different languages
because of the sparsity of semantic units. If N
is too large, the improperly trained low-frequency
word vectors will impair the performance too. As
for 6, if the threshold is too small, then much noise
will be introduced into the word graphs, not only re-
ducing the quality of extracted cliques but increas-
ing the execution time of the BK algorithm. For I,
we find that the performance improves fast when
is increased from O to 2, but reaches convergence
at 5. Too many iterations hurt the performance
because, at this time, the seed dictionary inferred
from the mapped cliques is redundant.

4.5 Influence to Unsupervised MT

It has been shown that BLI can benefit unsuper-
vised machine translation (MT) (Lample et al.,
2018; Marie and Fujita, 2018; Ren et al., 2019)
by building Statistical Machine Translation (SMT)
with the induced bilingual lexicons and language
models as SMT features, followed by an iterative
back-translation process. In this part, we will dis-
cuss the influence of different bilingual lexicon in-
duction methods (Conneau et al., 2017; Artetxe
et al., 2018b) to the performance of the initial
SMT model, and report the BLEU scores® on new-
stest2014 en-fr and en-de tasks in Table 3. Note
that we do not do the subsequent iterative back-
translation process. From the table, we see that the
performance of unsupervised SMT is restricted to
the quality of BLI results. As our method provides
better word translations, the initial SMT models
benefit from ours accordingly.

BLI Method [ en2fr fr2en en2de de2en
MUSE 11.74 1534 8.14 11.03
VecMap 13.04 1640 9.12 11.98
Ours 1391 17.21 1024 1241

Table 3: BLEU of initial unsupervised SMT. The SMT
features are word translation tables inferred from differ-
ent BLI methods and pre-trained language models.

5 Case Study

5.1 Extracted Cliques

In this part, we give some examples of the English
cliques extracted with our method, as listed in Ta-
ble 5. From the table, we see that our method can
extract reasonable cliques containing words that
share similar meanings. Each clique can be re-
garded as a semantic unit, which is more explicit
than the PCA-based initialization method (Hoshen
and Wolf, 2018) where they represent the semantic
units with a fixed number of principal components.
An interesting phenomenon is that “May” is not
in the fifth clique which groups all the words of
months. This is because, in this dataset, all the
words are lower-cased so that “may” is also a modal
verb. Besides, we observe the extracted cliques of
other languages and find they are also reasonable,
which are not listed here due to space limitation.

3Tested by multi-bleu.pl.
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fr zh
en MUSE | VecMap [ Ours MUSE [ VecMap [ Ours
and part(share) | établir(establish) et(and) t,(too) / Fl(and)
his n matin(morning) lui(him) I (now) 7N (sixth) ffi(he)
south un (a) avait(had) ouest(west) &1 E(Taipei) (prize) JE(north)
august || flotte(fleet) mars(march) mars (march) FE 52(film) %5 F1.(fifth) = H(march)
build paris(Paris) seule(alone) faire(make) F1E(used as) | T f#(understand) | FE(form)

Table 4: Examples of seeds produced with different methods. Inside the brackets is the interpretation of the words.

words
s =)
and also both well addition additionally besides
his himself him he her
northeastern west south southeastern southeast east
southwest northeast northwest southwestern north
january march august july september
october june april december november february
science scientists scientific biology
mathematics physics chemistry sciences

|
o

B || =

Table 5: Examples of English cliques extracted from
the word graph in the first iteration. The bold words are
the central words in their respective cliques.

5.2 Seed Dictionary

To demonstrate that our method can produce good
initial solutions for learning cross-lingual embed-
dings, in this part, we give an example of the seed
dictionary inferred during the first iteration with
our method, compared with that inferred by MUSE
(Conneau et al., 2017) and VecMap (Artetxe et al.,
2018b). The language pairs we choose are en-fr
and en-zh, as listed in Table 4. From the table, we
find that our method produces initial solutions with
higher quality. This is because our coarse-to-fine
process can effectively filter out the noise from the
start. Notice that the initial solution produced by
MUSE in the first iteration is not good, which may
be because the GAN based method is not stable
enough at the beginning of the training.

6 Related Work

Bilingual lexicon induction (BLI) is an impor-
tant task of machine translation. Recent methods
for bilingual lexicon induction are mostly based
on unsupervised cross-lingual word embeddings
(Zhang et al., 2017; Artetxe et al., 2017; Con-
neau et al., 2017; Artetxe et al., 2018b; Xu et al.,
2018; Hoshen and Wolf, 2018; Alvarez-Melis and
Jaakkola, 2018). They follow the same procedure
that is first building initial solutions (a seed dic-
tionary) and then learning a mapping function be-

tween the two word embedding spaces. During
inference, for a given source word, they find the
target word via the nearest neighbors search by
calculating the distance of the mapped source em-
bedding and all target word embeddings. The main
focus of the previous methods is how to find the
initial solution, which is the most important part.

Their methods can be divided into three cat-
egories according to the way of finding the ini-
tial solution. The first category is using heuristic
rules such as treating identical words as the seed
(Artetxe et al., 2017), but this kind of method is
restricted to languages sharing the vocabulary or
at least the notation of numbers. The second cat-
egory is adversarial methods (Zhang et al., 2017;
Conneau et al., 2017; Xu et al., 2018; Alvarez-
Melis and Jaakkola, 2018). They train a generator
to finish mapping between the two word embed-
ding spaces, and a discriminator to distinguish the
mapped embeddings from the target embeddings.
However, they suffer from the drawbacks of gen-
erative adversarial models, i.e., the sensitivity of
hyper-parameters, long training time and lack of
interpretability (Hoshen and Wolf, 2018). The
third category is structure-based methods, which
achieve the state-of-the-art performance on BLI.
They either leverage the intra-linguistic word simi-
larity information (Artetxe et al., 2018b) or princi-
pal components of monolingual word embeddings
(Hoshen and Wolf, 2018), but their methods infer
initial solutions just based on word-level informa-
tion which is limited and prone to contain some
noise due to the insufficient training of pre-trained
embeddings. Different from their methods, ours
leverages clique-level information which is richer
and more accurate, and uses a coarse-to-fine pro-
cedure to reduce the adverse effect of the noise
mentioned above.

7 Conclusion

In this paper, we propose a novel graph-based
coarse-to-fine paradigm for unsupervised bilingual
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lexicon induction. Our method uses clique-level
information and reduces the bad effect of noise
in the pre-trained embeddings. The experiments
show that our method can significantly improve the
bilingual word induction performance after several
iterations compared with strong baselines, even for
distant language pairs. In the future, we will con-
sider combining our method with Graph Neural
Networks to update the word graphs we build.
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