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Abstract

Attention has been proven successful in many
natural language processing (NLP) tasks. Re-
cently, many researchers started to investigate
the interpretability of attention on NLP tasks.
Many existing approaches focused on examin-
ing whether the local attention weights could
reflect the importance of input representations.
In this work, we present a study on under-
standing the internal mechanism of attention
by looking into the gradient update process,
checking its behavior when approaching a lo-
cal minimum during training. We propose to
analyze for each word token the following two
quantities: its polarity score and its attention
score, where the latter is a global assessment
on the token’s significance. We discuss con-
ditions under which the attention mechanism
may become more (or less) interpretable, and
show how the interplay between the two quan-
tities may impact the model performance.!

1 Introduction

Attention mechanism (Bahdanau et al., 2015) has
been used as an important component across a wide
range of NLP models. Typically, an attention layer
produces a distribution over input representations
to be attended to. Such a distribution is then used
for constructing a weighted combination of the
inputs, which will then be employed by certain
downstream modules.

Recently, several research efforts on investigat-
ing the interpretability of attention on tasks such
as text classification, question answering, and nat-
ural language inference (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019; Arras et al., 2019) have
been conducted. One of their important arguments
was whether the attention distribution could ade-
quately reflect the significance of inputs. To answer
this question, they designed a series of metrics and

'Supplementary material and code at https://
github.com/richardsun-voyager/UAFTC

luwei@sutd.edu.sg

conducted corresponding experiments. In their ap-
proaches, they were mainly observing how the at-
tention may impact the outputs on the pre-trained
models by changing some elements in the inputs.
While such approaches have resulted in interesting
findings, the attention mechanism itself remains a
black box to us — it is still largely unclear what are
the underlying factors that may have an impact on
the attention mechanism.

When analyzing the results of a typical model
with attention on the text classification tasks, we
noticed that in some instances, many of the word
tokens with large attention weights were adjectives
or adverbs which conveyed explicit signals on the
underlying class label. On the other hand, in some
other instances, we also noticed that such useful
words may not always be able to receive significant
attention weights, especially under certain config-
urations of hyperparameters, making the attention
mechanism less interpretable.

Such observations lead to several important ques-
tions. First, the attention weight for a word token
appears to be the relative measurement to its sig-
nificance, and is largely local and instance specific.
Would there be an instance-independent quantity
to assess the corpus-level importance of a word
token? And if so, what role would such a quantity
play in terms of interpreting the overall attention
mechanism? Second, when the attention mecha-
nism appears to be less interpretable, how would
the underlying model be affected in terms of per-
formance?

In this work, we focus on answering the above
questions. We argue that the attention scores
(rather than attention weights) are able to capture
the global, absolute importance of word tokens
within a corpus. We present a study to figure out
the underlying factors that may influence such at-
tention scores under a simple neural classification
model. Inspired by Qian (1999), we analyzed the
gradients as well as the updates of intermediate
variables in the process of gradient descent, and
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found that there exist some implicit trends on the
intermediate variables related to attention: the de-
gree of association between a word token and the
class label may impact their attention scores. We
argue that when certain hyperparameters are prop-
erly set, tokens with strong polarity — high degree
of association with specific labels, would likely
end up with large attention scores, making them
more likely to receive large attention weights in a
particular sentence. While in such scenarios, the
attention mechanism would appear to be more in-
terpretable, we also discuss scenarios where the
attention weights may become less interpretable,
and show how the polarity scores, another impor-
tant token-level quantity, will play their roles in the
overall model in terms of contributing towards the
model performance.

2 Related Work

Research on interpretability of neural models has
received significant attention recently. One ap-
proach was using visualization to explore patterns
that exist in the intermediate representations of neu-
ral networks. Simonyan et al. (2013) visualized the
image-specific class saliency on image classifica-
tion tasks using learnt ConvNets, and displayed
the features captured by the neural networks. Li
et al. (2016a,b) proposed visualization methods to
look into the neural representations of the embed-
dings from the local composition, concessive sen-
tences, clause composition, as well as the saliency
of phrases and sentences, and illustrated patterns
based on the visualizations. An erasure method was
also adopted to validate the importance of different
dimensions and words. Vig and Belinkov (2019)
analyzed the attention structure on the Transformer
(Vaswani et al., 2017) language model as well as
GPT-2 (Radford et al., 2019) pre-trained model.

Another approach to understanding neural ap-
proaches is to conduct theoretical analysis to inves-
tigate the underlying explanations of neural models.
One example is the work of Levy and Goldberg
(2014), which regarded the word embedding learn-
ing task as an optimization problem, and found
that the training process of the skip-gram model
(Mikolov et al., 2013a,b) can be explained as im-
plicit factorization of a shifted positive PMI (point-
wise mutual information) matrix.

Recently, several research efforts have focused
on the interpretability of the attention mechanism.
Jain and Wallace (2019) raised the question on the
explainability of feature importance as captured
by the attention mechanism. They found the at-
tention weights may not always be consistent with
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Figure 1: Classification architecture with attention

the feature importance from the human perspec-
tive in tasks such as text classification and question
answering. Serrano and Smith (2019) also car-
ried out an analysis on the interpretability of the
attention mechanism, with a focus on the text clas-
sification task. They conducted their study in a
cautious way with respect to defining interpretabil-
ity and the research scope. The paper concluded
that the attention weights are noisy predictors of
importance, but should not be regarded as justifi-
cation for decisions. Wiegreffe and Pinter (2019)
suggested that the notion of explanation needs to
be clearly defined, and the study of the explana-
tion requires taking all components of a model into
account. Their results indicated that prior work
could not disprove the usefulness of attention mech-
anisms with respect to explainability. Moreover,
Michel et al. (2019) and Voita et al. (2019) exam-
ined the multi-head self-attention mechanism on
Transformer-based models, particularly the roles
played by the heads.

Our work and findings are largely consistent with
such findings reported in the literature. We believe
there are many factors involved when understand-
ing the attention mechanism. Inspired by Qian
(1999), which investigated the internal mechanism
of gradient descent, in this work we focus on un-
derstanding attention’s internal mechanism.

3 C(lassification Model with Attention

We consider the task of text classification, with a
specific focus on binary classification.” The archi-
tecture of the model is depicted in Figure 1.

There are various attention mechanisms intro-
duced in the field (Luong et al., 2015). Two com-
monly used mechanisms are the additive attention
(Bahdanau et al., 2015) and scaled dot-product at-
tention (Vaswani et al., 2017). In this work, we will
largely focus our analysis on the latter approach
(but we will also touch the former approach later).

Extending to multi-class classification is possible. See the
supplementary material for detailed analysis and discussion.
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Consider an input token sequence of length n:
T = eq,e2,...,¢e,, Where ¢; is the j-th input token
whose representation before the attention layer is
h; € RY. The attention score for the j-th token is:

h/V
aj = b\ N

)

where the hyperparameter ) is the scaling factor
(typically set to a large value, e.g., v/d is often
used in the literature (Vaswani et al., 2017)), and
V € R? is the context vector that can be viewed
as a fixed query asking for the “most informative
word” from the input sequence (Yang et al., 2016).
The token representation h; can be the word em-
bedding, or the output of an encoder.
The corresponding attention weight would be:

exp(a;)

“= >oexp(ag)

The complete input sequence is represented as:

h = Zajh’j’ (3)
J

(2)

and the output of the linear layer is:
s=h'W, (4)

which we call instance-level polarity score of the
input sequence. Here, W ¢ R? is the weight
vector for the linear layer.

When we make predictions, if the resulting po-
larity score s is positive, the corresponding input
sequence will be classified as positive (i.e., y = +1,
where y is the output label). Otherwise, it will be
classified as negative (i.e., y = —1).

During training, assume we have a training set
D = {(zM,yM), (@ y@) . (2 ym)}
with m labeled instances. Our overall loss is:

1 1
== 00 =——N log(a(y®sh)).
m ; m ; ( )
)

where y(t) and s*) are the gold output label and the
instance-level polarity score for the ¢-th instance
respectively, and o is the sigmoid function.

The instance-level polarity score s can also be
written as:

§ = ZajthW = Zajsj. (6)
J J

Here, we have introduced the token-level polar-
ity score s; for the input token representation h;:

sj=h; W. ©)

From here we can observe that the instance-level
polarity score of the input sequence can be inter-
preted as the weighted sum of the token-level po-
larity scores, where the weights are given by the at-
tention weights («; for h;). Such attention weights
measure the relative importance of the token within
a specific input sequence.

On the other hand, the attention score a; captures
the absolute importance of the token. We believe
such absolute measurements to the significance of
words may be playing a more crucial role (than at-
tention weights) when understanding the attention
mechanism. Thus, unlike many previous research
efforts, we will instead focus on the understanding
of attention scores in this work.

In this paper, we will mainly investigate a simple
neural model where h; = e;. Here e; is the word
embedding for the j-th input token. In other words,
we assume the word embeddings are used as the
inputs to the attention layer. Detailed discussions
on other assumptions on h; can be found in the
supplementary material.

4 Analysis

We conduct some analysis in this section to under-
stand how the attention mechanism works for the
task of text classification. First, let us consider the
following 3 different types of tokens:

e positive tokens: tokens that frequently appear
in positive training instances only,

e negative tokens: tokens that frequently appear
in negative training instances only, and

e neutral tokens: tokens that appear evenly across
both positive and negative training instances.

We also call the first two types of tokens polarity
tokens. For the ease of analysis and discussion,
we assume each token belongs to either of these
3 types, and we assume the dataset is balanced
and symmetric®. While some of these assumptions
may seem strong, having them would significantly
simplify our analysis. As we will see later in experi-
ments, even though some of the above assumptions
do not hold in some real datasets, our findings are
still valid in practice.

The gradient descent algorithm that minimizes
a loss ¢ could be interpreted as the integration of

3In other words, if we flip the signs of the y labels for all

documents in the training set, we arrive at exactly the same
training set (under a particular mapping between tokens).
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the gradient flow equation using Euler’s Method
(Scieur et al., 2017; Qian, 1999), written as:

dz(T)
dr

where z is the parameter vector, and z is its ini-
tialization, and 7 is the time step. We assume that
all parameters have initializations, and will omit
such initializations in the subsequent differential
equations. We will not seek to solve the differen-
tial equations directly but to find out whether there
exist some trends and patterns for certain variables
during training.

= Vl(2(r), 2(0) = 20, ®)

4.1 Polarity Score

Consider the token e in the vocabulary whose vec-
tor representation is e. Let us have an analysis
on the polarity score s, for the token e. This to-
ken may appear somewhere in the training set. We
write ¢ = ¢ if and only if this token e appears as
the j-th token in the ¢-th instance.

Gradient update iteration will be represented as:
dse(T) <de(r) dW (1)
dr  ° dr dr '
9)

where W (7) is the linear layer weight vector at the
time 7. Its update can be represented by another
ordinary differential equation:

dW(r) ot

) W(r)+e'(r)

i~ awT) (10
Similarly, we have:
de(T) ov
= 11
dr Oe (7). (

For simplicity, we will omit the time step 7 in the
equations. The derivative of the token level polarity
score will be written as:

ds. FAM + ot

As’, As?

e e

The two partial derivatives can be calculated as*:

ov 1 0o 0| Vie— h(t))T
%:_72 ()B()Oéj — +I|W,
(tg):e}=e
(13)
4——:——§:y 0RO, (14)

*See the supplementary material for details.

where (¢, ) : e§.t) = e means we are selecting such

tokens from the ¢-th instance at the j-th position
that are exactly e, and ag-t) is the attention weight
for that j-th token in the selected ¢-th instance. The
vector h(*) is the representation of the ¢-th instance,
and O is defined as () = 1 — o(y)s®)).

The first term in Equation 12 can be written as:

;1 @) a(t) a>(8e “S(U) T
ASe_,rn Zy 6 Oéj 7)\ VW

(,]) ()=

1 2
o wIE Y

(,j) ()=,

y(t)ﬁ(t) a;,t)‘ (15)

The sign of the second term above depends on:

7'['(6) = Z y(t)ﬂ(t)a(t)

(t,j):egt)Ee

(16)

This term has the following property: it is posi-
tive if e is a positive token, negative if e is negative,
and close to 0 if e is neutral.

The second term in Equation 12 is:

E:y
:mtzz;y Za eT (t

1
— () () T
—'WLE:ZI B ‘%’e ej

leTh®

an

Equation 17 involves dot-products between em-
beddings. During training, certain trends and pat-
terns will be developed for such dot-products. Near
a local minimum, we can show that it is desirable
to have el-Tej > 0 when e; and e; are both posi-
tive tokens or both negative tokens, and e;r e; <0
when one is a positive token and the other is a
negative token. More details and analysis on the
desirability of these properties can be found in the
supplementary material.

Now let us look at the last term in Equation 17.
This term can be re-written as:

5 X s ()

() y®=+1
1
— ) &) (_ T ()
+m Z I5; o ( e e; > (18)
(t.4)y O =—1

where we split the term into two based on the po-
larity of the training instances.
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In the first term, each e; token would be either a
positive or a neutral token; in the second term, each
e; would be either a negative or a neutral token, and
again under the assumption on the dataset, all the
terms involving neutral e; tokens would roughly
sum to a value close to 0 (regardless of e). So we
may assume there are no neutral e; tokens. Now,
if e is a positive token, we can see it is desirable
for both terms to be positive. If e is negative, it
is desirable for both terms to be negative. If e is
neutral, likely this term is close to 0.

Overall, the update of s, is:

dse
dr

- % (VW) ple)
Nt

1
— W12
+ W (e)

(B)

1
+— oy BOMeTel  (19)
(t.9)
©)
where
ple) = Z y g (t)oa;t)<se — s(t)>. (20)

(tg):e}=e

Under the assumption that V" W /) is reason-
ably small (for example, we may set A to an appro-
priate value, which is reasonably large), we have
A = 0. We then have the following results:

e For positive tokens, we have B > 0 and C' > 0.
The corresponding polarity scores will likely in-
crease after each update when approaching the
local minimum, and may end up with relatively
large positive polarity scores eventually.

e For negative tokens, we have B < 0 and C' < 0.
The corresponding polarity scores will likely
decrease after each update when approaching
the local minimum, and may end up with rela-
tively large negative polarity scores eventually.

e For neutral tokens, we have B ~ 0 and C =~ 0.
Their polarity scores will likely not change sig-
nificantly after each update when approaching
the local minimum, and may end up with polar-
ity scores that are neither significantly positive
nor significantly negative eventually.

Based on the above results, we can also quickly
note that p(e) has the following property: it is pos-
itive if e is a polarity token, and close to zero if e
is neutral.

These results are desirable as the token-level po-
larity scores will be used for defining the instance-
level polarity scores, which are in term useful for
prediction of the final polarity of the sentence con-
taining such tokens.

However, we note that the above results depend
on the assumption that term A is small. As we men-
tioned above, we may assume A is large to achieve
this. When V' T W /X is not small enough, the term
A may lead to a gap in the polarity scores between
the positive and negative tokens, depending on the
sign of V' W — a term that will appear again in the
next section when examining the attention scores.

4.2 Attention Score

Now let us have an analysis on the attention score
for each token. Again given a token e, the corre-
sponding attention score is a, = eT)\V. Note that
this is a global score that is independent of any
instance. The update of a is:

dae(t) 1 de(r) 1 dv(r)
dr _X( dr >TV(T)+X6T(T) dr

2D

Similarly, let us rewrite the equation as:

da, 1 /o0\" Y,
i~ A <a> +<_)\e av>- @2)

Aay, Aal
We have
1
- Z y(t)ﬂ(t)ozgt)e;t)<s§.t) . S(t)) .
(t.5)

(23)
The first term can be calculated as:

1
Ad, =—lIVIE 3 v (s —s0)
(,J) () —¢

1 ) qt) Oy T
+ﬁ Z(:) y()B()aj w'v.
(t.j)e; ' =e

The second term is:

ay QZy

(t,3)

(24)

(25)
Similarly, this can be re-written as:

% Y A0aO(s0 — ) el
" (tj)'y(”—Jrl

Z 5 (t)(

(tJ) y®=

S;t)> eTey) .

(26)
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This term shall be close to zero initially, regard-
less of e. However, this term may become positive
for a polarity token e as learning progresses.’

The update of a. is (note that wiv=vT W):

da. 1
dr ~ m)2

(VTW : A) m(e)

(D)
1 2
+ VI o(e)
—
(E)

1
o ST ).
(t:9)

(F)

Let us now understand the influence of these
terms respectively:

e Term D. When VT W > 0, the positive tokens
will receive a positive update whereas the nega-
tive tokens will receive a negative update from
this term after each step. When V' W < 0,
the influence is the other way around. It does
not influence the attention scores of the neu-
tral tokens much as the corresponding 7(e) is
approximately zero. When it is not close to
zero, this term can lead to a gap between the
final attention scores of the positive tokens and
negative tokens.

e Terms F and F'. Based on our analysis, £ > 0,
and F' > 0 for polarity tokens, and & ~ 0
and F' = 0 for neutral tokens. This means for
the positive tokens and negative tokens, their
attention scores will likely receive a positive
value from this term after each update when ap-
proaching a local minimum. Their correspond-
ing attention scores may end up with large pos-
itive scores eventually. For the neutral tokens,
this term does not have much influence on their
attention scores.

From here we can observe that when V' W - A
is small, the polarity tokens will likely end up with
larger attention scores than the neutral tokens. This
is actually a desirable situation — polarity tokens
are likely more representative when used for pre-
dicting the underlying class labels, and therefore
shall receive more “attention” in general.

However, we note that if the scaling factor A
is too large, the term D may be significant. This
means the sign of V' W will then play a crucial
role — when it is non-zero and when X is very large,
positive tokens and negative tokens will likely have

>See the supplementary material for more details.

Size

Dataset  AvgLength VocabSize

Train Dev Test
SST 18 16174 3610/3310 444/428 909/912
IMDB 183 63311 8539/8673  2113/2191 2174/2189
20News I 185 17584 624/612 156/154 195/192
20News II 187 29433 794/790/716  91/70/79  84/100/90

Table 1: Datasets are all split into training, dev and
test sets, respectively and are all balanced. The
first 3 datasets are for binary classification (posi-
tive/negative), and the last is for 3-class classification
(rec.motorcycles/sci.med/talk.politics.guns).

attention scores of opposite signs. This may not
be a very desirable situation as the attention scores
would be less interpretable in that case. On the
other hand, as we have discussed in the previous
section, the scaling factor A should not be too small
too. Otherwise term A in Equation 19 would not
be close to 0 — as a result the conclusions on the
polarity scores for the tokens stated at end of Sec
4.1 may not hold.

In conclusion, if we would like to observe the
desirable behavior as discussed for the attention
mechanism, it is important for us to choose an
appropriate A value or we shall possibly find ways
to control the value of V' T W°. We will conduct
experiments on real datasets to verify our findings.

Besides the above analysis, we have also ana-
lyzed polarity scores and attention scores from the
model with additive attention, the model with an
affine input layer and the model for multi-class clas-
sification respectively. There are terms that have
similar effects on polarity and attention scores dur-
ing training. Due to space limitations, we provide
such details in the supplementary material.

5 Experiments

We conducted experiments on four text classifi-
cation datasets’. The statistics of the datasets are
shown in Table 1. We followed the work of Jain and
Wallace (2019) for pre-processing of the datasets®,
and lower-cased all the tokens.

e Stanford Sentiment Treebank (SST) (Socher
et al., 2013). The original dataset that consists
of 10,662 instances with labels ranging from
1 (most negative) to 5 (most positive). Similar
to the work of Jain and Wallace (2019), we
removed neutral instances (with label 3), and
regarded instances with label 4 or 5 as positive
and instances with the label 1 or 2 as negative.

e IMDB (Maas et al., 2011). The original dataset

®We have further discussions on V' W in the supplemen-
tary material.

"We also conducted analysis on synthetic datasets. The
results can be found in the supplementary material.

$https://github.com/successar/
AttentionExplanation
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A SST A 20News I
DP DP-L DP-A AD DP DP-L DP-A AD
0.001 553 79.8 679 628 0001 548 88.6 78.6 494
1 744 812 734 734 1 884 93.0 853 876

10 822 81.7 80.8 803 10 928 912 928 920
20 814 809 810 812 20 935 922 935 912
50 80.8 82.0 815 799 50 933 923 922 917
100 812 81.1 807 80.8| 100 928 912 928 933
10000 79.6 814 79.3 80.8 | 10000 92.8 920 93.0 92.0

IMDB 20News II
DP DP-L DP-A AD DP DP-L DP-A AD
0.001 555 87.7 733 69.8 | 0.001 31.8 90.1 646 592
1 79.5 882 854 837 1 854 923 8383 86.7
10 89.2 87.8 89.6 882 10 934 934 917 90.0
20 89.6 88.1 89.6 89.6 20 949 942 933 921
50 89.8 872 89.1 885 50 949 923 929 938
100 893 8383 892 888 | 100 949 931 929 929
10000 89.3 88.4 889 889 | 10000 94.5 93.8 925 929

Table 2: Test set results in accuracy (%). Models were
chosen based on the highest accuracy on the dev sets.
Lo-regularization was adopted on DP-L, DP-A and AD.

that consists of 50,000 movie reviews with pos-
itive or negative labels.

o 20Newsgroup I (20News I). The original
dataset that consists of around 20,000 news-
group correspondences. Similar to the work
of Jain and Wallace (2019), we selected
the instances from these two categories:
“rec.sport.hockey” and “rec.sport.baseball”,
and regarded the former as positive instances
and the latter negative.

e 20Newsgroup II (20News II). This is a dataset
for 3-class classification. We selected instances
from these three categories: “rec.motorcycles”
, “sci.med” and “talk.politics.guns’.

Our analysis focused on the ideal case (e.g., pos-
itive tokens only appear in positive documents). To
be as consistent as possible with our analysis, we
only examined the tokens of strong association with
specific labels and the tokens that could be seen
almost evenly across different types of instances
based on their frequencies (note that we only se-
lected these tokens for examination after training,
but no tokens were excluded during the training
process). We defined a metric 7y, to measure the as-
sociation between the token e and instance labels®:

S f
f&+ £

where f; and f; refer to the frequencies in the
positive and in the negative instances respectively.
If . € (0.5,1) and f;f > 5, the token will be
regarded as a “positive token”. If v, € (—1,—0.5)

Ve (28)

For multi-class classification, we determined the polarity
of each token based on the relative frequency of each token
with respect to each label. For each token, we calculated
the frequency distribution across the labels that they appear
in. If the largest element of the distribution is above a given
threshold, we will regard the token as a polarity one.

and f > 5, the token will be regarded as a “nega-
tive token”. If . € (—0.1,0.1) and | f.F — f.] <
5, the token will be regarded as a “neutral token”.'°

We ran the experiments using different scaling
factors A on the models with the scaled dot-product
attention (DP) and additive attention (AD) respec-
tively. For the former, we also investigated the
performances on the models with a LSTM (DP-L)
or an affine transformation layer (DP-A) as the in-
put encoder.!! The Adagrad optimizer (Duchi et al.,
2011) was used for gradient descent. Dropout (Sri-
vastava et al., 2014) was adopted to prevent overfit-
ting. All the parameters were learned from scratch
to avoid the influence of prior information. For
the same reason, while we may be able to use pre-
trained word embeddings, we chose to initialize
word embeddings with a uniform distribution from
-0.1 to 0.1 with a dimension d = 100.

The results are shown in Table 2. For the scaled
dot-product attention, which is our focus in this
work, it can be observed that when the scaling
factor A is small (1 or 0.001), the test set results
appear to be worse than the case when A is set to a
larger value. The optimal results may be obtained
when ) is set to a proper value. However, setting
A to a very large value does not seem to have a
significant impact on the performance — in this case,
from Equations 1 and 2 we can see that the attention
weights will be close to each other for all input
tokens, leading to an effect similar to mean pooling.
Results on using LSTM or the affine transformation
layer as the input encoder are similar — setting a
proper value for A appears to be crucial.

Figure 2 shows the results for polarity scores
and attention scores for the first 3 datasets, when A
is set to a moderate value of 10 (i.e., \/&). These
results are consistent with our analysis. It can be ob-
served that generally positive tokens have positive
polarity scores while negative tokens have negative
polarity scores. Neutral tokens typically have po-
larity scores around zero. It can also be observed
that both the positive and negative tokens generally
have larger attention scores than the neutral tokens.

We also examined whether there would be an
obvious gap between the attention scores of the
polarity tokens when A\ is large. As we can see
from Figure 3b, when A is set to 100, the resulting
attention scores for the positive tokens are smaller
than those of the neutral (and negative) tokens. In

Example selected tokens from these datasets can be found
in the supplementary material.

"'More results from these models can be found in the sup-
plementary material. For each model, we only reported one
set of the results with a random initialization as we found the
patterns were similar with different initializations.
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Figure 2: Polarity (top) and attention scores (bottom). Scaled dot product attention is used with A = 10.
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this case, the resulting attention scores appear to
be less interpretable. However, as we discussed
above, when A is very large, the attention mech-
anism will effectively become mean pooling (we
can also see from Figure 3b that attentions scores
of all tokens are now much smaller), and the over-
all model would be relying on the average polarity
scores of the word tokens in the sentence for mak-
ing prediction. Interestingly, on the other hand,
as we discussed before at the end of Section 4.1,
when ) is large, the polarity tokens will likely end
up with polarity scores of large magnitudes — a
fact that can also be empirically observed in Figure
3a. It is because of such healthy polarity scores
acquired, the model is still able to yield good per-
formance in this case even though the attention
scores do not appear to be very interpretable.

We also tried to set a constraint on V' W by
introducing a regularization term to minimize it
in the learning process. We found doing so will
generally encourage the attention model to produce
more interpretable attention scores — for example,

even when \ was large, both the positive and nega-
tive tokens ended up with positive attention scores
that were generally larger than those of the neutral
tokens. However, empirically we did not observe a
significant improvement in test performance. See
the supplementary material for details.

We examined the attention scores on the 20News
II dataset which consists of 3 labels. As shown in
Figure 3c, polarity tokens that are strongly asso-
ciated with specific labels are still likely to have
larger attention scores than those of neutral tokens.

To understand whether there are similar patterns
for the polarity and attention scores when using the
additive attention models, we replaced the scaled
dot-product attention layer with the additive atten-
tion layer and ran experiments on the SST dataset.
The results are shown in Figure 4, which are similar
to those of our scaled dot-product attention model.

Furthermore, we analyzed the relationship be-
tween the global attention scores and the local atten-
tion weights. We collected all the attention weights
on the test set of SST for the positive, negative and
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neutral tokens, and calculated the average weight
for each token. Next we plot in Figure 5 the distri-
bution of such average attention weights for tokens
of these three types separately. As we can observe,
generally, the polarity tokens are more likely to
have larger attention weights than the neutral to-
kens. However, the positive tokens seemed to re-
ceive lower scores than the negative tokens in terms
of the attention weights. This is consistent with the
attention scores shown in Figure 2d: the attention
scores of the positive tokens were generally lower
than those of the negative tokens. Meanwhile, we
could see that there were some outliers of large
weights for the neutral tokens (circles that appear
outside the boxes are outliers). We looked into
the case, it was due to that all of the three tokens
in the short instance “is this progress” had nega-
tive attention scores, and the last token “progress”
somehow had a relatively larger one, making its
corresponding attention weight the largest amongst
the three. This can be explained by the fact that

attention weights only capture relative significance
of tokens within a local context.

These empirical results support our analysis as
well as our belief on the significance of the at-
tention scores. When certain hyperparameters are
properly set, the attention mechanism tends to as-
sign larger attention scores to those tokens which
have strong association with instances of a spe-
cific label. Meanwhile, the polarity scores for such
tokens tend to yield large absolute values (of pos-
sibly different signs, depending on the polarity of
the tokens), which will be helpful when predicting
instance labels. By contrast, neutral tokens that
appeared evenly across instances of different labels
are likely assigned small attention scores and polar-
ity scores, making them relatively less influential.

6 Conclusions

In this work, we focused on understanding the un-
derlying factors that may influence the attention
mechanism, and proposed to examine attention
scores — a global measurement of significance of
word tokens. We focused on binary classification
models with dot-product attention, and analyzed
through a gradient descent based learning frame-
work the behavior of attention scores and polarity
scores — another quantity that we defined and pro-
posed to examine.

Through the analysis we found that both quan-
tities play important roles in the learning and pre-
diction process and examining both of them in
an integrated manner allows us to better under-
stand the underlying workings of an attention based
model. Our analysis also revealed factors that may
impact the interpretability of the attention mecha-
nism, providing understandings on why the model
may still be robust even under scenarios where
the attention scores appear to be less interpretable.
The empirical results of experiments on various
real datasets supported our analysis. We also ex-
tended to and empirically examined additive atten-
tion, multi-label classification and models with an
affine input layer, and observed similar behaviors.

There are some future directions that are worth
exploring. Specifically, we can further examine the
influence of using pre-trained word embeddings —
whether similar words can help each other boost
their polarity and attention scores. Moreover, we
can also examine the influence of using deep con-
textualized input encoders such as ELMo (Peters
et al., 2018) or BERT (Devlin et al., 2018).
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