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Abstract

Sentence encoders based on the transformer
architecture have shown promising results on
various natural language tasks. The main im-
petus lies in the pre-trained neural language
models that capture long-range dependencies
among words, owing to multi-head attention
that is unique in the architecture. However,
little is known for how linguistic properties
are processed, represented, and utilized for
downstream tasks among hundreds of atten-
tion heads inside the pre-trained transformer-
based model. For the initial goal of examin-
ing the roles of attention heads in handling
a set of linguistic features, we conducted a
set of experiments with ten probing tasks and
three downstream tasks on four pre-trained
transformer families (GPT, GPT2, BERT, and
ELECTRA). Meaningful insights are shown
through the lens of heat map visualization and
utilized to propose a relatively simple sentence
representation method that takes advantage of
most influential attention heads, resulting in
additional performance improvements on the
downstream tasks.

1 Introduction

Sentence encoders in transformer architectures as
in GPT, BERT (Vaswani et al., 2017; Radford,
2018; Devlin et al., 2019) and ELECTRA (Clark
et al., 2020) have shown promising results on vari-
ous natural language understanding (NLU) tasks,
such as question answering, text entailment and
natural language inference (NLI) (Bowman et al.,
2015), owing to their pre-training capabilities in
modeling languages.

The pre-training effects of the transformer-based
approaches are known to be crucial for obtaining
superior performance in various downstream NLU
tasks. The main impetus lies in capturing long-
range dependencies among words obtainable with
bidirectional learning and self-attention (Devlin

et al., 2019) and sufficiently varied corpora of a
large quantity (Radford et al., 2019).

Despite all the recent successes of the
transformer-based models, little is known for how
linguistic properties are processed and represented
internally when the architectures are used. Given
that self-attention heads are unique in the family
of transformer architectures, we attempt to answer
the question of how basic linguistic properties are
captured with the attention heads across the models
and used for downstream tasks. Once we figure
out the roles of attention heads in “storing” various
linguistic properties, we should be able to modulate
them to maximize the performance of the down-
stream tasks.

Given the motivation, we analyze several pub-
licly available pre-trained transformer encoders
(BERT, GPT, GPT2, and ELECTRA) trained with
different model capacities ranging from 144 to 384
attention heads and 12 to 24 layers. Considering
the output vector from each attention head of an en-
coder as a mini-sentence embedding, we examine
whether certain linguistic properties are “stored”
in embeddings among ten sentence probing tasks
(Conneau and Kiela, 2018) that cover surface, syn-
tactic, and semantic information and require differ-
ent linguistic properties (e.g. the depth of a parsed
sentence). Each of the probing tasks is treated as
if it were a downstream task for the examination;
a classifier is attached for each of the primitive
linguistic properties. In order to predict the depth
of the parse tree, for example, an n-ary classifier
is connected, where n is the number of possible
depths.

In order to aggregate and summarize the perfor-
mance results out of all the attention heads, we
construct an accuracy heat map for each probing
task, where the patterns across layers and attention
heads can be recognized easily. By examining the
heat map, we can observe the patterns of how the
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attention heads contribute to the accuracy of each
probing task, including whether an individual at-
tention head is contributing to multiple linguistic
features together or just specialized for a particular
feature.

Aiming at producing improved sentence repre-
sentation, we use the analysis result that allows for
selecting and concatenating the outputs of superior
attention heads. The sentence representations from
the hidden layers and the top-n attention heads are
compared to check whether using only influential
attention heads selectively could help certain down-
stream tasks. This attempt is in contrast with the
common approach of using the output of the last
layers of a transformer-based encoder as the repre-
sentation that is fed into a downstream task. Our
hypothesis is those final representations from the
top of the transformer-based encoders might not
be the best not only in carrying primitive linguistic
properties of the language but also for downstream
tasks. All the source code is publicly available1.

The major contribution of our research is two-
fold: 1) we suggest an analysis method which
helps understand where linguistic properties are
learned and represented along attention heads in
transformer architectures and 2) we show that us-
ing analysis results, attention heads can be max-
imally utilized for performance gains during the
fine-tuning process on the downstream tasks and
for capturing linguistic properties.

2 Related Work

Several studies looked into the representations
learned by a neural network for various language
properties (Adi et al., 2016; Qian et al., 2016a,b).
A similar line of work focused on learned linguis-
tic features inside the word and sentence embed-
dings. They used downstream tasks in order to
probe surface information, syntactic and semantic
information (Shi et al., 2016; Conneau et al., 2018).
Some recent work looked inside the sentence en-
coders with various depths, by analyzing the hidden
states at a layer-level (Belinkov et al., 2017; Peters
et al., 2018) and even at a neuron-level (Dalvi et al.,
2018). Tenney et al. (2019a,b) attempted to under-
stand linguistic characteristics learned in a series
of pre-trained encoder models by jointly analyzing
their behaviors across different NLP tasks.

For studying attention mechanisms, there have

1https://github.com/heartcored98/
transformer_anatomy

been two streams of work: 1) visual analysis of at-
tention weights to associate various functionalities
and 2) analysis of the characteristics of the output
representations from individual attention heads.

For the first category, Vig and Jesse (2019) de-
veloped a visualization tool for attention weights
of BERT and GPT2 and identified notable heads
but without any quantitative analysis. Ghader and
Monz (2017) showed the extent to which attention
agrees with traditional alignments in neural ma-
chine translation (MT). Jain and Wallace (2019)
and Brunner et al. (2019) on the other hand ar-
gued that attention rarely provides an explanation
of model predictions. They showed through atten-
tion map analysis that attention weights frequently
are not correlated with other measures of feature
importance.

For the second category that attempts to discover
various roles attention heads play, Raganato and
Tiedemann (2018) studied the characteristics of in-
dividual attention heads from the transformer, pre-
trained with an MT task and evaluated on a limited
suite of linguistic tasks, POS tagging, NER tag-
ging, and chunking. Similarly, Clark et al. (2019)
showed that some attention heads are specialized
for dependency parsing and coreference resolution.
Michel et al. (2019) showed through an ablation
study that some dedicated heads have a significant
role in MT and revealed the dynamics of atten-
tion heads during the training process. Voita et al.
(2019) provided a method to identify the major
role of each attention head in a transformer model
trained for MT. The two studies are limited to MT
and a particular transformer model, BERT.

Unlike the recent studies mentioned above, our
analysis is more comprehensive in its scope for
generalizability. The analysis probes a variety of
surface, syntactic, and semantic information at sen-
tence levels with different transformer encoders
pre-trained on language modeling tasks. More im-
portantly, our work goes beyond an analysis and
suggests a method of utilizing the analysis results
for performance gains on several downstream tasks.
It not only proposes a simple yet new method for
the downstream tasks but also validates the analy-
sis of the attention mechanisms. To the best of our
knowledge, this is the first attempt to do an in-depth
analysis of the seven recent pre-trained encoders
for their internal workings in handling linguistic
features, not to mention the newly proposed way
for improvements on the downstream tasks.

https://github.com/heartcored98/transformer_anatomy
https://github.com/heartcored98/transformer_anatomy
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Figure 1: (a) Basic architecture of a transformer-based
encoder. (b) Evaluation scheme for a hidden state zi.
(c) Evaluation scheme for an attention head output hi,j .
L and H denote the number of stacked encoding layers
and the number of attention heads packed within each
encoding layer, respectively.

3 Methodology

Consider a transformer-based encoder M , typ-
ically with a stack of L identical layers, each
of which makes use of multi-head self-attention,
and a two sub-layer feed-forward network cou-
pled with layer normalization and residual connec-
tion (see Figure 1a). For a given input sequence
x = (x1, x2, . . . , xn), each word embedding xis
concatenated with a positional encoding and fed
into the encoder layer to produce an attention head
output hi,j ∈ R dhead where i and j indicate the
indices of the layer and the attention head, respec-
tively. Then a series of sub-layers produce hid-
den states of the i-th encoding layer zi ∈ R dmodel

for each encoder. For all pre-trained encoders,
dhead = 64 and dmodel = H × dhead where H
is the number of attention heads per layer.

Since the transformer-based encoders encode
the input sequence word by word, zi and hi,j are
produced individually for given word xk along the
input sequence x. In order to produce a sequence-
level representation, we need to select one of the
input representations of the sequence. Since the
selection method depends on the chosen pre-trained
model, we defer a detailed discussion to Section 4.1.
For now, we assume zi and hi,j have been already
determined with the specific word chosen from the
input sequence and consider it as the sentence-level
representation.
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Figure 2: Selecting influential attention head output
based on attention head-wise evaluation result. For ex-
ample, assume colored three attention heads produce
most superior representation then we concatenate the
output from those attention head and use it as a sen-
tence embedding.

3.1 Evaluating Hidden States on a Layer

Consider a classification task where the pre-trained
encoder predicts a linguistic feature intended in a
sentence probing task. Assume we have a labeled
dataset containing pairs of a sentence and a linguis-
tic property label (e.g. tense). For a given sentence
x and a label l in the dataset, the pre-training model
(e.g. BERT) encodes x and produces vectors corre-
sponding to zi and hi,j .

Usually, only the vector from the last layer zi=L

is used as the input feature representing the sen-
tence for the classification task. However, in order
to inspect the role of each internal layer for a lin-
guistic property, we use {zi,l, l} for all i to train
a logistic regression classifier on a train dataset
and record classification accuracy s(zi) on a test
dataset (see Figure 1b). Each accuracy score is then
compared to the accuracy of the last layer, and then
the best performance among the encoding layers
is measured. We consider this comparison as a
way of generating primitive evidence that hidden
states from an internal layer provide more useful
linguistic information than the representation from
the last layer.

3.2 Evaluating Attention Heads

Similar to Section 3.1, we also train a logistic re-
gression classifier on {hi,j , l} and record classifica-
tion accuracy s(hi,j) for all i and j. That is, every
attention head is evaluated by feeding its own out-
put vector to the classifier as a feature (see Figure
1c). We assume the more an attention head “stores”
the information essential to the probing task, the
higher its accuracy.

We construct a heat map of classification accu-
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Encoder L H L×H Parameters
GPT 12 12 144 110M
GPT2 12 12 144 117M
BERTBASE 12 12 144 110M
BERTLARGE 24 16 384 340M
ELECTRASMALL 12 4 48 14M
ELECTRABASE 12 12 144 110M
ELECTRALARGE 24 16 384 340M

Table 1: Specification of the seven pre-trained en-
coders: the numbers of encoding layers (L), attention
heads per layer (H), all the attention heads used (L×H)
and trained parameters.

racy for attention heads on x-axis and layers on
y-axis, so that we can easily identify the distribu-
tion of the excited attention heads for the linguistic
property handled in the pre-trained model. The
overall trend of a heat map indicates the extent to
which the activation is widely distributed or local-
ized across different layers and attention heads.

3.3 Using Influential Attention Heads

Given the analysis results, we now propose a
method for generating a new sentence representa-
tion to improve not only the probing tasks but also
other downstream tasks. New representations are
tested within the chosen pre-trained models in this
work but can be applied to all other transformer-
based encoders.

Given an encoder model M , we sort the atten-
tion heads along with their classification ‘valida-
tion’ accuracy s(hi,j) measured on a validation
dataset (in order to prevent look-ahead bias during
the selection process) for a given task, based on the
attention head-wise evaluation method as in Sec-
tion 3.2. Then top-n attention heads are selected
and simply concatenated (see Figure 2) to form a
new representation. We expect that the resulting
vector hn ∈ R n×dhead would be able to store more
precious information for the task than the vectors
constructed out of other attention heads since it
consists of superior attention heads.

In order to make comparisons against the em-
beddings from different encoding layers, we also
train the classifier with {hn, l} and record the corre-
sponding classification ‘test’ accuracy s(hn) mea-
sured on the test dataset. For fair comparisons,
however, we set n to H (the number of attention
heads per layer) so that reconstructed sentence em-
bedding hn could have the same dimension to that
of hidden states, dmodel.

Tasks # Classes Task Description
Length 6 Predict input sequence length
WordContent 1000 Find words in a sentence
Depth 8 Predict maximum depth of syntactic tree
TopConst 20 Predict top-constituents
BigramShift 2 Detect bigram order perturbation
Tense 2 Predict main verb’s tense
SubjNum 2 Predict whether a subj is plural
ObjNum 2 Predict whether an obj is plural
OddManOut 2 Detect noun or verb perturbation
CoordInversion 2 Detect clausal order perturbation

Table 2: Summary of sentence probing tasks. Each task
consists of 100k train and 10k test samples.

4 Attention Head-wise Analysis

4.1 Pre-trained Transformer Encoders

We ran experiments for seven different encoders
with unique characteristics, as shown in Table 1.
GPT (Radford, 2018) was trained by basic Lan-
guage Modeling (LM) on the BookCorpus dataset.
GPT2 (Radford et al., 2019) was originally trained
with the largest model capacity (1.5B parame-
ters) with massive text dataset and LM, but we
select base model for fair comparison. BERT
(Devlin et al., 2019), which adopted masked LM
(MLM) with next sentence prediction (NSP) for
better contextualized embedding, was trained on
Book-Corpus and English Wikipedia datasets. The
most recent one, ELECTRA, was trained with
replaced token detection (RTD) in the generator-
discriminator mode.

For GPT and GPT2, we pulled the representative
sentence embedding zi and hi,j from the last input
token with Byte-Pair Encoding tokenizer (Sennrich
et al., 2016). For the BERT and ELECTRA fam-
ily, we appended a special token <CLS>, which
was originally designed to train sentence represen-
tations, in front of every input sequence and pulled
the sentence embedding from it, using WordPiece
tokenizer (Wu et al., 2016). Also, the implementa-
tion of the all transformers in our work are utilized
from the Huggingface’s transformers library (Wolf
et al., 2019).

4.2 Evaluation on Sentence Probing Tasks

Ten sentence probing tasks enable us to check
whether the sentence embeddings generated by the
encoders store the linguistic properties specific to
the individual tasks. Table 2 shows a description
of each probing task with its number of classes,
roughly indicating the difficulty of the task. For
each probing task, we evaluated performance of
three types of representation; s(zi), s(hi,j) and
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Figure 3: Heat maps of attention head-wise evaluation on sentence probing tasks. The rows correspond to the five
pre-trained encoders (BERTBASE, BERTLARGE, GPT, GPT2, and ELECTRALARGE from the top). The six columns
correspond to six tasks (Length, Depth, SubjNum, BigramShift, CoordInversion, and OddManOut, from the left).
In each heat map, x-axis and y-axis show the index values of the attention heads and the layer numbers (the lower,
the closer to the initial input), respectively. The brighter the color, the higher the accuracy for the attention head and
hence more critical for the task. Note that the attention heads in the same layer are ordered by their classification
accuracy values (i.e., an attention head with the highest accuracy on a layer is at the left-most location).

s(hn) for a given pre-trained encoder by training
the simple classifier with 256 batch size on the
RMSProp optimizer (details on Appendix A).

4.3 Heat maps for Roles of Attention Heads

After measuring the classification accuracy for us-
ing the representation from each attention head,
s(hi,j) for all i,j, we created a heat map showing
the accuracy distribution for a pre-trained encoder
and a sentence probing task. Figure 3 shows 30 heat
maps arranged for seven pre-trained encoders and
six sentence probing tasks (full results are shown
in Appendix B). For each heat map, the brighter
the color in a region, the higher the accuracy is for
the corresponding attention heads.

Comparing the heat maps along with the differ-
ent probing tasks for an encoder, we can see that the
influential attention heads with bright colors appear
in different layers, either localized or distributed.
This indicates that the information related to dif-
ferent tasks is processed at different locations and

with different levels of association among attention
heads. For the Length and Depth tasks, requiring
surface and syntactic information, for example, the
accuracy of the heads in the lower layers starts to
diminish from the mid-upper layers.

On the other hand, the attention heads in the mid-
layers are activated for SubjNum and CoordInver-
sion, which are more or less syntactic information.
For BigramShift and OddManOut, which are more
semantic, the attention heads along the upper layers
are mostly activated. These results provide more
detailed analyses and meaningful insights regard-
ing the behavior of attention heads on different
layers than the empirical results of Raganato and
Tiedemann (2018) who shows the attention heads
in lower and upper layers of the basic transformer
tend to embed syntactic information and seman-
tic information, respectively. More interestingly,
the BigramShift and OddManOut heat maps show
that all of the five encoder models represent word
orders and verb/noun contexts starting from the
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Tasks

Encoder
BERTBASE BERTLARGE

last best top-12 last best top-16
layer layer heads layer layer heads

Length 58.0 87.8 95.0 54.8 94.4 95.2
WordContent 25.2 25.2 73.1 12.2 32.2 79.8

Depth 29.8 31.7 38.3 27.8 33.3 39.5
TopConst 69.8 74.7 84.2 62.8 78.2 85.6

BShift 78.1 78.1 88.3 77.2 81.1 90.9
Tense 86.0 87.0 89.0 85.6 86.7 88.9

SubjNum 82.0 84.7 88.2 80.0 87.9 90.5
ObjNum 75.4 75.4 83.4 64.2 78.0 84.4

OddManOut 59.6 59.6 65.1 55.5 59.2 69.0
CoordInv 65.5 65.9 74.6 64.9 70.9 78.5

Table 3: A summary of the probing tasks for three
different embedding methods used in the pre-trained
BERT architectures.

mid-layers.
Comparing the heat maps along with the trans-

former types, we can observe that the heatmaps
within the same family show similar patterns, while
those from different families tend to show different
distributions of the superior attention heads. For ex-
ample, the GPT family tends to show cooperation
with a larger number of attention heads for the Sub-
jNum and CoordInversion tasks while the BERT
family consists of only a few “well-educated” at-
tention heads. In the case of BigramShift and Odd-
ManOut, the majority of upper attention heads of
the BERT family are more strongly associated with
word order and verb/noun meanings with higher
accuracy than those of the GPT family.

Interestingly, ELECTRALARGE shows unique
patterns for most of the probing tasks; high-
performance heads are located on lower layers ex-
cept for OddManOut, whereas the heads on the
lower layers do not seem to deal with informa-
tion for the probing tasks. ELECTRASMALL and
ELECTRABASE model have similar heat maps (see
Appendix B), but the ELECTRALARGE model is to-
tally different from them. These tendency implies
that the learning behaviors on the attention heads
are not strictly similar among each other for the
same pre-training tasks even with the same archi-
tecture.

4.4 Selecting Influential Attention Heads

Having observed that different attention heads on
different layers play their roles for different prob-
ing tasks, we devised a method of producing new
embeddings as in 3.3 and ran an experiment to
compare it against two baselines for the ten prob-
ing tasks. Table 3 reports on a comparison result of

three embeddings constructed by the BERT family:
the last layer zi=L, the best-performing layer zbest,
and the reconstructed sentence embedding hn=H

for each task and each pre-trained encoder (full
results are in Appendix B). Comparing the accu-
racy between the last and best layers, we observe
that the last layer is no better than the “best” layers
for any of the probing tasks. From this, we can
infer that certain linguistic features are dominantly
processed on earlier layers and no further on later
layers.

The performance comparison between using the
output of the “best” layer and the reconstructed
sentence embedding (proposed) clearly shows that
classification accuracy is increased significantly
(19.22% in median) with the proposed method for
almost all the tasks. It strongly supports that the
proposed method can be employed to discover su-
perior attention heads that can make up the final
representation for processing specific linguistic in-
formation. Note that the newly constructed sen-
tence embeddings consist of attention head out-
puts only. Our results imply that these embeddings
might possess substantial information as much as
the hidden states of the layers, which are produced
by passing through the multi-head attention layers
and the feed-forward network.

5 Boosting Downstream Task

5.1 Downstream Tasks from GLUE

We evaluated the new embedding construction
method for more complex tasks in order to see
whether it extracts not only simple linguistic fea-
tures but also rich sentence features from the
pre-trained encoder for such tasks. Three down-
stream tasks (MRPC, STS-B, and SST-2) were
selected from the General Language Understand-
ing Evaluation (GLUE) benchmark, which has the
most widely used datasets for evaluating language-
oriented task performances.

MRPC Microsoft Research Paraphrase Corpus
consists of 4.1k train and 1.7k test sentence pairs
automatically extracted from online news sources,
with human annotations for whether the sentences
in the pair are semantically equivalent (Dolan and
Brockett, 2005).

STS-B The Semantic Textual Similarity Bench-
mark is a collection of 5.7k train and 1.4k test sen-
tence pairs drawn from news headlines and other
sources (Cer et al., 2017). They were annotated
with a score from 1 to 5 denoting how similar the
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Tasks

Encoder
BERTBASE BERTLARGE

last best top-12 last best top-16
layer layer heads layer layer heads

MRPC (F1) 88.0 88.2 88.9 89.3 88.6 91.4
MRPC (Acc) 82.4 83.1 84.6 84.6 84.1 87.7
STS-B (P)* 88.2 74.6 88.6 89.5 54.8 89.4
STS-B (S) 87.9 73.5 88.3 89.1 53.6 88.7
SST-2 (Acc) 92.9 92.4 93.1 94.0 92.9 94.5

Table 4: A summary of three downstream tasks on dev
set for the ordinary fine-tuning method using the last
layer, best layer, and the proposed method of using top-
n attention heads. The reported scores are the median
over 5 random restarts. (* P and S denote the pearson
score and spearman score, respectively.)

two sentences are for their semantics.
SST-2 The Stanford Sentiment Treebank is a

binary single-sentence classification task consisting
of sentences extracted from movie reviews with
human annotations of their sentiment (Socher et al.,
2013) with 67k train and 1.8k test samples. It was
designed to predict the sentiment score for a given
sentence in binary scales.

5.2 Fine-tuning with Influential Heads

First, we evaluated each of the attention heads on
the three downstream tasks, following the proce-
dure in Section 4.2. Using the head-wise evaluation
results, we again reconstructed sentence embed-
dings from the output vectors of superior attention
heads and use them as input representations for
the downstream task classifier. Since pre-trained
transformer encoders are usually fine-tuned when
applied to the downstream tasks, we unfroze the pa-
rameters of the pre-trained encoder and fine-tuned
both the classifier and the encoder, end to end. Also,
we conducted regular fine-tuning experiments by
adding a classifier on the top of the last hidden vec-
tors for each pre-trained encoder. We use a batch
size of 32 with a learning rate of 2e-5 and fine-tune
for 3 epochs over the data for all the three down-
stream tasks, following the fine-tuning procedure in
(Devlin et al., 2019). Each experiment is repeated
five times with different random seeds to provide
fair comparisons against the performance variance
of fine-tuning on small datasets.

The results are presented in Table 4. Both
BERTBASE and BERTLARGE obtained additional
performance gains, 0.82% and 1.04% points for
the base and large models, respectively, over the
model with the ordinary last-layer fine-tuning. We
find that BERTLARGE receives an additional perfor-

mance gain on the MRPC task by 2.1% and 3.1%
point improvements on F1 and accuracy, respec-
tively. Fine-tuning with attention heads only gives a
slightly negative result on STS-B with BERTLARGE.
Fine-tuning with the best-layer did not provide con-
sistent performance increment. It is noteworthy
that the performance of an already pre-trained en-
coder model could be further improved by simply
pulling the output vectors from the influential at-
tention heads.

6 Discussion

6.1 Heat Map Variations along Fine-tuning

In order to investigate the impact of the fine-tuning
process toward the internal attention heads, we also
conducted the attention head-wise evaluation on
each encoder after three epochs of the fine-tuning
process. Our question was whether the influential
attention heads at the initial pre-trained state would
remain superior after the fine-tuning or the spot of
influential heads would be shifted toward the last
layer.

The results are presented in Figure 4. First, we
again observe that the regions of the influential
heads vary among the downstream tasks. In the
MRPC task, influential heads are distributed across
the entire layers and heads, but the ones with the
SST-2 task are highly concentrated toward the very
upper layer. Notably, the heat maps of the STS-
B task are unusual in that there are two influen-
tial regions in the lower (first 25˜30% layers) and
the upper layers. We can also observe that the
overall heat map patterns are stretched while the
model capacity is increased, as reported in (Ten-
ney et al., 2019a). From the way feature vectors
are pulled from the encoder, we observe that fine-
tuning with the reconstructed sentence embeddings
obtained from the top-n attention heads results
in the smoother heatmap amplification, especially
with the BERTLARGE model.

The most interesting result is that the intensity
(performance) of the initial heatmaps are amplified
after experiencing the fine-tuning process while
preserving overall distribution patterns. Another
phenomenon is that the attention heads adjacent to
the superior ones also give a slight performance in-
crease. These results imply that the fine-tuning pro-
cess leverages the initial superior attention heads re-
gardless of their corresponding locations inside the
model rather than trains arbitrary attention heads.
This behavior might be the reason for explaining
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Figure 4: Heat maps of attention head-wise evaluation on downstream tasks. The rows correspond to the three
tasks (MRPC, STS-B and SST-2 from the top). The first three column groups are evaluation results of BERTBASE
and second three column groups are evaluation results of BERTLARGE. Each column groups correspond to the
initial pre-trained state, fine-tuned with last layer and fine-tuned with top-n attention heads, respectively. In each
heat map is drawn following the procedure of Figure 3. Note that the heat maps in the same row within the same
encoder model share the same color bar range in order to compare performance changes.

the additional performance increment on the down-
stream tasks. We conjecture that our reconstruction
method could act as a partial residual connection
as in DenseNet (Huang et al., 2017) during the
fine-tuning process by feeding the reconstructed
embedding to the input of the classifier which cre-
ates the direct gradient flow from the final objec-
tive loss of downstream tasks toward the internal
superior attention heads. We believe that further
work by varying the number of concatenated the
attention heads (especially, n > H) would provide
additional performance gain.

6.2 Syntactic-Semantic Exclusivity

Our analysis so far concentrated on the distribution
of the influential attention heads on different layers
for given task as a way of differentiating their roles
for individual tasks. A pattern we observed was
that different number of heads are influential and
that upper, lower, or all the layers tend to be influ-
ential, depending on the linguistic tasks. Our next
question is whether individual heads on different
layers are ”responsible” for processing syntactic or
semantic properties exclusively or in a coordinat-
ing fashion. In order to observe the performance of
attention head hi,j for syntactic and semantic tasks,
we define a score for handling syntactic capabilities

as an average of test accuracy scores, s(hi,j), from
the [Depth, TopConstituents, BigramShift] group
and that for semantic capabilities from the [Tense,
SubjNumber, ObjNumber, OddManOut, Coordina-
tionInversion] group. We omit the accuracy results
from the surface information group since they it is
difficult to lablem as syntactic or semantic.

Figure 5 shows the syntactic-semantic score dis-
tributions of the attention heads for different pre-
trained transformer models. Each attention head
seems to handle both syntactic and semantic in-
formation in a balanced way. This is interesting
because different attention heads or layers are often
more influential for many linguistic tasks. When
averaged together over the tasks for either the syn-
tactic or semantic group, however, it appears that
processing syntactic and semantic information is
shared by individual heads and layers. There is a
tendency that the lower the layer, the less influen-
tial on syntactic and semantic processing. However,
this tendency is not observed in the large models.
For BERTLARGE, the highest layers (purple col-
ors) contribute less for both syntactic and semantic
properties. For ELECTRALARGE, the purple heads
contribute the least. It re-confirms our hypothesis
that using the last layer representation is not always
the best. The linear relationship between syntac-
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Figure 5: A distribution of syntactic and semantic
scores of the attention heads. In each scatter plot, x-
axis and y-axis show the syntactic and semantic scores,
respectively. The hue of a point represents the layer to
which the corresponding attention head belongs.

tic and semantic processing capabilities across the
heads is considered a new finding. Although differ-
ent layers and heads tend to play stronger or weaker
roles for different linguistic properties as shown in
the heat maps, they contribute to both syntactic and
semantic processing in a well balanced way.

7 Conclusion

While recent research demonstrated the capability
of the transformer-based encoders for generating
rich sentence representations, the roles of individ-
ual self-attention heads were hardly unknown. Fur-
thermore, little is known for whether and how we
can utilize them for better capturing linguistic prop-
erties and eventually improving the performance
of downstream tasks for which the embeddings are
constructed.

One of the major contributions of this paper is
to fill the void by inspecting where and how the
attention heads are “trained” internally for classi-

fication tasks corresponding to different linguistic
properties and for the downstream tasks. The anal-
ysis results clearly show a tendency through the
comprehensive heat maps that syntactic and seman-
tic information is mainly handled from the lower
layers to the upper layers. We also showed that un-
derstanding the roles of attention heads in handling
task-specific information can help to develop adap-
tive sentence representations, by selecting influen-
tial attention heads and testing them for the three
downstream tasks. The additional performance
gains obtained by the simple method show that this
approach of using the anatomy of the transformer
models and the attention heads is promising in uti-
lizing expensive pre-trained transformer models to
their maximal extent.

Furthermore, we explored how the hundreds of
attention heads underwent performance variation
during the fine-tuning process on the downstream
tasks, revealing the internal behaviors with the pro-
posed analysis method. The analysis of syntactic-
semantic score distributions revealed that individ-
ual attention heads capture both syntactic and se-
mantic information. It also showed that the amount
of both syntactic and semantic information handled
by the heads vary from layer to layer, sometimes
showing that the last layer contributes much less
especially with large models.

While the empirical results are strong, additional
work remains to further our understanding of the in-
ternal workings of the transformer architecture and
its role in building such strong language models for
a variety of tasks. Immediate attention should be
paid to the investigation of how heat maps would
vary during the extensive pre-training so that we
have a better understanding of the dynamics of the
learning processes.
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A Training and Evaluation Details

A.1 Pre-trained Transformer

Throughout the entire experiments, we mainly used
huggingface’s seven pre-trained transformers2, im-
plemented with Pytorch. However, since the origi-
nal implemented models do not return the output
vectors of the internal attention heads, we devel-
oped the wrapper class that enables extracting the
output vectors from the created pre-trained model
objects. The implementation details and proce-
dures for replicating the experimental results are
described in our repository3

A.2 Probing Task Benchmark

We utilized the SentEval toolkit4 for both probing
and downstream tasks. The probing task results re-
ported in the main text are obtained with a logistic
regression layer attached to the pooled output vec-
tor from the transformer. We trained the classifier
with the batch size of 256 for all the experiments,
freezing the parameters of the transformer. A RM-
SProp optimizer is used with the learning rate of
0.1. Only the L2 regularization is tuned among
[10-5, 10-4, 10-3, 10-2, 10-1]. During training,
we monitor the validation accuracy and stop the
training process when it does not improve for the
previous 3 epochs (tenacity=3). Also, each classi-
fier is tested with 5-fold cross validation. In section
3.3, validation accuracy s(hi,j) is measured from
the five-validation sets partitioned in a mutually
exclusive way and averaged.

2https://github.com/huggingface/
transformers
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A.3 Downstream Task Benchmark
The downstream task results reported in the main
text are obtained with a logistic regression layer
attached to the pooled output vector from the trans-
former. We trained the classifier with the batch size
of 256 for all experiments, freezing the parame-
ter of transformer, following the same procedure of
A.2. Note that the metric for the STS-B task is Pear-
son and Spearman scores. Therefore we measured
the validation Pearson score instead of validation
accuracy for choosing influential attention heads
for the STS-B task.

A.4 Fine-tuning on Downstream Tasks
During the fine-tuning process with one of the three
different pooling methods (last-layer, best-layer,
and top-n heads), we attached an additional linear
layer with a dropout layer (dropout rate=0.1) and
Tanh activation function, following the pooler archi-
tecture implemented in Huggingface’s transformer.
Then the logistic regression layer is attached to the
activation function. We trained the classifier with
the batch size of 32 with a learning rate of 2e-5
with three epochs for all the experiments, unfreez-
ing all the parameters of the transformer and the
regressor. Each experiment is repeated five times
with different random seeds to provide fair com-
parisons against the performance variance of the
fine-tuning process conducted on small datasets.

B Head-Wise Evaluation Results with
Probing Tasks

The performance variation of the probing tasks
is shown in Table 5 that provides full experimen-
tal results with BERTBASE, BERTLARGE, GPT and
GPT2.

C Head-wise Evaluation Heatmaps

Since Figure 3 provides partial results only, we
provide Figure 6 and 7 here to show the full exper-
imental results with and without sorted attention
heads on the same layer. The former helps un-
derstanding how the influential heads are gathered
for their strengths while the latter is useful for un-
derstanding how various linguistic capabilities are
supported in association by a particular attention
head.
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