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Abstract

We conduct a thorough study to diagnose
the behaviors of pre-trained language en-
coders (ELMo, BERT, and RoBERTa) when
confronted with natural grammatical errors.
Specifically, we collect real grammatical er-
rors from non-native speakers and conduct ad-
versarial attacks to simulate these errors on
clean text data. We use this approach to facil-
itate debugging models on downstream appli-
cations. Results confirm that the performance
of all tested models is affected but the degree
of impact varies. To interpret model behav-
iors, we further design a linguistic acceptabil-
ity task to reveal their abilities in identifying
ungrammatical sentences and the position of
errors. We find that fixed contextual encoders
with a simple classifier trained on the predic-
tion of sentence correctness are able to locate
error positions. We also design a cloze test for
BERT and discover that BERT captures the in-
teraction between errors and specific tokens in
context. Our results shed light on understand-
ing the robustness and behaviors of language
encoders against grammatical errors.

1 Introduction

Pre-trained language encoders have achieved great
success in facilitating various downstream natu-
ral language processing (NLP) tasks (Peters et al.,
2018; Devlin et al., 2019; Liu et al., 2019b). How-
ever, they usually assume training and test cor-
pora are clean and it is unclear how the models
behave when confronted with noisy input. Gram-
matical error is an important type of noise since
it naturally and frequently occurs in natural lan-
guage, especially in spoken and written materials
from non-native speakers. Dealing with such a
noise reflects model robustness in representing lan-
guage and grammatical knowledge. It would also
have a positive social impact if language encoders

can model texts from non-native speakers appropri-
ately.

Recent work on evaluating model’s behaviors
against grammatical errors employs various meth-
ods, including (1) manually constructing mini-
mal edited pairs on specific linguistic phenom-
ena (Marvin and Linzen, 2018; Goldberg, 2019;
Warstadt et al., 2019a,b); (2) labeling or creating
acceptability judgment resources (Linzen et al.,
2016; Warstadt and Bowman, 2019; Warstadt et al.,
2019a); and (3) simulating noises for a specific
NLP task such as neural machine translation (Lui
et al., 2018; Anastasopoulos, 2019), sentiment clas-
sification (Baldwin et al., 2017). These studies
either focus on specific phenomena and mainly
conduct experiments on designated corpora or rely
heavily on human annotations and expert knowl-
edge in linguistics. In contrast, our work automat-
ically simulates natural occurring data and vari-
ous types of grammatical errors and systematically
analyzes how these noises affect downstream ap-
plications. This holds more practical significance
to understand the robustness of several language
encoders against grammatical errors.

Specifically, we first propose an effective ap-
proach to simulating diverse grammatical errors,
which applies black-box adversarial attack algo-
rithms based on real errors observed on NUS Cor-
pus of Learner English (NUCLE) (Dahlmeier et al.,
2013), a grammatical error correction benchmark.
This approach transforms clean corpora into cor-
rupted ones and facilitates debugging language en-
coders on downstream tasks. We demonstrate its
flexibility by evaluating models on four language
understanding tasks and a sequence tagging task.

We next quantify model’s capacities of identify-
ing grammatical errors by probing individual layers
of pre-trained encoders through a linguistic accept-
ability task. We construct separate datasets for
eight error types. Then, we freeze encoder layers



3387

and add a simple classifier on top of each layer
to predict the correctness of input texts and locate
error positions. This probing task assumes if a sim-
ple classifier behaves well on a designated type of
error, then the encoder layer is likely to contain
knowledge of that error (Conneau et al., 2017; Adi
et al., 2017).

Finally, we investigate how models capture the
interaction between grammatical errors and con-
texts. We use BERT as an example and design
an unsupervised cloze test to evaluate its intrinsic
functionality as a masked language model (MLM).

Our contributions are summarized as follows:
1. We propose a novel approach to simulating

various grammatical errors. The proposed
method is flexible and can be used to verify
the robustness of language encoders against
grammatical errors.

2. We conduct a systematic analysis of the ro-
bustness of language encoders and enhance
previous work by studying the performance
of models on downstream tasks with various
grammatical error types.

3. We demonstrate: (1) the robustness of exist-
ing language encoders against grammatical
errors varies; (2) the contextual layers of lan-
guage encoders acquire stronger abilities in
identifying and locating grammatical errors
than token embedding layers; and (3) BERT
captures the interaction between errors and
specific tokens in context, in particular the
neighboring tokens of errors.

The code to reproduce our experiments are avail-
able at: https://github.com/uclanlp/
ProbeGrammarRobustness

2 Related Work

Probing Pre-trained Language Encoders The
recent success of pre-trained language encoders
across a diverse set of downstream tasks has stim-
ulated significant interest in understanding their
advantages. A portion of past work on analyzing
pre-trained encoders is mainly based on clean data.
As mentioned in Tenney et al. (2019a), these stud-
ies can be roughly divided into two categories: (1)
designing controlled tasks to probe whether a spe-
cific linguistic phenomenon is captured by models
(Conneau et al., 2018; Peters et al., 2019; Tenney
et al., 2019b; Liu et al., 2019a; Kim et al., 2019), or
(2) decomposing the model structure and exploring
what linguistic property is encoded (Tenney et al.,

2019a; Jawahar et al., 2019; Clark et al., 2019).
However, these studies do not analyze how gram-
matical errors affect model behaviors.

Our work is related to studies on analyzing mod-
els with manually created noise. For example,
Linzen et al. (2016) evaluate whether LSTMs cap-
ture the hierarchical structure of language by using
verbal inflection to violate subject-verb agreement.
Marvin and Linzen (2018) present a new dataset
consisting of minimal edited pairs with the oppo-
site linguistic acceptability on three specific lin-
guistic phenomena and use it to evaluate RNN’s
syntactic ability. Goldberg (2019) adjusts previous
method to evaluate BERT. Warstadt et al. (2019a)
further compare five analysis methods under a sin-
gle phenomenon. Despite the diversity in methodol-
ogy, these studies share common limitations. First,
they employ only a single or specific aspects of
linguistic knowledge; second, their experiments
are mainly based on constructed datasets instead
of real-world downstream applications. In contrast,
we propose a method to cover a broader range of
grammatical errors and evaluate on downstream
tasks. A concurrent work (Warstadt et al., 2019b)
facilitates diagnosing language models by creat-
ing linguistic minimal pairs datasets for 67 isolate
grammatical paradigms in English using linguist-
crafted templates. In contrast, we do not rely heav-
ily on artificial vocabulary and templates.

Synthesized Errors To evaluate and promote the
robustness of neural models against noise, some
studies manually create new datasets with specific
linguistic phenomena (Linzen et al., 2016; Marvin
and Linzen, 2018; Goldberg, 2019; Warstadt et al.,
2019a). Others have introduced various methods
to generate synthetic errors on clean downstream
datasets, in particular, machine translation corpora.
Belinkov and Bisk (2018); Anastasopoulos (2019)
demonstrate that synthetic grammatical errors in-
duced by character manipulation and word substitu-
tion can degrade the performance of NMT systems.
Baldwin et al. (2017) augment original sentiment
classification datasets with syntactically (reorder-
ing) and semantically (word substitution) noisy
sentences and achieve higher performance. Our
method is partly inspired by Lui et al. (2018), who
synthesize semi-natural ungrammatical sentences
by maintaining confusion matrices for five simple
error types.

Another line of studies uses black-box adversar-
ial attack methods to create adversarial examples

https://github.com/uclanlp/ProbeGrammarRobustness
https://github.com/uclanlp/ProbeGrammarRobustness
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for debugging NLP models (Ribeiro et al., 2018;
Jin et al., 2019; Alzantot et al., 2018; Burstein et al.,
2019). These methods create a more challenging
scenario for target models compared to the above
data generation procedure. Our proposed simu-
lation benefits from both adversarial attack algo-
rithms and semi-natural grammatical errors.

3 Method

We first explain how we simulate ungrammatical
scenarios. Then, we describe target models and the
evaluation design.

3.1 Grammatical Error Simulation
Most downstream datasets contain only clean and
grammatical sentences. Despite that recent lan-
guage encoders achieve promising performance, it
is unclear if they perform equally well on text data
with grammatical errors.

Therefore, we synthesize grammatical errors on
clean corpora to test the robustness of language
encoders. We use a controllable rule-based method
to collect and mimic errors observed on NUCLE
following previous work (Lui et al., 2018; Sperber
et al., 2017) and apply two ways to introduce er-
rors to clean corpora: (1) we sample errors based
on the frequency distribution of NUCLE and intro-
duce them to plausible positions; (2) inspired by
the literature of adversarial attacks (Ribeiro et al.,
2018; Jin et al., 2019; Alzantot et al., 2018), we
conduct search algorithms to introduce grammati-
cal errors that causing the largest performance drop
on a given downstream task.

Mimic Error Distribution on NUCLE We first
describe how to extract the error distribution on
NUCLE (Dahlmeier et al., 2013). NUCLE is con-
structed with naturally occurring data (student es-
says at NUS) annotated with error tags. Each un-
grammatical sentence is paired with its correction
that differs only in local edits. The two sentences
make up a minimal edited pair. An example is like:

1. Will the child blame the parents after he grow-
ing up? ×

2. Will the child blame the parents after he
grows up? X

NUCLE corpus contains around 59,800 sentences
with average length 20.38. About 6% of tokens in
each sentence contain grammatical errors. There
are 27 error tags, including Prep (indicating prepo-
sition errors), ArtOrDet (indicating article or de-
terminer errors), Vform (indicating incorrect verb

form) and so forth.
We consider eight frequently-occurred, token-

level error types in NUCLE as shown in Table 1.
These error types perturb a sentence in

terms of syntax (SVA, Worder), semantics (Nn,
Wchoice, Trans) and both (ArtOrDet, Prep,
Vform), and thus cover a wide range of noise in
natural language. Then, we construct a confusion
set for each error type based on the observation
on NUCLE. Each member of a confusion set is a
token. We assign a weight wij between token ti
and tj in the same set to indicate the probability
that ti will be replaced by tj . In particular, for
ArtOrDet, Prep and Trans, the confusion set
consists of a set of tokens that frequently occur as
errors or corrections on NUCLE. For each token
ti in the set, we compute wij based on how many
times ti is replaced by tj in minimal edited pairs
on NUCLE.

Notice that we add a special token ø to repre-
sent deletion and insertion. For Nn, when we find
a noun, we add it and its singular (SG) or plural
(PL) counterpart to the set. For SVA, when we
find a verb with present tense, we add it and its
third-person-singular (3SG) or non-third (not 3SG)
counterpart to the set. For Worder, we exchange
the position of an adverb with its neighboring ad-
jective, participle or modal. For Vform, we use
NLTK (Bird and Loper, 2004) to extract present,
past, progressive, and perfect tense of a verb and
add to the set. For Wchoice, we select ten syn-
onyms of a target word from WordNet. The substi-
tution weight is set to be uniform for both Vform
and Wchoice.

Grammatical Error Introduction We intro-
duce errors in two ways. The first is called proba-
bilistic transformation. Similar to Lui et al. (2018),
we first obtain the parse tree of the target sentence
using the Berkeley syntactic parser (Petrov et al.,
2006). Then, we sample an error type from the
error type distribution estimated from NUCLE and
randomly choose a position that can apply this type
of error according to the parse tree. Finally, we
sample an error token based on the weights from
the confusion set of the sampled error type and
introduce the error token to the selected position.

However, probabilistic transformation only rep-
resents the average case. To debug and analyze the
robustness of language encoders, we consider an-
other more challenging setting – worst-case trans-
formation, where we leverage search algorithms
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Error type Error Description Confusion Set
ArtOrDet Article/determiner errors { a, an, the, ø}

Prep Preposition errors

{ on, in, at, from, for, under, over, with, into,
during, until, against, among, throughout, to,
by, about, like, before, across, behind, but,
out, up, after, since, down, off, of, ø}

Trans Link words/phrase errors
{and, but, so, however, as, that, thus, also, be-
cause, therefore, if, although, which, where,
moreover, besides, of, ø}

Nn Noun number errors {SG, PL}
SVA Subject-verb agreement errors {3SG, not 3SG}
Vform Verb form errors {Present, Past, Progressive, Perfect}
Wchoice Word choice errors {Ten synonyms from WordNet Synsets}
Worder Word positions errors {Adverb w/ Adjective, Participle, Modal}

Table 1: The target error types and the corresponding confusion sets.

from the black-box adversarial attack to determine
error positions. More concretely, we obtain an op-
eration set for each token in a sentence by consider-
ing all possible substitutions based on all confusion
sets. Note that some confusion sets are not applica-
ble, for example the confusion set of Nn to a verb.
Each operation in the operation set is to replace the
target token or to change its position. Then, we ap-
ply a searching algorithm to select operations from
these operation sets that change the prediction of
the tested model and apply them to generate error
sentences. Three search algorithms are considered:
greedy search, beam search, and genetic algorithm.

Greedy search attack is a two-step procedure.
First, we evaluate the importance of tokens in a
sentence. The importance of a token is represented
by the likelihood decrease on the model predic-
tion when it is deleted. The larger the decrease
is, the more important the token is. After compar-
ing all tokens, we obtain a sorted list of tokens in
descending order of their importance. Then, we
walk through the list. For each token in the list, we
try out all operations from the operation set associ-
ated with that token and then practice the operation
that degrades the likelihood of the model predic-
tion the most. We keep repeating step two until
the prediction changes or a budget (e.g., number of
operations per sentence) is reached.

Beam search is similar to greedy search. The
only difference is that when we walk through the
sorted list of tokens, we maintain a beam with fixed
size k that contains the top k operation streams
with the highest global degradation.

Genetic algorithm is a population-based iterative
method for finding more suitable examples. We
start by randomly selecting operations to build a
generation and then use a combination of crossover
and mutation to find better candidates. We refer
the readers to Alzantot et al. (2018) for details of
the genetic algorithm in adversarial attack. Com-
prehensive descriptions of all methods are found in
Appendix C.

3.2 Target Models
We evaluate the following three pre-trained lan-
guage encoders. Detailed descriptions of models
and training settings are in Appendix B.

ELMo (Peters et al., 2018) is a three-layer
LSTM-based model pre-trained on the bidirectional
language modeling task on 1B Word Benchmark
(Chelba et al., 2014). We fix ELMo as a contextual
embedding and add two layers of BiLSTM with
attention mechanism on top of it.

BERT (Devlin et al., 2019) is a transformer-
based (Vaswani et al., 2017) model pre-trained on
masked language modeling and next sentence pre-
diction tasks. It uses 16GB English text and adapts
to downstream tasks by fine-tuning. We use BERT-
base-cased for Named Entity Recognition (NER)
and BERT-base-uncased for other tasks and per-
form task-specific fine-tuning.

RoBERTa (Liu et al., 2019b) is a robustly pre-
trained BERT model using larger pre-training data
(160GB in total), longer pre-training time, the dy-
namic masking strategy and other optimized pre-
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training methods. We use RoBERTa-base and per-
form task-specific fine-tuning.

3.3 Evaluation Methods

We design the following three evaluation methods
to systematically analyze how language encoders
are affected by grammatical errors in input.

Simulate Errors on Downstream Tasks Using
the simulation methods discussed in Section §3.1,
we are able to perform evaluation on existing bench-
mark corpora. In our experiments, we consider the
target models independently. The whole procedure
is: given a dataset, the target model is first trained
(fine-tuned) and evaluated on the clean training and
development set. Then, we discard those wrongly
predicted examples from the development set and
apply simulation methods to perturb each remain-
ing example. We compute the attack success rate
(attacked examples / all examples) as an indicator
of model robustness against grammatical errors.
The smaller the rate is, the more robust a model is.

Linguistic Acceptability Probing We design a
linguistic acceptability probing task to evaluate
each individual type of error. We consider two
aspects: (1) if the model can tell whether a sen-
tence is grammatically correct or not (i.e., a binary
classification task); (2) if the model can locate error
positions in the token-level. We fix the target model
and train a self-attention classifier to perform both
probing tasks.

Cloze test for BERT We design an unsupervised
cloze test to evaluate the masked language model
component of BERT based on minimal edited pairs.
For each minimal pair that differs only in one to-
ken, we quantify how the probability of predicting
a single masked token in the rest of the sentence
affected by this grammatical error. This method an-
alyzes how error token affects clean context, which
is complementary to Goldberg (2019) who focuses
on SVA error and discusses how clean contexts
influence the prediction of the masked error token.

4 How Grammatical Errors Affect
Downstream Performance?

In this section, we simulate grammatical errors and
analyze performance drops on downstream tasks.

We compare ELMo, BERT, RoBERTa and a
baseline model InferSent (Conneau et al., 2017).

Infersent ELMo BERT RoBERTa

MRPC 75.42 80.30 86.48 89.88
MNLI-m 68.62 74.91 83.77 87.70

MNLI-mm 69.12 75.50 84.80 87.40
QNLI 77.39 78.23 90.58 92.50
SST-2 83.14 90.37 92.08 94.72
NER - 91.21 95.20 95.45

Table 2: Original performance of the target models on
language understanding and sequential tagging tasks.

Datasets We use four language understanding
datasets: MRPC (Dolan and Brockett, 2005),
MNLI (Williams et al., 2018), QNLI (Rajpurkar
et al., 2016), and SST-2 (Socher et al., 2013) from
GLUE (Wang et al., 2019a) and a sequence tagging
benchmark: CoNLL-2013 for NER. Detailed de-
scriptions of these corpora are in Appendix A. We
do not use other datasets from GLUE since they are
either small in size or only contain short sentences.

Attack Settings For all tasks, we limit the max-
imum percentage of allowed modifications in a
sentence to be 15% of tokens, which is a reason-
able rate according to the statistics estimated from
the real data. As shown in Table 3, the worst-case
transformation only modifies around 9% of tokens
overall under such a limitation. For MNLI and
QNLI, we only modify the second sentence, i.e.,
hypothesis and answer, respectively. For MRPC,
we only modify the first sentence. We do not apply
the genetic algorithm to MNLI and QNLI due to
their relatively large number of examples in the
development sets, which induce an extremely long
time for attacking. For NER, we keep the named
entities and only modify the remaining tokens.

Results and Discussion Table 2 presents the test
performance of four target models on the standard
development set of each task. Table 3 summarizes
the attack success rates on language understanding
tasks, the decreases of F1 score on NER, and the
mean percentage of modified tokens (number in
brackets). All numbers are formatted in percentage.

As shown in Table 3, with the probabilistic trans-
formation, the attack success rates fall between 2%
(RoBERTa, QNLI) and 10% (ELMo, MRPC). With
the worst-case transformation, we obtain the high-
est attacked rate of 81.1% (ELMo, genetic algo-
rithm, MRPC) and an average attacked rate across
all tasks of 29% by perturbing only around 9% of
tokens. This result confirms that all models are
influenced by ungrammatical inputs. NER task is



3391

Model Alg. MRPC MNLI (m/mm) QNLI SST-2 NER
Infersent dist. 6.51 (14.53) 8.30 (13.98) / 8.80 (14.23) 4.76 (12.53) 5.79 (14.38) -

greedy 53.42 (9.02) 36.52 (10.35) / 40.71 (10.06) 44.92 (7.61) 43.44 (8.02) -
beam 54.39 (9.08) 36.66 (10.37) / 40.87 (10.06) 45.16 (7.62) 43.86 (8.03) -

genetic 79.15 (8.60) - - 59.86 (8.39) -

BiLSTM dist. 9.99 (14.53) 7.76 (13.98) / 7.83 (14.23) 5.34 (12.53) 4.64 (14.38) 3.29 (13.75)
+ ELMo greedy 60.84 (8.19) 29.58 (10.28) / 32.92 (9.89) 39.12 (7.25) 37.55 (8.24) 17.81 (7.67)
+ Attn beam 61.49 (8.29) 29.74 (10.29) / 33.12 (9.91) 40.38 (7.33) 38.32 (8.32) 18.33 (7.85)

genetic 81.14 (7.41) - - 59.25 (8.25) 39.78 (8.19)

BERT dist. 3.69(14.53) 6.59 (13.98) / 6.95 (14.23) 2.33 (12.53) 4.73 (14.38) 3.07 (13.75)
greedy 31.25 (7.95) 28.76 (10.28) / 32.04 (10.01) 25.43 (7.38) 33.54 (7.96) 17.12 (7.51)
beam 31.81 (8.01) 29.03 (10.30) / 32.44 (10.04) 26.42 (7.48) 34.28 (8.01) 18.27 (7.74)

genetic 59.01 (8.84) - - 58.53 (7.83) 38.83(7.64)

RoBERTa dist. 3.04 (14.53) 5.66 (13.98) / 5.88(14.23) 1.92 (12.53) 3.53 (14.38) 2.52 (13.75)
greedy 20.45 (8.11) 20.65 (10.43) / 21.47 (10.02) 19.82 (7.18) 31.06 (8.20) 15.84 (8.12)
beam 20.73(8.14) 20.89 (10.44) / 21.91 (10.06) 20.52 (7.29) 31.91 (8.27) 16.51 (7.47)

genetic 38.93 (9.17) - - 56.41 (8.39) 35.11(7.55)

Table 3: Results of evaluating the robustness of models on downstream tasks. Each column represents a dataset and
each row represents a victim model with the attack algorithm (dist. means probabilistic transformation). In each
cell, we show the mean attack success rate (in percentage) and the mean percentage of modified words (number in
the bracket) over the dataset.

BERT RoBERTa

MRPC MNLI SST MRPC MNLI SST

Prep 16 178 36 15 103 43
Art/Det 5 270 20 7 228 28
Wchoice 93 1129 233 64 772 195
Vform 8 231 26 9 314 37
SVA 57 538 83 31 388 83
Nn 14 128 13 3 84 13
Worder 0 62 28 0 43 28
Trans 5 70 25 5 31 25

Table 4: Numbers of times each error type is chosen
in successful attacks. We find that Wchoice and SVA
are more harmful.

in general harder to be influenced by grammatical
errors. In terms of the probabilistic transformation,
the drop of F1 scores ranges from 2% to 4%. For
the worst-case transformation, the highest drop for
NER is 18.33% (ElMo, beam search).

Considering different target models, we ob-
serve that the impact of grammatical errors varies
among models. Specifically, RoBERTa exhibits
a strong robustness against the impact of gram-
matical errors, with consistently lower attack suc-
cess rates (20.28% on average) and F1 score de-
creases (17.50% on average) across all tasks, es-
pecially on MRPC and MNLI. On the other hand,
BERT, ELMo, and InferSent experience an aver-
age attack rate of 26.03%, 33.06%, 36.07% re-
spectively on NLU tasks. Given the differences
in pre-training strategies, we speculate that pre-

training with more data might benefit model ro-
bustness against noised data. This speculation is
consistent with (Warstadt et al., 2019b), where the
authors also give a lightweight demonstration on
LSTM and Transformer-XL (Dai et al., 2019) with
varying training data. We leave a further explo-
ration of this speculation and a detailed analysis of
model architecture to future work.

Note that in the experiment setting, for each
model, we follow the literature to compute the at-
tack success rate only on the instances where the
model makes correct predictions. Therefore, the
attack success rates across different models are not
comparable. To compare the robustness of differ-
ent encoders, we further examine the attack success
rates on the common part in the development set
that all the models make correct predictions. We
find that the overall trend is similar to that in Table
3. For example, the greedy attack success rates of
RoBERTa, BERT, and ELMo on MRPC and SST-
2 are 14.4%, 22.1%, 46.8%, and 28.2%, 30.0%,
33.9% respectively.

To better understand the effect of grammati-
cal errors, we also analyze (1) which error type
harms the performance most, (2) how different
error rates affect the performance. For the first
question, we represent the harm of an error type
by the total time it is chosen in successful greedy
attack examples. We conduct experiments to ana-
lyze BERT and RoBERTa on the development sets
of MRPC, MNLI-m, and SST-2 as shown in Table
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Figure 1: Attack success rate when the numbers of
modified tokens in a sentence increase.

4. Among all, Wchoice is the most harmful type
while Worder the least. SVA ranks the second
most harmful type. Notice that though Nn changes
a token in a similar way with SVA (both adding or
dropping -s or -es in most cases), they have differ-
ent influences to the model. As for errors related to
function words, Prep plays a more important role
in general but ArtOrDet harms MNLI more.

For the second one, we increase the allowed
modifications of greedy attack from 15% to 45% of
tokens in one sentence, resulting the actual percent-
age of modified tokens under 20%. We evaluate all
models on the development set of MNLI-m. Re-
sults are shown in Fig 1. We find that all attack
success rates grow almost linearly as we increase
modifications. ELMo and BERT perform almost
the same while InferSent grows faster at the begin-
ning and RoBERTa grows slower when reaching
the end. The average attack success rate comes to
70% when the error rate is around 20%.

5 To What Extent Models Identify
Grammatical Errors?

Our goal in this section is to assess the ability of
the pre-trained encoders in identifying grammatical
errors. We use a binary linguistic acceptability task
to test the model ability in judging the grammat-
ical correctness of a sentence. We further study
whether the model can precisely locate error posi-
tions, which reflects the token-level ability.

Data We construct separate datasets for each spe-
cific type of grammatical error. For each dataset,
we extract 10,000 sentences whose lengths fall
within 10 to 60 tokens from 1B Word Benchmark
(Chelba et al., 2014). Then, we introduce the target
error type to half of these sentences using proba-
bilistic transformation and keep the error rate over
each dataset around 3% (resulting in one or two
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Figure 2: Probing four layers of BERT on four error
types. The left side shows the accuracy of the binary
linguistic acceptability task. The right side shows the
accuracy of locating error positions. Each row repre-
sents a specific layer, and each column represents a
type of errors, ArtOrDet, Nn, SVA, Worder from
left to right. Full results are given in Appendix D

errors in each sentence). Sentences are split into
training (80%), development (10%) and test (10%).

Models We study individual layers of ELMo
(2 layers), BERT-base-uncased (12 layers) and
RoBERTa-base (12 layers). In particular, we fix
each layer and attach a trainable self-attention layer
on top of it to obtain a sentence representation. The
sentence representation is fed into a linear classifier
to output the probability of whether the sentence is
linguistically acceptable. See details about the self-
attention layer and the linear classifier in Appendix
B.3. We next extract the top two positions with
the heaviest weights from the trained self-attention
layer. If the positions with error token are included,
we consider the errors are correctly located by the
model in the token-level. This suggests whether
contextual encoders are providing enough infor-
mation for the classifier to identify error locations.
For comparisons, we also evaluate the input em-
bedding layer (non-contextualized, layer 0) of each
model as a baseline. We compute accuracy for both
sentence-level and token-level evaluations.

Results and Discussion We visualize the re-
sults of four layers of BERT on four error types,
ArtOrDet, Nn, SVA, and Worder in Fig 2.
Complete results of all layers and other error types
are in Appendix D. We find that the mean sentence-
level accuracy of the best contextual layers of
BERT, ELMo, and RoBERTa across error types
are 87.8%, 84.3%, and 90.4%, respectively, while
input embedding layers achieve 64.7%, 65.8%, and
66.0%. In token-level, despite trained only on the
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Figure 3: The accuracy of each attention head of BERT
on token-level evaluation. The grey line stands for the
best performing heads. The green line stands for the
average performance of heads in one layer.

prediction of whether a sentence is acceptable, the
mean accuracy of classifiers upon the best layers
of BERT, ELMo, and RoBERTa are 79.3%, 63.3%,
and 80.3%, compared to 48.6%, 18.7%, and 53.4%
of input embedding layers. The two facts indi-
cate that these pre-trained encoder layers possess
stronger grammatical error detecting and locating
abilities compared to input embedding layers.

We also observe patterns related to a specific
model. Specifically, middle layers (layers 7-9) of
BERT are better at identifying errors than lower
or higher layers, as shown in Fig 2. But higher
layers of BERT locate errors related to long-range
dependencies and verbs such as SVA and Vform
more accurately. To further investigate BERT’s
knowledge of error locations. We conduct the same
token-level evaluation to the 144 attention heads in
BERT. Results for Prep and SVA are visualized
in Fig 3. We find that even in a completely unsu-
pervised manner, some attention heads results for
50%-60% accuracy in locating errors. Consistent
with self-attention layers, attention heads from mid-
dle layers perform the best. See Appendix F for all
error types.

Due to space limit, we present results of
RoBERTa and ELMo in Appendix D and summa-
rize the observations in the following. RoBERTa
exhibits better ability in detecting and locating
errors in lower layers compared to BERT and
achieves the best performance in top layers (layers
10-11). It is also good at capturing verb and de-
pendency errors. On the other hand, the first layer
of ELMo consistently gives the highest sentence-
level classification accuracy. But its best perform-
ing layer in locating errors depends on the error
type and varies between the first and the second
layer. In particular, The second layer of ELMo ex-
hibits strong ability in locating Nn and outperforms
BERT in accuracy. This is surprising given the fact
that Nn is not obvious with character embeddings
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Figure 4: Probing BERT as an MLM. Each row repre-
sents a target error type. Each column represents the
distance from the error position. Each number repre-
sents the mean likelihood drop over all pairs. We find
that specific tokens are affected more by error tokens.

from layer 0 of ELMo. We further notice that for all
models, Worder is the hardest type to detect in the
sentence-level and ArtOrDet and Worder are
the hardest types to locate in the token-level. We
hypothesize this is related to the locality of these
errors which induces a weak signal for models to
identify them. Appendix E demonstrates some ex-
amples of the token-level evaluation of BERT.

6 How BERT Captures the Interaction
between Tokens When Errors Present

We aim to reveal the interaction between grammati-
cal errors and their nearby tokens through studying
the masked language model (MLM) component
of BERT. We investigate BERT as it is a typical
transformer-based encoder. Our analysis can be
extended to other models.

Experimental Settings We conduct experiments
on minimal edited pairs from NUCLE. We ex-
tract pairs with error tags ArtOrDet, Prep, Vt,
Vform, SVA, Nn, Wchoice, Trans and keep
those that only have one token changed. This gives
us eight collections of minimal edited pairs with
sizes of 586, 1525, 1817, 943, 2513, 1359, 3340,
and 452, respectively.

Given a minimal edited pair, we consider tokens
within six-token away from the error token. We
replace the same token in the grammatical and un-
grammatical sentence with [MASK] one at a time
and use BERT as an MLM to predict its likelihood.
Then we compute the likelihood drop in the un-
grammatical sentence and obtain the average drop
over all minimal edited pairs.

Results and Discussion Results are visualized in
Fig 4. In general, We find that the decrease of like-
lihood on specific positions are greater than others
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X
This would thus reduce the financial burden of this
group of people based on their income ceilings .

×
This would thus reduce the financial burden of
these group of people based on their income ceil-
ings .

burden of this (these) group of
0.01 0.09 - 0.41 0.02

X
The inexpensive fuel cost and the sheer volume
of energy produced by a nuclear reactor far out-
weighs the cost of research and development .

×
The inexpensive fuel cost and the sheer volume of
energy produced by the nuclear reactor far out-
weighs the cost of research and development .
produced by a (the) nuclear reactor

0.05 -0.02 - 0.31 0.42

Table 5: Examples with ArtOrDet. We show the min-
imal edit pairs and the likelihood decrease of each to-
ken within two tokens away from the errors. Wrong de-
terminers and their corrections are marked in red. The
heads in determiner-noun dependencies are marked in
blue. As shown in the table, the heads in determiner-
noun dependencies get the largest likelihood decrease.

in the presence of errors. Given the fact that certain
dependencies between tokens such as subject-verb
and determiner-noun dependencies are accurately
modeled by BERT as demonstrated in prior work
(Jawahar et al., 2019), we suspect that the presence
of an error token will mostly affect its neighbor-
ing tokens (both in terms of syntactic and physical
neighbors). This is consistent with our observation
in Fig 4 that in the case of SVA where a subject
is mostly the preceding token of a verb (although
agreement attractors can exist between subject and
verb), the proceeding tokens of error positions get
the largest likelihood decreases overall. In the case
of ArtOrDet where an article or a determiner can
be an indicator and a dependent of the subsequent
noun, predicting the next tokens of error positions
becomes much harder. We provide two running
examples with ArtOrDet in Table 5 to further
illustrate this point.

7 Adversarial Training

Finally, we explore a data augmentation method
based on the proposed grammatical error simula-
tions. We apply the greedy search algorithm to
introduce grammatical errors to the training exam-
ples of a target task and retrain the model on the
combination of original examples and the gener-
ated examples. We take the MRPC (Dolan and
Brockett, 2005) dataset as an example to demon-
strate the results. We augment the training set of

0.0 0.2 0.4 0.6 0.8 1.0
proportion

0.5

0.6

0.7

0.8

0.9

ac
c

Original
Corrupted

Figure 5: Results of a data augmentation defense. The
proportions indicate the amount of adversarial exam-
ples augmented to the training set compared to original
amount. The dash and solid lines show the accuracy on
corrupted and original development set with different
proportions respectively.

MRPC with different proportions of adversarial ex-
amples, fine-tune BERT on the augmented training
set and then evaluate on both the original develop-
ment set and the corrupted development set.

Results are shown in Figure 5. we find that by
adding a small number of adversarial examples,
the accuracy is recovered from 46% to 82%. As
the proportion of augmented adversarial examples
increases, the accuracy continues to increase on the
corrupted set, with negligible changes to the origi-
nal validation accuracy. This fact also demonstrates
that our simulated examples are potentially helpful
for reducing the effect of grammatical errors.

8 Conclusion

In this paper, we conducted a thorough study
to evaluate the robustness of language encoders
against grammatical errors. We proposed a novel
method to simulating grammatical errors and facili-
tating our evaluations. We studied three pre-trained
language encoders, ELMo, BERT, and RoBERTa
and concentrated on three aspects of their abili-
ties against grammatical errors: performance on
downstream tasks when confronted with noised
texts, ability in identifying errors and capturing the
interaction between tokens in the presence of er-
rors. This study shed light on understanding the
behaviors of language encoders against grammati-
cal errors and encouraged future work to enhance
the robustness of these models.
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2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 3651–3657.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is BERT really robust? natural
language attack on text classification and entailment.
CoRR, abs/1907.11932.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, Tom McCoy, Ian Tenney, Alexis Ross,
Tal Linzen, Benjamin Van Durme, Samuel R. Bow-
man, and Ellie Pavlick. 2019. Probing what differ-
ent NLP tasks teach machines about function word
comprehension. In Proceedings of the Eighth Joint

https://openreview.net/forum?id=BJh6Ztuxl
https://openreview.net/forum?id=BJh6Ztuxl
https://openreview.net/forum?id=BJh6Ztuxl
https://www.aclweb.org/anthology/D18-1316/
https://www.aclweb.org/anthology/D18-1316/
https://www.aclweb.org/anthology/E17-2004/
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://www.aclweb.org/anthology/P04-3031/
https://www.aclweb.org/anthology/P04-3031/
https://www.aclweb.org/anthology/volumes/N19-1/
https://www.aclweb.org/anthology/volumes/N19-1/
https://www.aclweb.org/anthology/volumes/N19-1/
https://www.aclweb.org/anthology/volumes/N19-1/
https://www.aclweb.org/anthology/volumes/N19-1/
https://www.aclweb.org/anthology/volumes/N19-1/
http://www.isca-speech.org/archive/interspeech_2014/i14_2635.html
http://www.isca-speech.org/archive/interspeech_2014/i14_2635.html
https://www.aclweb.org/anthology/D17-1070/
https://www.aclweb.org/anthology/D17-1070/
https://www.aclweb.org/anthology/D17-1070/
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://www.aclweb.org/anthology/W13-1703/
https://www.aclweb.org/anthology/W13-1703/
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/I05-5002/
https://www.aclweb.org/anthology/I05-5002/
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287
https://www.aclweb.org/anthology/P19-1356/
https://www.aclweb.org/anthology/P19-1356/
http://arxiv.org/abs/1907.11932
http://arxiv.org/abs/1907.11932
https://www.aclweb.org/anthology/S19-1026/
https://www.aclweb.org/anthology/S19-1026/
https://www.aclweb.org/anthology/S19-1026/


3396

Conference on Lexical and Computational Seman-
tics, *SEM@NAACL-HLT 2019, Minneapolis, MN,
USA, June 6-7, 2019, pages 235–249.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn syntax-
sensitive dependencies. TACL, 4:521–535.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Alison Lui, Antonios Anastasopoulos, and David Chi-
ang. 2018. Neural machine translation of text from
non-native speakers. CoRR, abs/1808.06267.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 1192–1202.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Or-
leans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers), pages 2227–2237.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP, RepL4NLP@ACL 2019, Florence, Italy,
August 2, 2019., pages 7–14.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In ACL 2006, 21st Interna-
tional Conference on Computational Linguistics and
44th Annual Meeting of the Association for Compu-
tational Linguistics, Proceedings of the Conference,
Sydney, Australia, 17-21 July 2006.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In Proceedings of

the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383–2392.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin.
2018. Semantically equivalent adversarial rules for
debugging nlp models. pages 856–865.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition.
CoRR, cs.CL/0306050.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2013, 18-21 October 2013, Grand Hy-
att Seattle, Seattle, Washington, USA, A meeting of
SIGDAT, a Special Interest Group of the ACL, pages
1631–1642.

Matthias Sperber, Jan Niehues, and Alex Waibel. 2017.
Toward robust neural machine translation for noisy
input sequences.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Conference of the Associ-
ation for Computational Linguistics, ACL 2019, Flo-
rence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, pages 4593–4601.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019b. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In International Con-
ference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019.

Alex Wang, Ian F. Tenney, Yada Pruksachatkun,
Katherin Yu, Jan Hula, Patrick Xia, Raghu Pappa-
gari, Shuning Jin, R. Thomas McCoy, Roma Pa-
tel, Yinghui Huang, Jason Phang, Edouard Grave,
Haokun Liu, Najoung Kim, Phu Mon Htut, Thibault
F’evry, Berlin Chen, Nikita Nangia, Anhad Mo-
hananey, Katharina Kann, Shikha Bordia, Nicolas

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://transacl.org/ojs/index.php/tacl/article/view/972
https://transacl.org/ojs/index.php/tacl/article/view/972
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1808.06267
http://arxiv.org/abs/1808.06267
https://www.aclweb.org/anthology/D18-1151/
https://www.aclweb.org/anthology/D18-1151/
https://www.aclweb.org/anthology/N18-1202/
https://www.aclweb.org/anthology/N18-1202/
https://www.aclweb.org/anthology/W19-4302/
https://www.aclweb.org/anthology/W19-4302/
https://www.aclweb.org/anthology/P06-1055/
https://www.aclweb.org/anthology/P06-1055/
https://www.aclweb.org/anthology/D16-1264/
https://www.aclweb.org/anthology/D16-1264/
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/P18-1079
http://arxiv.org/abs/cs.CL/0306050
http://arxiv.org/abs/cs.CL/0306050
https://www.aclweb.org/anthology/D13-1170/
https://www.aclweb.org/anthology/D13-1170/
https://www.aclweb.org/anthology/D13-1170/
https://www.aclweb.org/anthology/P19-1452/
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7


3397

Patry, David Benton, Ellie Pavlick, and Samuel R.
Bowman. 2019b. jiant 1.2: A software toolkit
for research on general-purpose text understanding
models. http://jiant.info/.

Alex Warstadt and Samuel R. Bowman. 2019.
Grammatical analysis of pretrained sentence en-
coders with acceptability judgments. CoRR,
abs/1901.03438.

Alex Warstadt, Yu Cao, Ioana Grosu, Wei Peng, Ha-
gen Blix, Yining Nie, Anna Alsop, Shikha Bordia,
Haokun Liu, Alicia Parrish, Sheng-Fu Wang, Jason
Phang, Anhad Mohananey, Phu Mon Htut, Paloma
Jeretic, and Samuel R. Bowman. 2019a. Investi-
gating bert’s knowledge of language: Five analysis
methods with npis. CoRR, abs/1909.02597.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R
Bowman. 2019b. Blimp: A benchmark of lin-
guistic minimal pairs for english. arXiv preprint
arXiv:1912.00582.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2018, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 1 (Long Papers), pages
1112–1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

http://jiant.info/
http://arxiv.org/abs/1901.03438
http://arxiv.org/abs/1901.03438
http://arxiv.org/abs/1909.02597
http://arxiv.org/abs/1909.02597
http://arxiv.org/abs/1909.02597
https://www.aclweb.org/anthology/N18-1101/
https://www.aclweb.org/anthology/N18-1101/


3398

A Downstream Task Details

We test on four language understanding and a se-
quence labeling datasets. Statistics of these datasets
are listed in Table 6.

MRPC The Microsoft Research Paraphrase Cor-
pus (MRPC) (Dolan and Brockett, 2005) is a para-
phrase detection task which aims to predict a binary
label for whether two sentences are semantically
equivalent.

MNLI The Multi-Genre Natural Language In-
ference Corpus (MNLI) (Williams et al., 2018) is
a broad-domain natural language inference task
to predict the relation (entailment, contradiction,
neutral) between premise and hypothesis. MNLI
contains both the matched (in-domain) and mis-
matched (cross-domain) sections.

QNLI The Question-answering NLI task (QNLI)
is recasted from the Stanford Question Answering
Dataset (Rajpurkar et al., 2016), which aims to
determine whether a context sentence contains the
answer to the question (entailment, not entailment).

SST-2 The Stanford Sentiment Treebank two-
way class split (SST-2; (Socher et al., 2013)) is
a binary classification task which assigns positive
or negative labels to movie review sentences.

CoNLL2003 - NER The shared task of CoNLL-
2003 Named Entity Recognition (NER) (Sang and
Meulder, 2003) is a token level sequence labeling
task to recognize four types of named entity: per-
sons, locations, organizations and names of miscel-
laneous entities that do not belong to the previous
three groups.

Dataset Train Dev Avg Len

MRPC 3.7k 409 22.4
MNLI 393k 19k 10.1
QNLI 105k 5.5k 27.6
SST-2 67k 873 19.5

CoNLL2003 15k 3k 14.8

Table 6: Datasets statistics of MRPC, MNLI, QNLI,
SST-2, and CoNLL2003. Train and Dev stands for the
number of sentences in the train and development set.
Avg Len stands for the average sentence length (in to-
ken) of the target sentence being attacked.

B Model Details

B.1 Pre-trained Encoder Details
We study BERT (base, uncased), BERT (base,
cased) (for NER only), RoBERTa (base), and
ELMo. BERT (base) and RoBERTa (base) have
the same architecture. Both of them are deep trans-
former models with 12 layers and 12 attention
heads, 768 hidden size in each layer. They contain
a learnable output layer for fine-tuning on [CLS]
or <s>. We use PyTorch implement of BERT and
RoBERTa from Wolf et al. (2019) and fine-tune
them on downstream tasks. For ELMo, we fix
ELMo representations as contextual embeddings
of tokens and feed them to a two-layer, 1500D BiL-
STM with cross-sentence attention mechanism as
implemented in jiant. (Wang et al., 2019b).

B.2 Training and Fine-tuning Details
For BERT and RoBERTa, we set the maximum
input length to be 128, the maximum number of
epochs to be 3, and the dropout to be 0.1 for all
tasks. We use Adam (Kingma and Ba, 2015) with
an initial learning rate of 2e-5, batch size 16 and
no warm-up steps for training. For ELMo, we train
the BiLSTM using Adam (Kingma and Ba, 2015)
with an initial learning rate of 1e-4, batch size 32.
We set the dropout to be 0.2, the maximum number
of epochs to be 10 and divide the learning rate by
5 when the performance does not improve for 2
epochs.

B.3 Probing model Details
We use a self-attention layer and a linear classifier
to compose the probing component in section 5.
The self-attention layer takes as input the hidden
representations from the fixed layer i of an encoder,
denoted as h = {hi1, hi2, ..., hin} and outputs a sen-
tence representation si:

si = Σn
j=1αjh

i
j (1)

αj = softmax(vTb tanh(Wah
i
j)) (2)

where Wa is a weight matrix and vb is a vector
of parameters. si is fed to the classifier to output
the probability of the sentence being linguistically
acceptable. The self-attention layer has a hidden
dim of 100 and 0.1 dropout. The classifier has 1
layer and 0.1 dropout. The probing model is trained
with Adam (Kingma and Ba, 2015) using a learning
rate of 0.001, batch size of 8 , L2 weight decay of
0.001 for 10 epochs and early stop patience of 2.
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C Attack Algorithms

We conduct three searching algorithms, greedy
search, beam search, genetic algorithm in adver-
sarial attacks based on the real errors on NUCLE
(Dahlmeier et al., 2013). For beam search, we set
the beam size as 5. For genetic algorithm, we set
the population in each generation to be 60 and set
the maximum number of generations to be 23% of
the corresponding sentence length. For example, if
a sentence has 100 tokens, the genetic algorithm
will iterate for at most 23 iterations. Algorithm 1,
2 and 3 are detailed descriptions of greedy attack,
beam search attack, and genetic algorithm attack,
respectively.

D Probing Model Ability in Identifying
Errors

D.1 The Sentence-level Binary Classification
Task

Table 7 shows complete results for probing individ-
ual layers of ELMo, BERT, and RoBERTa across
eight error types in the sentence-level binary classi-
fication task. We fix the parameters of pre-trained
encoders and train a self-attention classifier for
each layer to judge the binary linguistic accept-
ability of a sentence. We find that layer 1 of ELMo,
middle layers of BERT, and top layers of RoBERTa
perform the best in this evaluation.

D.2 The Token-level Error Locating Task

Table 8 shows complete results for probing individ-
ual layers of ELMo, BERT, and RoBERTa across
eight error types in the token-level. We first fix
the parameters of pre-trained encoders and train a
self-attention classifier for each layer to judge the
binary linguistic acceptability of a sentence. Then,
we extract the two positions with the highest atten-
tion weights of self-attention layers and see if error
tokens are included.

E Case Study of Locating Error
Positions

We show some examples of the token-level evalu-
ation in section 5. We randomly select one exam-
ple for each error type and visualize the attention
weights of the self-attention layer upon different
layers of BERT. A deeper purple under each to-
ken means the self-attention layer is putting more
attention on this token.

Algorithm 1 Greedy attack
10cm
Input: Original sentence Xori = {w1, w2, ..., wn}, ground
truth prediction Yori, target model F , all confusion sets P ,
budget b.
Output: Adversarial example Xadv .
1: Initialization: Xadv ← Xori

2: for each wi in Xori do
3: Delete wi and compute the drop of likelihood on Yori

to obtain the importance score of wi, denoted as Swi .
4: Apply all substitutions of P to wi. Obtain the

operation pool of wi, denoted as W sub
i .

5: end for
6:
7: Get the index list of Xori according to the decrease order

of token importance: I ← argsortwi∈Xori(Swi)
8: for each i in I do
9: pori ← F (Xadv)|Y =Yori

10: for each w
′

in W sub
i do

11: Substitute wi with w
′

in Xadv (or swap their
positions),

12: Yadv ← argmaxF (Xadv),
padv ← F (Xadv)|Y =Yori

13: if not Yori = Yadv then return Xadv

14: else
15: if padv < pori then
16: wselect ← w

′
, pori ← padv

17: end if
18: end if
19: end for
20: if the number of iterations exceed b then return Xori

21: end if
22: Substitute wi with wselect in Xadv ,
23: end for
24: return Xori

F The Token-level Evaluation on
Attention Heads of BERT

As mentioned in section 5. We also conduct the
same token-level probing to 144 attention heads of
BERT. In this experiment, the parameters in BERT
are completely frozen. We observe that even in this
unsupervised manner, some attention heads are still
capable of precisely locating error positions. Mid-
dle layers of BERT perform the best. We further
observe that some attention heads might be asso-
ciated with specific types of errors. For example,
head 2 in layer 9 and head 6 in layer 10 are good
at capturing SVA and Vform. Both of these two
errors are related to verbs.
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Algorithm 2 Beam search attack
Input: Original sentence Xori = {w1, w2, ..., wn}, ground
truth prediction Yori, target model F , all confusion sets P ,
budget b, beam size bm.
Output: Adversarial example Xadv .
1: Initialization: bestBeam← copy Xori for bm times.
2: for each wi in Xori do
3: Delete wi and compute the drop of likelihood on Yori

to obtain the importance score of wi, denoted as Swi .
4: Apply all substitutions of P to wi. Obtain the

operation pool of wi, denoted as W sub
i .

5: end for
6:
7: Get the index list of Xori according to the decrease order

of token importance: I ← argsortwi∈Xori(Swi)

8: for each w
′

in W sub
I[0] do

9: Substitute wi with w
′

in Xori (or swap their
positions)

10: Yadv ← argmaxF (Xori),
padv ← F (Xori)|Y =Yori

11: if not Yori = Yadv then return Xori

12: else
13: topBeam← Record top-bm examples with the

lowest padv
14: end if
15: end for
16:
17: bestBeam← topBeam
18: for each i in I/I[0] do
19: pori ← F (Xadv)|Y =Yori

20: oplist← {}
21: for each Xbeam in bestBeam do
22: for each w

′
in W sub

i do
23: Substitute wi with w

′
in Xbeam (or swap their

positions)
24: Yadv ← argmaxF (Xbeam),

padv ← F (Xbeam)|Y =Yori

25: if not Yori = Yadv then return Xbeam

26: else
27: Add op← (w

′
, padv, Xbeam) to oplist

28: end if
29: end for
30: end for
31: if number of iterations exceed b then return Xori

32: end if
33: Select the top-bm ops in oplist with lowest op.padv .

Update bestBeam with each op.Xbeam.
34: end for
35: return Xori

Algorithm 3 Genetic attack
Input: Original sentence Xori = {w1, w2, ..., wn}, ground
truth prediction Yori, target model F , all confusion sets P ,
budget b, population size ps, generation size G.
Output: Adversarial example Xadv .
1: Initialize the first generation with empty set: P 0 ← ∅.
2: for each wi in Xori do
3: Apply all substitutions of P to wi. Obtain the

operation pool of wi, denoted as W sub
i .

4: end for
5: for i = 1, 2, 3, ..., ps do
6: Randomly select a position j and an operation from

W sub
j to modify Xori. Then add to P 0.

7: end for
8:
9: for g = 1, 2, 3, ..., G− 1 do

10: for i = 1, 2, 3, ..., ps do
11: Yadv ← argmaxF (P g−1

i ),
padv ← F (P g−1

i )|Y =Yori

12: if not Yadv = Yori then return P g−1
i

13: else
14: Xelite ← argmin(padv)
15: P g

1 ← {Xelite}
16: prob← Normalize sample probability with

F (P g−1
i )

17: for i = 2, 3, ..., ps do
18: Sample parent1 from P g−1 with probs

prob
19: Sample parent2 from P g−1 with probs

prob
20: child← Crossover(parent1, parent2)
21: childmut ← Randomly select a position

and an operation from W sub
j to modify

child
22: P g

i ← childmut

23: end for
24: end if
25: end for
26: end for
27: return Xori
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Prep Artordet Vform Nn Wchoice Trans SVA Worder
ELMo, layer 0 62.6 65.0 69.6 67.7 74.5 67.5 72.1 47.6
ELMo, layer 1 90.6 84.7 87.2 82.9 83.9 80.6 93.1 71.2
ELMo, layer 2 84.7 77.0 79.4 79.7 82.6 74.4 89.9 68.5

BERT, layer 0 62.5 60.8 67.4 64.6 73.9 69.5 70.3 48.2
BERT, layer 1 68.0 63.4 69.3 70.3 75.0 71.5 78.4 52.2
BERT, layer 2 74.4 67.0 75.3 74.8 76.7 73.1 84.4 62.0
BERT, layer 3 80.5 75.0 83.4 73.7 78.5 76.3 89.2 69.8
BERT, layer 4 82.7 80.7 83.6 77.7 82.6 79.6 90.6 72.4
BERT, layer 5 85.2 83.8 85.4 84.3 84.5 81.8 91.7 71.9
BERT, layer 6 88.2 86.6 85.8 86.7 84.5 82.6 90.9 73.4
BERT, layer 7 91.3 88.1 90.2 86.5 86.9 83.9 95.3 73.4
BERT, layer 8 92.5 88.3 91.4 88.4 86.3 85.5 94.5 73.8
BERT, layer 9 91.4 86.3 89.9 87.4 85.6 84.9 94.4 72.4

BERT, layer 10 90.8 87.4 88.2 87.0 86.1 84.8 94.9 71.8
BERT, layer 11 90.0 84.9 88.1 86.6 85.6 84.3 94.2 69.5
BERT, layer 12 88.4 85.6 88.1 84.3 84.0 82.6 93.3 68.1

RoBERTa, layer 0 61.9 65.9 69.7 67.1 75.1 69.1 68.3 50.9
RoBERTa, layer 1 78.3 74.7 84.6 77.6 80.2 75.9 88.4 67.8
RoBERTa, layer 2 85.2 79.4 88.7 83.0 83.3 78.8 90.9 71.8
RoBERTa, layer 3 89.3 85.7 90.6 86.9 87.0 84.1 94.3 72.6
RoBERTa, layer 4 90.2 88.7 91.8 88.7 86.2 86.4 94.5 74.5
RoBERTa, layer 5 91.4 89.1 92.9 90.5 89.0 87.1 95.5 74.5
RoBERTa, layer 6 93.4 91.3 91.9 91.4 88.9 86.8 95.0 75.3
RoBERTa, layer 7 93.9 90.5 91.8 90.4 88.2 86.9 94.6 74.7
RoBERTa, layer 8 93.9 91.1 93.4 92.3 88.0 87.2 94.4 75.9
RoBERTa, layer 9 94.3 90.6 92.5 92.1 89.4 88.0 95.7 74.7

RoBERTa, layer 10 94.4 92.0 93.3 92.3 89.9 88.1 95.0 75.1
RoBERTa, layer 11 95.3 91.5 93.3 89.4 88.8 88.2 95.2 76.0
RoBERTa, layer 12 94.5 91.1 92.7 88.3 87.3 87.9 95.3 74.8

Table 7: Results of the accuracy on the binary linguistic acceptability probing task for individual layers of ELMo,
BERT, and RoBERTa.

Prep Artordet Vform Nn Wchoice Trans SVA Worder
ELMo, layer 0 23.2 14.3 22.3 9.8 21.8 10.2 18.4 29.6
ELMo, layer 1 56.5 42.6 51.8 82.0 72.0 69.4 30.6 55.1
ELMo, layer 2 68.0 34.2 55.4 85.9 73.0 42.8 49.2 62.7
BERT, layer 0 24.1 39.1 66.7 58.7 62.3 56.4 63.6 17.5
BERT, layer 1 56.6 33.9 66.9 59.3 69.4 71.1 54.4 13.1
BERT, layer 2 58.7 27.4 75.8 58.4 76.3 83.3 60.0 34.1
BERT, layer 3 64.5 55.2 56.2 62.4 79.3 83.0 64.2 67.8
BERT, layer 4 68.9 54.1 69.2 62.9 81.7 66.0 67.3 59.7
BERT, layer 5 67.4 52.4 76.9 60.8 83.8 80.7 62.2 62.3
BERT, layer 6 68.2 51.5 76.5 58.7 84.9 83.9 71.7 66.9
BERT, layer 7 70.4 52.3 93.0 61.8 82.8 81.9 61.3 61.2
BERT, layer 8 69.9 51.7 93.0 65.4 80.2 80.2 60.9 63.9
BERT, layer 9 71.7 48.0 91.6 85.3 84.9 79.6 59.6 62.2

BERT, layer 10 70.7 50.4 90.5 80.5 82.3 78.2 92.4 58.7
BERT, layer 11 70.1 49.2 96.3 80.5 81.0 80.7 90.5 60.3
BERT, layer 12 71.4 50.5 86.7 79.8 79.1 81.6 93.2 58.8

RoBERTa, layer 0 44.8 26.5 74.8 62.8 71.3 71.1 61.7 14.3
RoBERTa, layer 1 68.3 12.1 90.7 62.5 80.9 75.9 93.5 48.9
RoBERTa, layer 2 69.9 35.3 71.0 61.9 83.9 84.1 60.5 58.2
RoBERTa, layer 3 71.9 54.4 92.2 60.7 85.5 84.4 96.2 59.3
RoBERTa, layer 4 71.2 48.9 92.0 83.3 85.6 85.3 95.9 60.8
RoBERTa, layer 5 71.9 53.6 92.5 84.9 88.5 83.9 95.3 61.2
RoBERTa, layer 6 70.2 52.9 92.5 87.0 87.3 83.9 95.7 59.0
RoBERTa, layer 7 70.6 50.6 92.1 87.8 87.2 83.9 94.8 58.4
RoBERTa, layer 8 71.6 51.5 92.2 89.5 87.0 79.6 95.2 58.8
RoBERTa, layer 9 71.3 53.2 91.9 87.7 86.7 81.3 95.8 61.1

RoBERTa, layer 10 69.6 50.3 92.8 86.8 87.1 78.8 96.0 64.2
RoBERTa, layer 11 69.3 49.6 92.7 88.4 86.5 75.6 95.5 62.0
RoBERTa, layer 12 69.6 48.9 90.1 86.8 84.9 79.6 94.1 62.8

Table 8: Results of the accuracy on locating error positions for individual layers of ELMo, BERT, and RoBERTa.
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Figure 6: Visualization of attention weights of self-attention layers. A figure represents a sentence with a specific
error type. Errors in a sentence are highlighted in red. Each column represents one layer of BERT that the self-
attention layer is build upon.
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Figure 7: Visualization for each attention head of BERT for locating each type of error. A point in the figure
represents the performance of an attention head. The grey line on the top represents the best performing head in
each layer (annotated with its number). The green line in the middle represents the average performance of all
heads in this layer.


