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Abstract

Previous works that integrated news articles to
better process stock prices used a variety of
neural networks to predict price movements.
The textual and price information were both
encoded in the neural network, and it is there-
fore difficult to apply this approach in situa-
tions other than the original framework of the
notoriously hard problem of price prediction.
In contrast, this paper presents a method to en-
code the influence of news articles through a
vector representation of stocks called a stock
embedding. The stock embedding is acquired
with a deep learning framework using both
news articles and price history. Because the
embedding takes the operational form of a vec-
tor, it is applicable to other financial problems
besides price prediction. As one example ap-
plication, we show the results of portfolio op-
timization using Reuters & Bloomberg head-
lines, producing a capital gain 2.8 times larger
than that obtained with a baseline method us-
ing only stock price data. This suggests that
the proposed stock embedding can leverage
textual financial semantics to solve financial
prediction problems.

1 Introduction

News articles influence the dynamics of financial
markets. For example, after the release of breaking
news, the share prices of related stocks are often
observed to move. This suggests the possibility
of using natural language processing (NLP) to aid
traders by analyzing this influence between news
article texts and prices.

Recent studies (Ding et al., 2015; Hu et al., 2018;
Chen et al., 2019; Yang et al., 2018) have indeed
reported that news articles can be leveraged to im-
prove the accuracy of predicting stock price move-
ments. These previous works have used deep learn-
ing techniques. They train neural networks with
article texts and financial market prices, attempting

to improve price prediction. In these approaches,
the overall mutual effect between texts and prices
is distributed over the neural network, which makes
it difficult to extract this effect and apply it to tasks
other than price prediction.

Therefore, we take a new approach by explicitly
describing this mutual effect in terms of a vector.
A stock is represented by a vector so that its inner
product with an embedding of a text produces a
larger value when the text is more related to the
stock. In the rest of the paper, we call this vector a
stock embedding.

The names of stocks, such as “AAPL” (the ticker
symbol for Apple Inc.), typically appear in a fi-
nancial news article text. Because these names
form part of the text, usual NLP techniques can
be applied to acquire an embedding of a stock.
Such general textual embedding, however, does
not incorporate the financial reality of stock price
changes. Hence, the proposed stock embedding
represents the price as well as the semantics of
the text, as we acquire it by training on both news
articles and stock prices. Precisely, our stock em-
bedding is trained through a binary classification
problem, namely, whether a stock price goes up or
down in comparison with the previous day’s price.
As a result, an acquired stock embedding captures
the relation between a stock name and a news arti-
cle even when the article has no direct mention of
the stock. Our stock embedding can be considered
as one technique to specialize, or ground, a symbol
that has a practical reality outside of text.

Furthermore, two major advantages come with
the vector form of our stock embedding. The first
is that the training can be effectuated for all stocks
at once, rather than stock by stock. This is an
important advantage to alleviate data sparseness
and prevent overfitting, as discussed in Section 4.

The second advantage lies in the portability of
a vector. In contrast to previous works, in which
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stock-specific information was distributed among
the parameters of a neural network, a vector rep-
resenting all the characteristics of a stock is much
easier to extract and apply to other uses besides
price prediction.

Hence, this paper shows an example of portfolio
optimization, one of the most important applica-
tions in finance. To the best of our knowledge, this
is the first report of incorporating NLP into modern
portfolio theory (Markowitz, 1952). Our method
differs from previous works that used NLP to en-
hance investment strategies. Many previous works
focused on stock price forecasting only (Ding et al.,
2015; Hu et al., 2018) and did not attempt to apply
the learned results to other financial tasks. Another
previous work (Song et al., 2017) investigated port-
folios with texts. It obtained a ranking of stocks
from texts by using a neural network technique
and then evaluated investment in the highest/lowest
ranked stocks. That work was not based on modern
portfolio theory, however, nor did it integrate price
and text data. In contrast, our method uses NLP
in addition to price data to acquire a general repre-
sentation in the form of an embedding applicable
to different targets. In our experiments, a portfolio
generated using stock embeddings achieved an an-
nual gain 2.8 times greater than that of a portfolio
generated with price data only. This provides evi-
dence that the stock embedding well encodes both
text and price information.

2 Related Work

The main idea of this article is based on important
techniques of NLP. It is now common to repre-
sent discrete entities in natural language by con-
tinuous vectors. These vectors are called “embed-
dings” and usually obtained from neural network
models. Examples include the word embedding
(Mikolov et al., 2013), phrase embedding (Zhang
et al., 2014), sentence embedding (Lin et al., 2017),
and event embedding (Ding et al., 2016).

One advantage of these continuous representa-
tions is that the geometry of an embedding system
contains rich semantic information, as has been dis-
covered at many levels (Mikolov et al., 2013; Reif
et al., 2019). The acquisition of stock embeddings
in this paper is based on the original idea developed
for linguistic entities. Here, we extend the idea fur-
ther so that the embeddings reflect the reality of a
stock market outside text.

A stock embedding is trained using the attention

mechanism (Bahdanau et al., 2015), which is an-
other current NLP technique. The basic idea of the
original attention mechanism is to assign higher
weights to more relevant word vectors and make
the weights adaptive to different contexts.

Our framework is based on the classification
task for text-driven stock price movement, which
has been studied intensely as follows. Early re-
search on exploiting financial news articles for bet-
ter stock price prediction dates back to Ou and Pen-
man (1989), in which financial indicators were ex-
tracted manually from financial statements. Later,
in Fung et al. (2002), NLP methods were adopted
for automatic text feature extraction. Since the
2000s, Twitter and other text-centered social media
platforms have become essential sources of finan-
cial signals. Bollen et al. (2011) found evidence for
causality between the public mood extracted from
tweets and the Dow Jones Industrial Average index.
In Nguyen et al. (2015), post texts collected from
the Yahoo! Finance Message Board were used to
predict whether the prices of 18 US stocks would
rise or drop on the next trading day.

As deep learning methods for NLP have become
more common, many papers have reported the use
of neural networks for text-driven stock classifi-
cation (or prediction) tasks. Ding et al. (2015)
proposed an event embedding to represent a news
headline with a vector and used a convolutional
neural network for classification. In that work, all
the event embeddings of news articles published on
the same day were simply averaged to summarize
that day’s market information.

Hu et al. (2018) was among the first works
that applied the attention mechanism to the task
of news-driven stock price movement classifica-
tion. They developed a dual-level attention frame-
work, in which news articles were assigned differ-
ent weights depending on the output of a logistic
regression component with a bias term, so that the
most informative news articles were “highlighted.”
The method of weighting news articles in this paper
is similar to that previous work. The stock-specific
information in Hu et al. (2018) was encoded in
the neural network, however, making it focused on
the price prediction task. In contrast, we represent
such stock-specific information by the stock em-
bedding, i.e., a vector, which is easy to interpret
geometrically and extract for other applications.

For one such application, we evaluated our stock
embedding in terms of portfolio optimization. To
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the best of our knowledge, this is the first paper
applying NLP techniques to modern portfolio the-
ory. We use the mean-variance minimization port-
folio model (introduced in Section 7) proposed in
Markowitz (1952), which directly led to the capital
asset pricing model (Sharpe, 1964).

3 News-Driven Stock Price Classification

In this paper, the stock embedding is trained with a
deep learning system through binary classification
of price movements. Let pt be the stock price on
day t, and let yt be the desired output of the system.
Here, t ∈ {1, 2, . . . , T}, and T is the number of
trading days in the considered time period. The
binary classification problem indicates that yt is
classified in the following way:

yt =

{
1, pt ≥ pt−1
0, pt < pt−1.

(1)

To train such a deep learning system, news ar-
ticles are used as the input. In this work, news
articles are considered daily (i.e., treated in units
of days). We denote the set of articles published
on day t by Nt, and each article by ni ∈ Nt, with
i = 1, . . . , |Nt|. This paper considers a time win-
dow around day t, denoted as [t− d1, t+ d2] given
two constants d1, d2. Let N[t−d1,t+d2] be the set of
news articles published within the time window.

When d2 = −1, indicating the use of articles
until day t− 1, the task is called prediction, as the
training does not use any articles published on or
after day t. In general, this task is acknowledged
as very hard (Fama, 1970; Basu, 1977; Timmer-
mann and Granger, 2004) according to the efficient-
market hypothesis (EMH)1, and such prediction
provides only a limited gain, if any. Note that pre-
vious NLP studies concerning stock prices were
all aimed at this hard problem (Ding et al., 2015;
Hu et al., 2018; Xu and Cohen, 2018; Yang et al.,
2018).

On the other hand, when d2 ≥ 0, this paper
refers to the task as classification. The performance
on classification shows how well the model under-
stands a news article. Because the prediction prob-
lem is too hard and offers limited gain, as proven
by many previous works, our target lies in classifi-
cation. The aims are thus to acquire embeddings
that are highly sensitive to textual context and to

1According to the EMH, in an “efficient” market, prices
reflect the true values of assets by having incorporated all past
information, so nobody can predict the price. The EMH is
hypothesized to hold but has also attracted criticism.

apply them to tasks other than price prediction.
Therefore, in this paper, we set d1 = 4 and d2 = 0.

Let the classification model be represented by
a mapping f . The probability that the price of a
stock j, where j = 1, . . . , J , goes up on day t is

ŷjt = f
(
N[t−4,t]

)
. (2)

In the process of model optimization, the model
should reduce the mean cross-entropy loss between
every true label yjt and its corresponding estimate
ŷjt , as follows:

lj = − 1

T

T∑
t=1

(
yjt log ŷjt + (1− yjt ) log(1− ŷjt )

)
.

This function describes the loss for only one stock,
but a stock market includes multiple stocks. This
work considers all stocks in a market equally impor-
tant. The overall loss function is therefore a simple
average of the cross-entropy loss for all stocks, i.e.,
l = (

∑J
j=1 l

j)/J .

4 Method to Acquire Stock Embeddings

Let sj represent a stock embedding, where j =
1, 2, ..., J . This is initialized as a random vector
and then trained via a neural model to obtain sj ,
whose inner product with the embedding of a re-
lated text becomes large. This section describes the
proposed method to acquire stock embeddings by
building up a neural network for price movement
classification.

The neural network consists of two parts: a text
feature distiller and a price movement classifier.

Text feature distiller. The text feature distiller
first converts every news article ni into a pair of vec-
tors (nKi , n

V
i ) corresponding to “key” and “value”

vectors, respectively. Let NK
t = {nKi }t, NV

t =
{nVi }t denote the sets of key/value vectors of the
articles released on day t. Such dual-vector repre-
sentation of a text was proposed and adopted suc-
cessfully in Miller et al. (2016) and Daniluk et al.
(2017). The pair of vectors contains the semantic
information of the article text at two different lev-
els. Roughly, nKi represents the article at the word
level, whereas nVi represents it at the context level.

The text feature distiller calculates the attention
score for every article i published on day t. The at-
tention score between article i and stock j is given
by the inner product of the two vectors nKi and sj :

scorei,j = nKi · sj .
Note that there are other possible definitions of
this inner product, such as the cosine similarity or
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a generalized inner product using some arbitrary
function. Because this work focuses on the most
basic capability of the stock embedding, it uses the
most basic inner product (i.e., the dot product).

Let αji denote the weight put on news article i
with respect to stock j, to classify whether the stock
price will go up or down. With the use of scorei,j
defined above, αji is given as the following:

αji ≡
exp(scorei,j)∑
i′ exp(scorei′,j)

.

αji is thus acquired as the softmax function of the
scores across the articles released on the same day.

By using αji as the weights put on news articles,
we compute the market status of stock j on day t
as the following, which is the input to the classifier:

mj
t =

∑
nV
i ∈NV

t

αjin
V
i . (3)

Therefore, mj
t is computed over a set of nVi , rep-

resenting the context of texts on day t. We call
mj
t the market vector, to which we will return in

Section 6.

Price movement classifier. The input of the
price movement classifier is a sequence of vectors,
M j

[t−4,t] = [mj
t−4,m

j
t−3, . . . ,m

j
t ], with respect to

stock j. This is processed by a recurrent neural
network using a bidirectional gated recurrent unit
(Bi-GRU). The choice of a Bi-GRU was made by
considering the model capacity and training diffi-
culty. The classifier estimates the probability ŷjt :

hOt = GRU(M j
[t−4,t]),

ŷjt = σ(MLP(hOt )),
(4)

where σ(x) = 1/(1 + exp(−x)), and GRU and
MLP stand for the Bi-GRU and a multilayer per-
ceptron, respectively. An optional re-weighting
technique over the GRU’s output vectors hOτ (τ ∈
[t − 4, t]) (Hu et al., 2018) can be applied. In
this case, after the first line of formula (4), the
re-weighting is conducted in the following way:

hO =
t∑

τ=t−4
βτh

O
τ ,

and this hO becomes the input of the second line
instead of hOt . Here, βτ , the weight for day τ ,
decides how much one day is considered in the
classification. In our implementation,

βτ =
exp(vτ−t · hOτ )∑0
ξ=−4 exp(vξ · hOt+ξ)

,

where the vector vξ differentiates the temporal ef-
fects of news articles released around day t. vξ

Figure 1: Illustration of the classifier sharing mecha-
nism across stocks on day t: (a) one independent clas-
sifier per stock, and (b) a shared classifier across stocks.
|Nt| denotes the number of news articles on day t.

is initialized randomly and trained via the neural
network. See Hu et al. (2018) for the details.

Such formulation of neural network training has
the advantage of avoiding overfitting. A common
problem in the task of stock movement classifica-
tion or prediction is small sample sizes, especially
when adopting units of days. In contrast, the pro-
posed model does not suffer from small sample
sizes, because the price movement classifier can be
trained across all the stocks by sharing one clas-
sifier, rather than by generating one classifier for
each individual stock like in many previous works
(Ding et al., 2015; Hu et al., 2018; Xu and Cohen,
2018). We call this a classifier sharing mechanism.

Figure 1 illustrates the difference between mod-
els with and without classifier sharing. The upper
figure (a) shows the conventional setting without
sharing, in which J classifiers are generated, one
for each stock. In contrast, the lower figure (b)
shows one classifier generated for all stocks. This
setting enables learning of the correlation among
stocks, in addition to avoiding overfitting and the
problem of small sample sizes. Specifically, the
classifier is shared across all stocks, thus achieving
a sample size about 50 to 100 times larger.

5 Dataset and Settings to Acquire Stock
Embeddings

5.1 Dataset

We used two news article datasets to build stock
embeddings: the Wall Street Journal (WSJ, in the
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Dataset Period # of articles # of days /
trading days

Mean # of artic-
les per day (std)

Mean # of words
per article (std)

Wall Street Journal (WSJ) 2000/01-2015/12 403, 207 5, 649/4, 008 71.4 (41.1) 28.5 (9.0)
Reuters & Bloomberg (R&B) 2006/10-2013/11 551, 479 2, 605/1, 794 211.7 (257.1) 9.34 (1.73)

Table 1: Basic information on the two news article datasets.

following) dataset and the Reuters & Bloomberg
(R&B) dataset2, as listed in Table 1. WSJ contains
around 400,000 news headlines published across
16 years, whereas R&B contains around 550,000
articles across 7 years. Compared with R&B, WSJ
has a relatively more uniform distribution of news
articles across time (see the standard deviations
listed in parentheses in the fifth column of Table
1). Following previous studies reporting that the
main body of a news text produces irrelevant noise
(Ding et al., 2015), we extracted only the headlines
in both datasets.

As for the stocks, we selected two subsets of
the stocks in Standard & Poor’s S&P 500 index,
one for each of the WSJ and R&B datasets. These
subsets consisted only of stocks that were men-
tioned in no fewer than 100 different news arti-
cles, so that mutual effects between the articles and
the price history would appear pretty often in the
texts. More importantly, this ensured that keyword
retrieval-based methods that locate related articles
by explicit keyword matching could be applied for
comparison. For the WSJ and R&B datasets, the
subsets had 89 and 50 stocks, respectively. All
other stocks were removed from consideration.

As seen in formula (2), the input for the neural
network is N[t−4,t], the set of articles around day t,
and the output is yjt . The label yjt is the binarized
price movement of stock j at day t. This is mea-
sured by the log-return between two subsequent
days:

log returnjt = log pjt − log pjt−1.

The distribution of log-returns is typically bell
shaped with a center close to 0, as also mentioned
in Hu et al. (2018). The return values of the days
were separated into three categories of “negative,”
“ambiguous,” and “positive” by the use of thresh-
olds3. Here, “ambiguous” refers to those samples
close to 0.0, which were removed. Thus, by us-
ing only the clearly negative and positive days, the
returns were binarized.

2This dataset was made open source in Ding et al. (2015).
3We used the thresholds [−0.0053, 0.0079] for the WSJ

dataset and [−0.0059, 0.0068] for the R&B dataset. The mar-
gins were asymmetric around 0 because these datasets had
slightly more “rising” days than “declining” ones.

Through such filtering, the number of samples
for each stock became about two-thirds of the num-
ber of all trading days, or around4 2600 and 1200
samples for each stock, for the WSJ and R&B
datasets, respectively.

5.2 Deep Learner System Settings

The Adam optimizer (Kingma and Ba, 2015) was
used with cosine annealing (Loshchilov and Hutter,
2017) to train the neural network. The initial learn-
ing rate was set to 5e-4. The mini-batch size was
64. We stopped the training process when the value
of the loss function with respect to the validation
set no longer dropped, and then we measured the
accuracy on the test set for evaluation.

As for the dual-vector representation of news
article texts, introduced in Section 4, the key and
value vectors were calculated as described here.
The key vector nKi is defined as follows5 by using
word embeddings wk acquired by Word2vec:

nKi =

∑
k γkwk∑
k γk

,

where γk = TFk · IDFk is the TFIDF (Manning
and Schütze, 2001) score of word k. The dimension
of nKi equals that of the Word2vec model trained
on the news corpus, i.e., 64 in our implementation.

As for the value vector nVi , we used vectors ac-
quired through a BERT encoder6. We used the
pretrained BERT model available from Google Re-
search, with 24 layers trained on an uncased corpus.
This model outputs vectors of 1024 dimensions, but
we reduced the dimensions to 256 by using prin-
cipal component analysis (PCA), to suppress the
number of parameters in the neural network. Along
with the effect of the stock embedding, the effect
of the dual-vector representation (DVR) is also

4The number of samples after filtering differed slightly
among stocks, because the distribution of log-returns differed,
while the same thresholds were used.

5We chose this method after examining several options,
including the smooth inverse frequency (SIF) (Arora et al.,
2017), TFIDF-weighted word embeddings, and several other
methods. We found that TFIDF-weighted word embeddings
with Word2vec worked best.

6BERT (Bidirectional Encoder Representations from
Transformer) is a neural network model (Devlin et al., 2019)
that can be used to encode text into vectors with a fixed di-
mension.
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evaluated in the following section.

6 Effect of Stock Embedding on Price
Movement Classification

The basic effect of the stock embedding was eval-
uated through the performance on the price move-
ment classification task, as stated in Section 3.

The whole dataset described in Section 5.1
was randomly divided into nonoverlapping train-
ing/validation/test sets in the ratios of 0.6/0.2/0.2.
The training/validation/test parts did not share any
samples from the same dates. Every method below
was tested for 10 different random divisions, and
the average performance is reported here.

The proposed model is abbreviated as
WA+CS+DVR, for weighted average with classi-
fier sharing and dual-vector representation. For an
ablation test, four models were considered, which
varied the market vector of the day (defined in
formula (3) in Section 4 (Ding et al., 2015)) and
were with or without the dual-vector representation
and classifier sharing (Ding et al., 2015; Hu et al.,
2018; Xu and Cohen, 2018; Yang et al., 2018), as
follows.

Simple average: The simple average of the text
representations of the same day is taken as the
market vector of the day, as proposed by Ding
et al. (2015).

Weighted average (WA): As stated in formula
(3), the market vector of the day is averaged
by using the weights from the stock-text in-
ner products, as proposed in Hu et al. (2018).
Note again that their work did not apply classi-
fier sharing but instead produced one classifier
for each stock, nor did it adopt the dual-vector
representation.

WA + classifier sharing (CS): This refers to WA
with classifier sharing across stocks. This vari-
ant does not adopt the dual-vector representa-
tion, i.e., nKi is set equal to nVi for every news
article i. Thus, the same BERT text embed-
ding is used for both nKi and nVi .

WA + dual-vector representation (DVR): This
refers to WA with the dual-vector represen-
tation of news texts. This variant does not
adopt classifier sharing.

Furthermore, to examine the effect of the data
size, we tested different dataset portions: 1 year,
3 years, and the whole dataset. Therefore, the ex-
perimental variants involved five methods (four

comparison + our proposal) and three data sizes, or
a total of 15 experiments.

Figure 2 summarizes the complete experimen-
tal results. The uppermost bar of each bar group,
in red, corresponds to our model with classifier
sharing (CS) and the dual-vector representation
(DVR). The other bars, in orange, blue, purple, and
green, correspond to the four ablation variants. The
ablation datasets with only 1-year data contained
around 150 training samples and were too small
for most variants to work well, yet our proposed
model, WA+CS+DVR, could still obtain positive
results (classification accuracy over 50%). With the
3-year datasets, our WA+CS+DVR model widened
the performance gap, whereas the simple average
and weighted average models still failed to work
better than random guessing. These results show
the superiority of our model in handling the over-
fitting problem with small datasets.

Finally, the significant differences between
WA+CS+DVR (in red) and WA+CS (in blue) and
between WA+DVR (in orange) and WA (in purple)
strongly supported the advantage of adopting the
dual-vector representation (DVR), especially when
classifier sharing was combined.

Overall, our model successfully achieved 68.8%
accuracy for the R&B dataset, which was signifi-
cantly better than any of the other four variants.

7 Portfolio Optimization

Thus far, the evaluation on classification has shown
the capability of our framework in understanding
news articles. For financial applications, however,
the task must be in the form of prediction; that is,
it must produce some gain ahead of the time when
a news article is published. As one such predictive
example, we present portfolio optimization, one of
the most important financial tasks, and we show
how our stock embedding can be applied to it.

A portfolio is essentially a set of weights as-
signed to stocks, representing the proportions of
capital invested in them. Intuitively, a portfolio
bears a bigger risk if a large proportion is in-
vested in two highly positively correlated stocks,
rather than two uncorrelated or negatively corre-
lated stocks. Based on this idea, the mean-variance
minimization model in Markowitz (1952) is formu-
lated as follows:

min
w

risk = wTΣw (5a)

subject to wT r = E, (5b)
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Figure 2: Mean classification accuracy percentages (with SD in parentheses) over 10 replications.

wT1 = 1, (5c)

0 ≤ wj ≤ 1 j = 1, ..., J, (5d)

where Σ is the risk matrix; w is the vector of
investment weights; r is a vector such that rj equals
the mean historic return of stock j; 1 is a vector
of ones; and E, the expected portfolio return, is
a parameter decided by an investor’s preference.
Note that higher E usually means higher risk born
by the investor.

In the original model of Markowitz, Σ is the
covariance matrix of the historic return time se-
ries of stocks, Σij = Cov({ri}t, {rj}t) (i, j ∈
{1, ..., J}). According to Markowitz (1952), the
solution of this optimization problem, which can be
obtained via quadratic programming, gives the port-
folio with the smallest risk for an expected overall
return E.

Using the covariance matrix as the risk matrix
Σ is limited, however, for two reasons. First, the
overwhelming noise in price movements prevents
accurate estimation of the covariance. More im-
portantly, it ignores the events described in news
articles that indeed cause price movements.

On the other hand, the stock embeddings built
here provide much abundant textual information
for defining Σ. Concretely,

Σi,j = cos (si, sj).

This should work because the stock embedding
reflects a stock’s responsiveness to a certain class
of news events. In other words, close stock em-
beddings indicate a correlated response pattern to
an event described in news articles. Stock embed-
dings capture this correlation much better than the
covariance matrix does, and this correlation is what
a good portfolio relies on.

By solving the same optimization problem but
with a different matrix Σ, we get another vector of

investment ratios, w, with respect to the stocks. By
virtually investing according to w and observing
the result within a certain period, Σ can be evalu-
ated. For each of the WSJ and R&B datasets, we
ran one investment simulation for various defini-
tions of Σ, as follows.

S&P 500 index: As a market baseline, we used
an S&P 500 index portfolio, in which all 505
stocks in the index were considered and the
investment weight wj was in proportion to the
market capitalization of stock j. The price
history of the portfolio was provided by Dow
Jones. This method did not use Σ to form the
portfolio.

S&P 89*/50*: This approach was the same as
above but with the set of stocks reduced to
those tested in our work, as explained in Sec-
tion 5.1: 89 stocks for the WSJ dataset7, and
50 for the R&B dataset.

Covariance matrix of historic stock returns:
Σ was the covariance matrix as originally
proposed by Markowitz.

Word2vec-general: (text only) Σ was the cosine
matrix of the word embeddings trained on
general corpora (fastText word embeddings
(Bojanowski et al., 2017) were used in our
experiments). For each stock, we used the
word embedding of its ticker symbol, e.g., the
word embedding of “AAPL” for Apple Inc.

Word2vec-news: (text only) Σ was the cosine ma-
trix of the word embedding vectors trained

7The S&P 89* portfolio was evaluated during the period
of 2001 to 2016. The market capitalization history of the
stocks before the year 2005 is not available, so the record was
estimated for this missing period. First, the number of shares
outstanding was extrapolated from the data of 2005-2016, in
which the values were pretty stable during the whole period.
The market capitalization was then acquired by multiplying
the price by the shares outstanding.
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on news text corpora. We used the full text
of the R&B dataset for training, in which all
mentions of a stock in the text were replaced
by the stock’s ticker symbol.

Covariance · stock embedding: (text and price)
Σ was the result of element-wise multiplica-
tion of the covariance matrix and the cosine
matrix of the stock embeddings.

Weighted BERT: (text only) Σ was the cosine
matrix of stock vectors acquired as follows,
where the BERT-based text representation nVi
was used. For a stock j, the vector was
obtained as a weighted average of nVi for
which the text mentioned the stock or com-
pany. Here, the weight of article i was defined
as follows:

ηi ≡
(# of mentions of j in i)

(# of mentions of all stocks in i)
.

Stock embeddings: Σ was the cosine matrix of
the stock embeddings.

Figure 3: The process of portfolio generation and evalu-
ation over several years. The vertical axis indicates the
times when the portfolio is renewed, and the horizontal
axis indicates the data grouped yearly. An average of
the realized annual gains is computed to evaluate the
portfolio’s performance.

The portfolio evaluation was conducted in a
yearly setting, as illustrated in Figure 3. At the
beginning of each year, given some expected gain
E, the portfolio was computed by using all news
articles and historic prices until the end of the previ-
ous year. In other words, for each year, the training
set in the experiment consisted of samples strictly
earlier than those constituting the test set. There-
fore, the evaluation was conducted in a prediction
setting. Then, investments were made according to
the yearly renewed portfolio as in Figure 3; that is,
capital was allocated to stocks according to w. The
realized annual gain of the portfolio followed this

equation:

annual gain =

J∑
j=1

wj(
pjend-of-year

pjbegin-of-year

− 1),

where wj is the proportion of investment in stock
j, and pj is the price of j.

In this way, for each of the WSJ and R&B,
we obtained results over 16 and 7 years, re-
spectively. For different expected gains E ∈
{0.05, 0.06, ..., 0.29}, which cover typical cases
in real-world portfolio construction, the average
annual gain was computed.

Figure 4 shows the experimental results. The
upper graphs show the annual gain with respect to
different values of E (horizontal axes) for (a) the
WSJ and (b) the R&B, averaged over years. Every
curve corresponds to a different definition of Σ.
It can be seen that the proposed stock embedding
method outperformed the other methods, except
for larger E with WSJ8. Especially for the R&B
dataset, stock embedding greatly outperformed all
other methods at all E.

The lower bar graph summarizes the overall ag-
gregate gain for each method. The values in the
bars indicate the average realized annual gains,
while those above the bars are the ratios of the gains
in comparison with that of the standard covariance
method (in blue). The leftmost two bars in each
bar graph show the gains of the S&P 500 portfolio
and the S&P 89*/50* portfolio, respectively. As
described above, the S&P 500 portfolio consisted
of an average of around 500 stocks traded in the
US, while the S&P 89*/50* portfolio, which was
calculated with the same method but on a smaller
set of stocks (89 for the WSJ, and 50 for the R&B),
achieved higher gains than its S&P 500 sibling did.
The values of the S&P portfolios generally went up
during the periods of both datasets, and therefore,
the gains were positive.

The dashed horizontal line in each bar graph
indicates the result for the standard covariance
method as a baseline. Its gains were only 12.5%
and 12.7% for the WSJ and R&B, respectively,
but with stock embeddings, the gains increased to
17.2% and 35.5%, or 1.37 and 2.80 times greater
than the baseline results, respectively. This per-

8Our method did not perform well only for large E. The
mean-variance minimization model has been reported to be-
come unstable under the two conditions of large E and low
overall market gain (Dai and Wang, 2019). The return of the
WSJ period (2000-2015) was lower than that of the R&B pe-
riod (2006-2013), and therefore, these two conditions were
more likely to be met for WSJ.
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Figure 4: Expected and realized annual portfolio gain in the investment simulations on both datasets: (a) results on
the WSJ dataset (2000-2015), and (b) results on the R&B dataset (2006-2013).

formance largely beat all other variants and gives
evidence of how well the stock embeddings inte-
grated both price and textual information.

The results for the method that integrated the
covariance matrix and stock embedding (in green)
did not much outperform the baselines. A possible
reason is that the stock embedding had already
integrated the price information. As for the other
variants based on pure text (in purple, orange, and
brown), the results improved slightly. Among them,
weighted BERT outperformed the other methods
for both datasets. This indicates the potential of
BERT and other recent neural language models for
portfolio optimization.

8 Conclusion

This paper has proposed the idea of a stock embed-
ding, a vector representation of a stock in a finan-
cial market. A method was formulated to acquire
such vectors from stock price history and news ar-
ticles by using a neural network framework. In
the framework, the stock embedding detects news
articles that are related to the stock, which is the
essence of the proposed method. We trained stock
embeddings for the task of binary classification of
stock price movements on two different datasets,
the WSJ and R&B. The improvements in classifica-
tion accuracy with our framework, due to the clas-

sifier sharing and dual-vector text representation
proposed in this paper, implied that the stock em-
beddings successfully incorporated market knowl-
edge from both the news articles and price history.

Because the stock embedding is a vector that
can be separated from the other components of the
classification model, it can be applied to other tasks
besides price movement classification. As an ex-
ample, we showed the use of stock embeddings in
a portfolio optimization task by replacing the risk
matrix in the portfolio objective function with a
cosine matrix of stock embeddings. In investment
simulations on the R&B dataset, our stock embed-
ding method generated 2.80 times the annual return
obtained using the covariance matrix of the historic
return series. This significant gain suggests further
potential of our stock embedding for modeling the
correlation among stocks in a financial market, and
for further applications, such as risk control and
asset pricing.
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