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Abstract

In this paper, we study Multimodal Named
Entity Recognition (MNER) for social media
posts. Existing approaches for MNER mainly
suffer from two drawbacks: (1) despite gener-
ating word-aware visual representations, their
word representations are insensitive to the vi-
sual context; (2) most of them ignore the bias
brought by the visual context. To tackle the
first issue, we propose a multimodal interac-
tion module to obtain both image-aware word
representations and word-aware visual repre-
sentations. To alleviate the visual bias, we fur-
ther propose to leverage purely text-based en-
tity span detection as an auxiliary module, and
design a Unified Multimodal Transformer to
guide the final predictions with the entity span
predictions. Experiments show that our uni-
fied approach achieves the new state-of-the-art
performance on two benchmark datasets.

1 Introduction

Recent years have witnessed the explosive growth
of user-generated contents on social media plat-
forms such as Twitter. While empowering users
with rich information, the flourish of social media
also solicits the emerging need of automatically ex-
tracting important information from these massive
unstructured contents. As a crucial component of
many information extraction tasks, named entity
recognition (NER) aims to discover named enti-
ties in free text and classify them into pre-defined
types, such as person (PER), location (LOC) and
organization (ORG). Given its importance, NER
has attracted much attention in the research com-
munity (Yadav and Bethard, 2018).

Although many methods coupled with either dis-
crete shallow features (Zhou and Su, 2002; Finkel
et al., 2005; Torisawa et al., 2007) or continuous
deep features (Lample et al., 2016; Ma and Hovy,
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(a). [Kevin Durant PER] enters
[Oracle Arena LOC] wearing off
— White x [Jordan MISC]

(b). Vote for [King of the Jungle
MISC] — [Kian PER] or [David
PER] ?

Figure 1: Two examples for Multimodal Named Entity
Recognition (MNER). Named entities and their entity types
are highlighted.

2016) have shown success in identifying entities in
formal newswire text, most of them perform poorly
on informal social media text (e.g., tweets) due
to its short length and noisiness. To adapt existing
NER models to social media, various methods have
been proposed to incorporate many tweet-specific
features (Ritter et al., 2011; Li et al., 2012, 2014;
Limsopatham and Collier, 2016). More recently,
as social media posts become increasingly multi-
modal, several studies proposed to exploit useful
visual information to improve the performance of
NER (Moon et al., 2018; Zhang et al., 2018; Lu
et al., 2018).

In this work, following the recent trend, we focus
on multimodal named entity recognition (MNER)
for social media posts, where the goal is to detect
named entities and identify their entity types given
a {sentence, image} pair. For example, in Fig. 1.a,
it is expected to recognize that Kevin Durant, Or-
acle Arena, and Jordan belong to the category of
person names (i.e., PER), place names (i.e., LOC),
and other names (i.e., MISC), respectively.

While previous work has shown success of fus-
ing visual information into NER (Moon et al., 2018;
Zhang et al., 2018; Lu et al., 2018), they still suf-
fer from several limitations: (1) The first obstacle
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lies in the non-contextualized word representations,
where each word is represented by the same vector,
regardless of the context it occurs in. However,
the meanings of many polysemous entities in so-
cial media posts often rely on its context words.
Take Fig. 1.a as an example, without the context
words wearing off, it is hard to figure out whether
Jordan refers to a shoe brand or a person. (2) Al-
though most existing methods focus on modeling
inter-modal interactions to obtain word-aware vi-
sual representations, the word representations in
their final hidden layer are still based on the tex-
tual context, which are insensitive to the visual
context. Intuitively, the associated image often pro-
vides more context to resolve polysemous entities,
and should contribute to the final word representa-
tions (e.g., in Fig. 1.b, the image can supervise the
final word representations of Kian and David to be
closer to persons than animals). (3) Most previous
approaches largely ignore the bias of incorporating
visual information. Actually, in most social media
posts, the associated image tends to highlight only
one or two entities in the sentence, without men-
tioning the other entities. In these cases, directly
integrating visual information will inevitably lead
the model to better recognize entities highlighted
by images, but fail to identify the other entities (e.g.,
Oracle Arena and King of the Jungle in Fig. 1).

To address these limitations, we resort to ex-
isting pre-trained contextualized word representa-
tions, and propose a unified multimodal architec-
ture based on Transformer (Vaswani et al., 2017),
which can effectively capture inter-modality inter-
actions and alleviate the visual bias. Specifically,
we first adopt a recently pre-trained contextualized
representation model (Devlin et al., 2018) as our
sentence encoder, whose multi-head self-attention
mechanism can guide each word to capture the
semantic and syntactic dependency upon its con-
text. Second, to better capture the implicit align-
ments between words and images, we propose a
multimodal interaction (MMI) module, which es-
sentially couples the standard Transformer layer
with cross-modal attention mechanism to produce
an image-aware word representation and a word-
aware visual representation for each input word,
respectively. Finally, to largely eliminate the bias
of the visual context, we propose to leverage text-
based entity span detection as an auxiliary task,
and design a unified neural architecture based on
Transformer. In particular, a conversion matrix is

designed to construct the correspondence between
the auxiliary and the main tasks, so that the entity
span information can be fully utilized to guide the
final MNER predictions.

Experimental results show that our Unified Mul-
timodal Transformer (UMT) brings consistent per-
formance gains over several highly competitive uni-
modal and multimodal methods, and outperforms
the state-of-the-art by a relative improvement of
3.7% and 3.8% on two benchmarks, respectively.

The main contributions of this paper can be sum-
marized as follows:

• We propose a Multimodal Transformer model
for the task of MNER, which empowers Trans-
former with a multimodal interaction mod-
ule to capture the inter-modality dynamics
between words and images. To the best of
our knowledge, this is the first work to apply
Transformer to MNER.

• Based on the above Multimodal Transformer,
we further design a unified architecture to in-
corporate a text-based entity span detection
module, aiming to alleviate the bias of the
visual context in MNER with the guidance
of entity span predictions from this auxiliary
module.

2 Methodology

In this section, we first formulate the MNER task,
and give an overview of our method. We then delve
into the details of each component in our model.

Task Formulation: Given a sentence S and its
associated image V as input, the goal of MNER is
to extract a set of entities from S, and classify each
extracted entity into one of the pre-defined types.

As with most existing work on MNER, we for-
mulate the task as a sequence labeling problem.
Let S = (s1, s2, . . . , sn) denote a sequence of in-
put words, and y = (y1, y2, . . . , yn) be the corre-
sponding label sequence, where yi ∈ Y and Y
is the pre-defined label set with the BIO2 tagging
schema (Sang and Veenstra, 1999).

2.1 Overall Architecture

Fig. 2.a illustrates the overall architecture of our
Unified Multimodal Transformer, which contains
three main components: (1) representation learning
for unimodal input; (2) a Multimodal Transformer
for MNER; and (3) a unified architecture with aux-
iliary entity span detection (ESD) module.
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Figure 2: (a). Overall Architecture of Our Unified Multimodal Transformer. (b). Multimodal Interaction (MMI) Module.

As shown at the bottom of Fig. 2.a, we first ex-
tract contextualized word representations and vi-
sual block representations from the input sentence
and the input image, respectively.

The right part of Fig. 2.a illustrates our Multi-
modal Transformer model for MNER. Specifically,
a Transformer layer is first employed to derive each
word’s textual hidden representation. Next, a multi-
modal interaction (MMI) module is devised to fully
capture the inter-modality dynamics between the
textual hidden representations and the visual block
representations. The hidden representations from
MMI are then fed to a conditional random field
(CRF) layer to produce the label for each word.

To alleviate the visual bias in MNER, we further
stack a purely text-based ESD module in the left
part of Fig. 2.a, where we feed its hidden represen-
tations to another CRF layer to predict each word’s
entity span label. More importantly, to utilize this
for our main MNER task, we design a conversion
matrix to encode the dependency relations between
corresponding labels from ESD to MNER, so that
the entity span predictions from ESD can be inte-
grated to get the final MNER label for each word.

2.2 Unimodal Input Representations

Word Representations: Due to the capability of giv-
ing different representations for the same word in
different contexts, we employ the recent contextu-
alized representations from BERT (Devlin et al.,

2018) as our sentence encoder. Following Devlin
et al. (2018), each input sentence is preprocessed by
inserting two special tokens, i.e., appending [CLS]
to the beginning and [SEP] to the end, respectively.
Formally, let S′ = (s0, s1, . . . , sn+1) be the modi-
fied input sentence, where s0 and sn+1 denote the
two inserted tokens. Let X = (x0,x1, . . . ,xn+1)
be the word representations of S′, where xi is the
sum of word, segment, and position embeddings
for each token si. As shown in the bottom left of
Fig. 2.a, X is then fed to the BERT encoder to ob-
tain C = (c0, c1, . . . , cn+1), where ci ∈ Rd is the
generated contextualized representation for xi.

Visual Representations: As one of the state-of-
the-art CNN models for image recognition, Resid-
ual Network (ResNet) (He et al., 2016) has shown
its capability of extracting meaningful feature rep-
resentations of the input image in its deep layers.
We therefore keep the output from the last convo-
lutional layer in a pretrained 152-layer ResNet to
represent each image, which essentially splits each
input image into 7×7=49 visual blocks with the
same size and represents each block with a 2048-
dimensional vector. Specifically, given an input
image V , we first resize it to 224×224 pixels, and
obtain its visual representations from ResNet, de-
noted as U = (u1,u2, . . . ,u49), where ui is the
2048-dimensional vector representation for the i-th
visual block. To project the visual representations
into the same space of the word representations,
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we further convert U with a linear transformation:
V = W>

uU, where Wu ∈ R2048×d is the weight
matrix1. As shown in the bottom right of Fig. 2.a,
V = (v1,v2, . . . ,v49) is the visual representa-
tions generated from ResNet.

2.3 Multimodal Transformer for MNER
In this subsection, we present our proposed Multi-
modal Transformer for MNER.

As illustrated on the right of Fig. 2.a, we first
add a standard Transformer layer over C to ob-
tain each word’s textual hidden representation:
R = (r0, r1, . . . , rn+1), where ri ∈ Rd denotes
the generated hidden representation for xi.

Motivation: While the above Transformer layer
can capture which context words are more rele-
vant to the prediction of an input word xi, they fail
to consider the associated visual context. On the
one hand, due to the short length of textual con-
tents on social media, the additional visual context
may guide each word to learn better word repre-
sentations. On the other hand, since each visual
block is often closely related to several input words,
incorporating the visual block representation can
potentially make the prediction of its related words
more accurately. Inspired by these observations,
we propose a multimodal interaction (MMI) mod-
ule to learn an image-aware word representation
and a word-aware visual representation for each
word.

2.3.1 Image-Aware Word Representation
Cross-Modal Transformer (CMT) Layer: As shown
on the left of Fig. 2.b, to learn better word rep-
resentations with the guidance of associated im-
ages, we first employ an m-head cross-modal at-
tention mechanism (Tsai et al., 2019), by treating
V ∈ Rd×49 as queries, and R ∈ Rd×(n+1) as keys
and values:

CAi(V,R) = softmax(
[WqiV]>[WkiR]√

d/m
)[WviR]>;

MH-CA(V,R) = W′[CA1(V,R), . . . ,CAm(V,R)]>,

where CAi refers to the i-th head of cross-modal at-
tention, {Wqi

,Wki
,Wvi

} ∈ Rd/m×d, and W′ ∈
Rd×d denote the weight matrices for the query, key,
value, and multi-head attention, respectively. Next,
we stack another three sub-layers on top:

P̃ = LN(V + MH-CA(V,R)); (1)

P = LN(P̃+ FFN(P̃)), (2)

1Bias terms are omitted to avoid confusion in this paper.

where FFN is the feed-forward network (Vaswani
et al., 2017), LN is the layer normalization (Ba
et al., 2016), and P = (p1,p2, . . . ,p49) is the
output representations of the CMT layer.

Coupled CMT Layer: However, since the visual
representations are treated as queries in the above
CMT layer, each generated vector pi is correspond-
ing to the i-th visual block instead of the i-th input
word. Ideally, the image-aware word representation
should be corresponding to each word.

To address this, we propose to couple P with an-
other CMT layer, which treats the textual represen-
tations R as queries, and P as keys and values. As
shown in the top left of Fig. 2.a, this coupled CMT
layer generates the final image-aware word repre-
sentations, denoted by A = (a0,a1, . . . ,an+1).

2.3.2 Word-Aware Visual Representation
To obtain a visual representation for each word,
it is necessary to align each word with its closely
related visual blocks, i.e., assigning high/low atten-
tion weights to its related/unrelated visual blocks.
Hence, as shown in the right part of Fig. 2.b, we
use a CMT layer by treating R as queries and V
as keys and values, which can be considered as a
symmetric version of the left CMT layer. Finally,
it generates the word-aware visual representations,
denoted by Q = (q0,q1, . . . ,qn+1).

Visual Gate: As pointed out in some previous
studies (Zhang et al., 2018; Lu et al., 2018), it is
unreasonable to align many function words such
as the, of, and well with any visual block. There-
fore, it is important to incorporate a visual gate to
dynamically control the contribution of visual fea-
tures. Following the practice in previous work, we
design a visual gate by combining the information
from the above word representations A and visual
representations Q as follows:

g = σ(W>
a A+W>

q Q), (3)

where {Wa, Wq} ∈ Rd×d are weight matrices,
and σ is the element-wise sigmoid function. Based
on the gate output, we can obtain the final word-
aware visual representations as B = g ·Q.

2.3.3 CRF Layer
To integrate the word and the visual representations,
we concatenate A and B to obtain the final hidden
representations H = (h0,h1, . . . ,hn+1), where
hi ∈ R2d. Following Lample et al. (2016), we then
feed H to a standard CRF layer, which defines the
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probability of the label sequence y given the input
sentence S and its associated image V :

P (y|S, V ) =
exp(score(H,y))∑
y′ exp(score(H,y′))

; (4)

score(H,y) =

n∑
i=0

Tyi,yi+1 +

n∑
i=1

Ehi,yi ; (5)

Ehi,yi = wyi

MNER · hi, (6)

where Tyi,yi+1 is the transition score from the label
yi to the label yi+1, Ehi,yi is the emission score of
the label yi for the i-th word, and wyi

MNER ∈ R2d is
the weight parameter specific to yi.

2.4 Unified Multimodal Transformer
Motivation: Since the Multimodal Transformer pre-
sented above mainly focuses on modeling the inter-
actions between text and images, it may lead the
learnt model to overemphasize the entities high-
lighted by the image but ignore the remaining enti-
ties. To alleviate the bias, we propose to leverage
text-based entity span detection (ESD) as an aux-
iliary task based on the following observation. As
ResNet is pre-trained on ImageNet (Deng et al.,
2009) for the image recognition task, its high-
level representations are closely relevant to the
final predictions, i.e., the types of contained ob-
jects. This indicates that the visual representations
from ResNet should be quite useful for identifying
types of the detected entities, but are not necessar-
ily relevant to detecting entity spans in the sentence.
Therefore, we use purely text-based ESD to guide
the final predictions for our main MNER task.

Auxiliary Entity Span Detection Module: For-
mally, we model ESD as another sequence labeling
task, and use z = (z1, . . . , zn) to denote the se-
quence of labels, where zi ∈ Z and Z = {B, I,O}.

As shown in the left part of Fig. 2.a, we employ
another Transformer layer to obtain its specific hid-
den representations as T = (t0, t1, . . . , tn+1), fol-
lowed by feeding it to a CRF layer to predict the
probability of the label sequence z given S:

P (z|S) =
exp(

∑n
i=0 Tzi,zi+1 +

∑n
i=1 w

zi
ESD · ti)∑

z′ exp(
∑n

i=0 Tz′i,z
′
i+1

+
∑n

i=1 w
z′i
ESD · ti)

,

where wzi
ESD ∈ Rd is the parameter specific to zi.

Conversion Matrix: Although ESD is modeled
as an auxiliary task separated from MNER, the
two tasks are highly correlated since each ESD
label should be only corresponding to a subset of
labels in MNER. For example, given the sentence
in Fig. 2.a, if the first token is predicted to be the

TWITTER-2015 TWITTER-2017

Entity Type Train Dev Test Train Dev Test

Person 2217 552 1816 2943 626 621
Location 2091 522 1697 731 173 178
Organization 928 247 839 1674 375 395
Miscellaneous 940 225 726 701 150 157

Total 6176 1546 5078 6049 1324 1351

Num of Tweets 4000 1000 3257 3373 723 723

Table 1: The basic statistics of our two Twitter datasets.

beginning of an entity in ESD (i.e., have the label
B), it should be also the beginning of a typed entity
in MNER (e.g., have the label B-PER).

To encode such inter-task correspondence, we
propose to use a conversion matrix Wc ∈ R|Z|×|Y|,
where each element Wc

j,k defines the conversion
probability from Zj to Yk. Since we have some
prior knowledge (e.g., the label B can only con-
vert to a label subset {B-PER, B-LOC, B-ORG, B-
MISC}), we initialize Wc as follows: if Zj is not
corresponding to Yk, Wc

j,k is set to 0; otherwise,
Wc

j,k is set to 1
|Cj | , where Cj denotes a subset of

Y that is corresponding to Zj .
Modified CRF Layer for MNER: After obtaining

the conversion matrix, we further propose to fully
leverage the text-based entity span predictions to
guide the final predictions of MNER. Specifically,
we modify the CRF layer for MNER by incorporat-
ing the entity span information from ESD into the
emission score defined in Eqn. (6):

Ehi,yi
= wyi

MNER · hi +wzi
ESD · ti ·W

c
zi,yi

. (7)

2.5 Model Training
Given a set of manually labeled training samples
D = {Sj , V j ,yj , zj}Nj=1, our overall training ob-
jective function is a weighted sum of the sentence-
level negative log-likelihood losses for our main
MNER task and the auxiliary ESD task2:

L = − 1

|D|

N∑
j=1

(
logP (yj |Sj , V j) + λ logP (zj |Sj)

)
,

where λ is a hyperparameter to control the contri-
bution of the auxiliary ESD module.

3 Experiments

We conduct experiments on two multimodal NER
datasets, comparing our Unified Multimodal Trans-
former (UMT) with a number of unimodal and
multimodal approaches.

2We obtain zj by removing the type information in yj .
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TWITTER-2015 TWITTER-2017

Single Type (F1) Overall Single Type (F1) Overall
Modality Methods PER. LOC. ORG. MISC. P R F1 PER. LOC. ORG. MISC. P R F1

BiLSTM-CRF 76.77 72.56 41.33 26.80 68.14 61.09 64.42 85.12 72.68 72.50 52.56 79.42 73.43 76.31
CNN-BiLSTM-CRF 80.86 75.39 47.77 32.61 66.24 68.09 67.15 87.99 77.44 74.02 60.82 80.00 78.76 79.37

Text HBiLSTM-CRF 82.34 76.83 51.59 32.52 70.32 68.05 69.17 87.91 78.57 76.67 59.32 82.69 78.16 80.37

BERT 84.72 79.91 58.26 38.81 68.30 74.61 71.32 90.88 84.00 79.25 61.63 82.19 83.72 82.95
BERT-CRF 84.74 80.51 60.27 37.29 69.22 74.59 71.81 90.25 83.05 81.13 62.21 83.32 83.57 83.44

GVATT-HBiLSTM-CRF 82.66 77.21 55.06 35.25 73.96 67.90 70.80 89.34 78.53 79.12 62.21 83.41 80.38 81.87
AdaCAN-CNN-BiLSTM-CRF 81.98 78.95 53.07 34.02 72.75 68.74 70.69 89.63 77.46 79.24 62.77 84.16 80.24 82.15

Text+Image GVATT-BERT-CRF 84.43 80.87 59.02 38.14 69.15 74.46 71.70 90.94 83.52 81.91 62.75 83.64 84.38 84.01
AdaCAN-BERT-CRF 85.28 80.64 59.39 38.88 69.87 74.59 72.15 90.20 82.97 82.67 64.83 85.13 83.20 84.10
MT-BERT-CRF (Ours) 85.30 81.21 61.10 37.97 70.48 74.80 72.58 91.47 82.05 81.84 65.80 84.60 84.16 84.42
UMT-BERT-CRF (Ours) 85.24 81.58† 63.03† 39.45† 71.67 75.23 73.41† 91.56† 84.73† 82.24 70.10† 85.28 85.34 85.31†

Table 2: Performance comparison on our two TWITTER datasets. † indicates that UMT-BERT-CRF is significantly better than
GVATT-BERT-CRF and AdaCAN-BERT-CRF with p-value < 0.05 based on paired t-test.

3.1 Experiment Settings

Datasets: We take two publicly available Twit-
ter datasets respectively constructed by Zhang
et al. (2018) and Lu et al. (2018) for MNER.
Since the two datasets mainly include multi-
modal user posts published on Twitter during
2014-2015 and 2016-2017, we denote them as
TWITTER-2015 and TWITTER-2017 respec-
tively. Table 1 shows the number of entities for
each type and the counts of multimodal tweets in
the training, development, and test sets of the two
datasets3. We have released the two datasets pre-
processed by us for research purpose via this link:
https://github.com/jefferyYu/UMT.

Hyperparameters: For each unimodal and mul-
timodal approach compared in the experiments,
the maximum length of the sentence input and the
batch size are respectively set to 128 and 16. For
our UMT approach, most hyperparameter settings
follow Devlin et al. (2018) with the following ex-
ceptions: (1) the word representations C are ini-
tialized with the cased BERTbase model pre-trained
by Devlin et al. (2018), and fine-tuned during train-
ing. (2) we employ a pre-trained 152-layer ResNet4

to initialize the visual representations U and keep
them fixed during training. (3) For the number of
cross-modal attention heads, we set it as m=12. (4)
The learning rate, the dropout rate, and the tradeoff
parameter λ are respectively set to 5e-5, 0.1, and
0.5, which can achieve the best performance on the
development set of both datasets via a small grid
search over the combinations of [1e-5, 1e-4], [0.1,
0.5], and [0.1, 0.9].

3The TWITTER-2017 dataset released by Lu et al. (2018)
is slightly different from the one used in their experiments, as
they later remove a small portion of tweets for privacy issues.

4https://download.pytorch.org/models/resnet152-
b121ed2d.pth.

3.2 Compared Systems
To demonstrate the effect of our Unified Multi-
modal Transformer (UMT) model, we first con-
sider a number of representative text-based ap-
proaches for NER: (1) BiLSTM-CRF (Huang et al.,
2015), a pioneering study which eliminates the
heavy reliance on hand-crafted features, and sim-
ply employs a bidirectional LSTM model followed
by a CRF layer for each word’s final prediction;
(2) CNN-BiLSTM-CRF (Ma and Hovy, 2016), a
widely adopted neural network model for NER,
which is an improvement of BiLSTM-CRF by re-
placing each word’s word embedding with the
concatenation of its word embedding and CNN-
based character-level word representations; (3)
HBiLSTM-CRF (Lample et al., 2016), an end-to-
end hierarchical LSTM architectures, which re-
places the bottom CNN layer in CNN-BiLSTM-
CRF with an LSTM layer to obtain the character-
level word representations; (4) BERT (Devlin et al.,
2018), a multi-layer bidirectional Transformer en-
coder, which gives contextualized representations
for each word, followed by stacking a softmax layer
for final predictions; (5) BERT-CRF, a variant of
BERT by replacing the softmax layer with a CRF
layer.

Besides, we also consider several competitive
multimodal approaches for MNER: (1) GVATT-
HBiLSTM-CRF (Lu et al., 2018), a state-of-the-art
approach for MNER, which integrates HBiLSTM-
CRF with the visual context by proposing a vi-
sual attention mechanism followed by a visual
gate to obtain word-aware visual representations;
(2) AdaCAN-CNN-BiLSTM-CRF (Zhang et al.,
2018), another state-of-the-art approach based on
CNN-BiLSTM-CRF, which designs an adaptive co-
attention network to induce word-aware visual rep-
resentations for each word; (3) GVATT-BERT-CRF
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TWITTER-2015 TWITTER-2017

Methods P R F1 P R F1

UMT-BERT-CRF 71.67 75.23 73.41 85.28 85.34 85.31

w/o ESD Module 70.48 74.80 72.58 84.60 84.16 84.42
w/o Conversion Matrix 70.43 74.98 72.63 84.72 84.97 84.85
w/o Image-Aware WR 70.33 75.44 72.79 83.83 85.94 84.87
w/o Visual Gate 71.34 75.15 73.19 85.31 84.68 84.99

Table 3: Ablation Study of Unified Multimodal Transformer.

and AdaCAN-BERT-CRF, our two variants of the
above two multimodal approaches, which replace
the sentence encoder with BERT; (4) MT-BERT-
CRF, our Multimodal Transformer model intro-
duced in Section 2.3; (5) UMT-BERT-CRF, our uni-
fied architecture by incorporating the auxiliary en-
tity span detection module into Multimodal Trans-
former, as introduced in Section 2.4.

All the neural models are implemented with Py-
Torch, and all the experiments are conducted on
NVIDIA RTX 2080 Ti GPUs.

3.3 Main Results

In Table 2, we report the precision (P), recall (R),
and F1 score (F1) achieved by each compared
method on our two Twitter datasets.

First, comparing all the text-based approaches,
we can clearly observe that BERT outperforms the
other compared methods with a significant margin
on both datasets. Moreover, it is easy to see that
empowering BERT with a CRF layer can further
boost the performance. All these observations in-
dicate that the contextualized word representations
are indeed quite helpful for the NER task on social
media texts, due to the context-aware characteris-
tics. This agrees with our first motivation.

Second, comparing the state-of-the-art multi-
modal approaches with their corresponding uni-
modal baselines, we can find that the multimodal
approaches can generally achieve better perfor-
mance, which demonstrates that incorporating the
visual context is generally useful for NER. Besides,
we can see that although GVATT-HBiLSTM-CRF
and AdaCAN-CNN-BiLSTM-CRF can significantly
outperform their unimodal baselines, the perfor-
mance gains become relatively limited when re-
placing their sentence encoder with BERT. This
suggests the challenge and the necessity of propos-
ing a more effective multimodal approach.

Third, in comparison with the two existing mul-
timodal methods, our Multimodal Transformer
MT-BERT-CRF outperforms the state-of-the-art by
2.5% and 2.8% respectively, and also achieves bet-

Figure 3: The number
of entities (shown in y-
axis) that are incorrectly
predicted by BERT-CRF,
but get corrected by each
multimodal method

Figure 4: The number
of entities (shown in y-
axis) that are correctly
predicted by BERT-CRF,
but wrongly predicted by
each multimodal method

ter performance than their BERT variants. We con-
jecture that the performance gains mainly come
from the following reason: the two multimodal
methods only focus on obtaining word-aware vi-
sual representations, whereas our MT-BERT-CRF
approach targets at generating both image-aware
word representations and word-aware visual repre-
sentations for each word. These observations are
in line with our second motivation.

Finally, comparing all the unimodal and multi-
modal approaches, it is clear to observe that our
Unified Multimodal Transformer (i.e., UMT-BERT-
CRF) can achieve the best performance on both
datasets, outperforming the second best methods
by 1.14% and 1.05%, respectively. This demon-
strates the usefulness of the auxiliary entity span
detection module, and indicates that the auxiliary
module can help our Multimodal Transformer al-
leviate the bias brought by the associated images,
which agrees with our third motivation.

3.4 Ablation Study
To investigate the effectiveness of each component
in our Unified Multimodal Transformer (UMT) ar-
chitecture, we perform comparison between the
full UMT model and its ablations with respect to
the auxiliary entity span detection (ESD) module
and the multimodal interaction (MMI) module.

As shown in Table 3, we can see that all the
components in UMT make important contributions
to the final results. On the one hand, removing
the whole ESD module will significantly drop the
performance, which shows the importance of alle-
viating the visual bias. In particular, discarding the
conversion matrix in the ESD module also leads to
the performance drop, which indicates the useful-
ness of capturing the label correspondence between
the auxiliary module and our main MNER task.

On the other hand, as the main contribution of
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Importance of the MMI Module Importance of the ESD Module Importance of Associated Images Noise of Associated Images

A. Review of [Wolf Hall MISC]1, Episode
1 : Three Card Trick (bit.ly/1BHnWNb)
#[WolfHall MISC]2

B. [Kevin Love PER]1 was more ex-
cited about [GameofThrones MISC]2

than beating the [Hawks ORG]3

C. My mum took some awesome
photos of @ [iamrationale PER]1

and @ [bastilledan PER]2.

D. Ask [Siri MISC]1 what
0 divided by 0 is and watch
her put you in your place.

BERT-CRF: 1-LOC7, 2-LOC7 1-PER3, 2-MISC3, 3-ORG3 1-MISC7, 2-ORG7 1-MISC3

AdaCAN-BERT-CRF: 1-LOC7, 2-LOC7 1-PER3, 2-NONE7, 3-ORG3 1-PER3, 2-PER3 1-PER7

MT-BERT-CRF: 1-MISC3, 2-MISC3 1-PER3, 2-NONE7, 3-ORG3 1-PER3, 2-PER3 1-PER7

UMT-BERT-CRF: 1-MISC3, 2-MISC3 1-PER3, 2-MISC3, 3-ORG3 1-PER3, 2-PER3 1-PER7

Table 4: The second row shows several representative samples together with their manually labeled entities in the test set of our
two TWITTER datasets, and the bottom four rows show predicted entities of different methods on these test samples.

our MMI module, Image-Aware Word Representa-
tions (WR) demonstrates its indispensable role in
the final performance due to the moderate perfor-
mance drop after removal. Besides, removing the
visual gate also results in minor performance drop,
indicating its importance to the full model.

3.5 Further Analysis

Importance of MMI and ESD Modules: To bet-
ter appreciate the importance of two main contribu-
tions (i.e., MMI and ESD modules) in our proposed
approaches, we conduct additional analysis on our
two test sets. In Fig. 3 and Fig. 4, we show the num-
ber of entities that are wrongly/correctly predicted
by BERT-CRF, but correctly/wrongly predicted by
each multimodal method5.

First, we can see from Fig. 3 that with the MMI
module, our MT-BERT-CRF and UMT-BERT-CRF
approaches correctly identify more entities, com-
pared with the two multimodal baselines. Table 4.A
shows a specific example. We can see that our two
methods correctly classify the type of Wolf Hall
as MISC whereas the compared systems wrongly
predict its type as LOC, probably because our MMI
module enforces the image-aware word representa-
tions of Wolf Hall to be closer to drama names.

Second, in Fig. 4, it is clear to observe that com-
pared with the other three methods, UMT-BERT-
CRF can significantly decrease the bias brought by
the visual context due to incorporating our auxiliary
ESD module. In Table 4.B, we show a concrete
example: since Game of Thrones is ignored by the
image, the two multimodal baselines fail to iden-
tify them; in contrast, with the help of the auxiliary

5Note that here we use strict matches (i.e., correct span
and type predictions).

ESD module, UMT-BERT-CRF successfully elimi-
nates the bias.

Effect of Incorporating Images: To obtain a
better understanding of the general effect of incor-
porating associated images into our MNER task,
we carefully examine our test sets and choose two
representative test samples to compare the predic-
tion results of different approaches.

First, we observe that most improvements gained
by multimodal methods come from those samples
where the textual contents are informal or incom-
plete but the visual context provides useful clues.
For example, in Table 4.C, we can see that without
the visual context, BERT-CRF fails to identify that
the two entities refer to two singers in the concert,
but all the multimodal approaches can correctly
classify their types after incorporating the image.

Second, by manually checking the test set of our
two datasets, we find that in around 5% of the so-
cial media posts, the associated images might be
irrelevant to the textual contents due to two kinds
of reasons: (1) these posts contain image memes,
cartoons, or photos with metaphor; (2) their im-
ages and textual contents reflect different aspects
of the same event. In such cases, we observe that
multimodal approaches generally perform worse
than BERT-CRF. A specific example is given in Ta-
ble 4.D, where all the multimodal methods wrongly
classify Siri as PER because of the unrelated face
in the image.

4 Related Work

As a crucial component of many information ex-
traction tasks including entity linking (Derczynski
et al., 2015), opinion mining (Maynard et al., 2012),
and event detection (Ritter et al., 2012), named
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entity recognition (NER) has attracted much at-
tention in the research community in the past two
decades (Li et al., 2018).

Methods for NER: In the literature, various su-
pervised learning approaches have been proposed
for NER. Traditional approaches typically focus
on designing various effective NER features, fol-
lowed by feeding them to different linear classi-
fiers such as maximum entropy, conditional random
fields (CRFs), and support vector machines (Chieu
and Ng, 2002; Florian et al., 2003; Finkel et al.,
2005; Ratinov and Roth, 2009; Lin and Wu, 2009;
Passos et al., 2014; Luo et al., 2015). To re-
duce the feature engineering efforts, a number of
recent studies proposed to couple different neu-
ral network architectures with a CRF layer (Laf-
ferty et al., 2001) for word-level predictions, in-
cluding convolutional neural networks (Collobert
et al., 2011), recurrent neural networks (Chiu and
Nichols, 2016; Lample et al., 2016), and their hier-
archical combinations (Ma and Hovy, 2016). These
neural approaches have been shown to achieve the
state-of-the-art performance on different bench-
mark datasets based on formal text (Yang et al.,
2018).

However, when applying these approaches to
social media text, most of them fail to achieve
satisfactory results. To address this issue, many
studies proposed to exploit external resources (e.g.,
shallow parser, Freebase dictionary, and ortho-
graphic characteristics) to incorporate a set of
tweet-specific features into both traditional ap-
proaches (Ritter et al., 2011; Li et al., 2014; Bald-
win et al., 2015) and recent neural approaches (Lim-
sopatham and Collier, 2016; Lin et al., 2017),
which can obtain much better performance on so-
cial media text.

Methods for Multimodal NER (MNER): As
multimodal data become increasingly popular on
social media platforms, several recent studies focus
on the MNER task, where the goal is to leverage
the associate images to better identify the named
entities contained in the text. Specifically, Moon
et al. (2018) proposed a multimodal NER network
with modality attention to fuse the textual and vi-
sual information. To model the inter-modal interac-
tions and filter out the noise in the visual context,
Zhang et al. (2018) and Lu et al. (2018) respectively
proposed an adaptive co-attention network and a
gated visual attention mechanism for MNER. In
this work, we follow this line of work. But different

from them, we aim to propose an effective multi-
modal method based on the recent Transformer
architecture (Vaswani et al., 2017). To the best
of our knowledge, this is the first work to apply
Transformer to the task of MNER.

5 Conclusion

In this paper, we first presented a Multimodal Trans-
former architecture for the task of MNER, which
captures the inter-modal interactions with a multi-
modal interaction module. Moreover, to alleviate
the bias of the visual context, we further proposed a
Unified Multimodal Transformer (UMT), which in-
corporates an entity span detection module to guide
the final predictions for MNER. Experimental re-
sults show that our UMT approach can consistently
achieve the best performance on two benchmark
datasets.

There are several future directions for this work.
On the one hand, despite bringing performance
improvements over existing MNER methods, our
UMT approach still fails to perform well on so-
cial media posts with unmatched text and images,
as analyzed in Section 3.5. Therefore, our next
step is to enhance UMT so as to dynamically filter
out the potential noise from images. On the other
hand, since the size of existing MNER datasets
is relatively small, we plan to leverage the large
amount of unlabeled social media posts in different
platforms, and propose an effective framework to
combine them with the small amount of annotated
data to obtain a more robust MNER model.
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