
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3284–3294
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

3284

Efficient Constituency Parsing by Pointing

Thanh-Tung Nguyen†¶, Xuan-Phi Nguyen†¶, Shafiq Joty¶§, Xiaoli Li†
¶Nanyang Technological University

§Salesforce Research Asia
†Institute for Infocomm Research, A-STAR

Singapore
{ng0155ng@e.;nguyenxu002@e.;srjoty@}ntu.edu.sg

xlli@i2r.a-star.edu.sg

Abstract

We propose a novel constituency parsing
model that casts the parsing problem into a se-
ries of pointing tasks. Specifically, our model
estimates the likelihood of a span being a le-
gitimate tree constituent via the pointing score
corresponding to the boundary words of the
span. Our parsing model supports efficient
top-down decoding and our learning objective
is able to enforce structural consistency with-
out resorting to the expensive CKY inference.
The experiments on the standard English Penn
Treebank parsing task show that our method
achieves 92.78 F1 without using pre-trained
models, which is higher than all the existing
methods with similar time complexity. Using
pre-trained BERT, our model achieves 95.48
F1, which is competitive with the state-of-the-
art while being faster. Our approach also es-
tablishes new state-of-the-art in Basque and
Swedish in the SPMRL shared tasks on mul-
tilingual constituency parsing.

1 Introduction

Constituency or phrase structure parsing is a core
task in natural language processing (NLP) with
myriad downstream applications. Therefore, de-
vising effective and efficient algorithms for pars-
ing has been a key focus in NLP.

With the advancements in neural approaches,
various neural architectures have been proposed
for constituency parsing as they are able to effec-
tively encode the input tokens into dense vector
representations while modeling the structural de-
pendencies between tokens in a sentence. These
include recurrent networks (Dyer et al., 2016;
Stern et al., 2017b) and more recently self-
attentive networks (Kitaev and Klein, 2018).

The parsing methods can be broadly distin-
guished based on whether they employ a greedy
transition-based algorithm or a globally optimized

S

She

1

∅

VP

enjoys

2

S-VP

playing

3

tennis

4

.

5

Span Representation
S(T) = {((1, 5), S), ((2, 5), ∅), ((2, 4), VP), ((3, 4), S-VP)}

Pointing Representation
P(T) = {(1)5,S), (2)5,∅), (3)4,S-VP), (4)2,VP), (5)1,S)}

Figure 1: A binarized constituency tree for the sentence
“She enjoys playing tennis.”. The node S-VP is an ex-
ample of a collapsed atomic label. We omit POS tags
and singleton spans for simplicity. Below the tree, we
show span and pointing representations of the tree.

chart parsing algorithm. The transition-based
parsers (Dyer et al., 2016; Cross and Huang,
2016; Liu and Zhang, 2017) generate trees au-
toregressively as a form of shift-reduce decisions.
Though computationally attractive, the local deci-
sions made at each step may propagate errors to
subsequent steps which would suffer from expo-
sure bias.

Chart parsing methods, on the other hand, learn
scoring functions for subtrees and perform global
search over all possible trees to find the most prob-
able tree for a sentence (Durrett and Klein, 2015;
Gaddy et al., 2018; Kitaev and Klein, 2018; Ki-
taev et al., 2019). In this way, these methods can
ensure consistency in predicting structured output.
The limitation, however, is that they run slowly at
O(n3) or higher time complexity.

In this paper, we propose a novel parsing ap-
proach that casts constituency parsing into a se-
ries of pointing problems (Figure 1). Specifically,

3285

our parsing model estimates the pointing score
from one word to another in the input sentence,
which represents the likelihood of the span cov-
ering those words being a legitimate phrase struc-
ture (i.e., a subtree in the constituency tree). Dur-
ing training, the likelihoods of legitimate spans are
maximized using the cross entropy loss. This en-
ables our model to enforce structural consistency,
while avoiding the use of structured loss that re-
quires expensive O(n3) CKY inference (Gaddy
et al., 2018; Kitaev and Klein, 2018). The train-
ing in our model can be fully parallelized without
requiring structured inference as in (Shen et al.,
2018; Gómez and Vilares, 2018). Our pointing
mechanism also allows efficient top-down decod-
ing with a best and worse case running time of
O(n log n) and O(n2), respectively.

In the experiments with English Penn Treebank
parsing, our model without any pre-training
achieves 92.78 F1, outperforming all existing
methods with similar time complexity. With
pre-trained BERT (Devlin et al., 2019), our model
pushes the F1 score to 95.48, which is on par
with the state-of-the-art (Kitaev et al., 2019),
while supporting faster decoding. Our model
also performs competitively on the multilingual
parsing tasks in the SPMRL 2013/2014 shared
tasks and establishes new state-of-the-art in
Basque and Swedish. We will release our code
at https://ntunlpsg.github.io/project/parser/ptr-
constituency-parser

2 Model

Similar to Stern et al. (2017a), we view con-
stituency parsing as the problem of finding a set of
labeled spans over the input sentence. Let S(T)
denote the set of labeled spans for a parse tree T .
Formally, S(T) can be expressed as

S(T) := {((it, jt), lt)}|S(T)|
t=1 for it < jt (1)

where |S(T)| is the number of spans in the tree.
Figure 1 shows an example constituency tree and
its corresponding labeled span representation.

Following the standard practice in parsing
(Gaddy et al., 2018; Shen et al., 2018), we convert
the n-ary tree into a binary form and introduce a
dummy label ∅ to spans that are not constituents
in the original tree but created as a result of bina-
rization. Similarly, the labels in unary chains cor-
responding to nested labeled spans are collapsed
into unique atomic labels, such as S-VP in Fig. 1.

Although our method shares the same “span-
based” view with that of Stern et al. (2017a), our
approach diverges significantly from their frame-
work in the way we treat the whole parsing prob-
lem, and the representation and modeling of the
spans, as we describe below.

2.1 Parsing as Pointing

In contrast to previous approaches, we cast pars-
ing as a series of pointing decisions. For each
index i in the input sequence, the parsing model
points it to another index pi in order to identify the
tree span (i, pi), where i 6= pi. Similar to Pointer
Networks (Vinyals et al., 2015a), each pointing
mechanism is modeled as a multinomial distribu-
tion over the indices of the input tokens (or en-
coder states). However, unlike the original pointer
network where a decoder state points to an en-
coder state, in our approach, every encoder state
hi points to another encoder state hpi .

In this paper, we generally use x) y to mean x
points to y. We will refer to the pointing operation
either as a function of the encoder states (e.g., hi)

hpi) or simply the corresponding indices (e.g., i)
pi). They both mean the same operation where the
pointing function takes the encoder state hi as the
query vector and points to hpi by computing an
attention distribution over all the encoder states.

Let P(T) denote the set of pointing decisions
derived from a tree T by a transformation H, i.e.,
H : T → P(T). For the parsing process to
be valid, the transformation H and its inverse H′
which transforms P(T) back to T , should both
have a one-to-one mapping property. Otherwise,
the parsing model may confuse two different parse
trees with the same pointing representation. In
this paper, we propose a novel transformation that
satisfies this property, as defined by the following
proposition (proof provided in the Appendix).

Proposition 1 Given a binary constituency tree T
for a sentence containing n tokens, the transfor-
mation H converts it into a set of pointing deci-
sions P(T) = {(i) pi, li) : i = 1, . . . , n − 1; i 6=
pi} such that (min(i, pi),max(i, pi)) is the largest
span that starts or ends at i, and li is the label of
the nonterminal associated with the span.

To elaborate further, each pointing decision in
P(T) represents a specific span in S(T). The
pointing i) pi is directional, while the span that
it represents (i′, j′) is non-directional. In other
words, there may exist position i such that i > pi,

https://ntunlpsg.github.io/project/parser/ptr-constituency-parser
https://ntunlpsg.github.io/project/parser/ptr-constituency-parser

3286

Algorithm 1 Convert binary tree to Pointing
Input: Binary tree T and its span representation S(T)
Output: Pointing representation P(T)
P(T) = [] .Empty pointing list
for each leafi in T do

node← leafi
(x, y)← (i, i) .Initialize current span, x ≤ y
li ← ∅ .Initialize label of current span
while x = i or y = i do

pi ← x+ y − i
li ← node.label .The span’s label
node← node.parent
(x, y)← node.span .Span covered by node

end while .Until i is no longer start/end point
push(P(T), (i)pi, li))

end for
return P(T)

while i′ < j′ ∀i′, j′ ∈ [1, n]. In fact, it is easy to
see that if the token at index i is a left-child of a
subtree, the largest span involving i starts at i, and
in this case i < pi and i′ = i, j′ = pi. On the
other hand, if the token is a right-child of a sub-
tree, the respective largest span ends at position i,
in which case i > pi and i′ = pi, j

′ = i (e.g., see
4)2 in Figure 1). In addition, as the spans in S(T)
are unique, it can be shown that the pointing deci-
sions in P(T) are also distinct from one another
(see Appendix for a proof by contradiction).

Given such pointing formulation, for every con-
stituency tree, there exists a trivial case (1)n, l1)
where p1 = n and l1 is generally ‘S’. Thus, to
make our formulation more general with n inputs
and n outputs and convenient for the method de-
scription discussed later on, we add another trivial
case (n) 1, l1). With this generalization, we can
represent the pointing decisions of any binary con-
stituency tree T as:

P(T) = {(i)pi, li) : i = 1, . . . , n; i 6= pi} (2)

The pointing representation of the tree in Figure 1
is given at the bottom of the figure. To illustrate,
in the parse tree, the largest phrase that starts or
ends at token 2 (‘enjoys’) is the subtree rooted at
‘∅’, which spans from 2 to 5. In this case, the
span starts at token 2. Similarly, the largest phrase
that starts or ends at token 4 (‘tennis’) is the span
“enjoys playing tennis”, which is rooted at ‘VP’.
In this case, the span ends at token 4.

Algorithm 1 describes the procedure to convert
a binary tree to its corresponding pointing repre-
sentation. Specifically, from each leaf token i,
the algorithm traverses upward along the hierar-
chy until the non-terminal node that does not start

or end with i. In this way, the largest span starting
or ending with i can be identified.

2.2 Top-Down Tree Inference
In the previous section, we described how to con-
vert a constituency tree T into a sequence of point-
ing decisions P(T). We use this transformation
to train the parsing model (described in detail in
Sections 2.3 - 2.4). During inference, given a sen-
tence to parse, our decoder with the help of the
parsing model predicts P(T), from which we can
construct the tree T . However, not all sets of point-
ings P(T) guarantee the generation of a valid tree.
For example, for a sentence with four (4) tokens,
the pointing P(T) = {(1) 4, l1), (2) 3, l2), (3)

4, l3), (4) 1, l1)} does not generate a valid tree
because token ‘3’ cannot belong to both spans
(2, 3) and (3, 4). In other words, simply taking
the argmax over the pointing distributions may
not generate a valid tree.

Our approach to decoding is inspired by the
span-based approach of Stern et al. (2017a). In
particular, to reduce the search space, we score for
span identification (given by the pointing function)
and label assignment separately.

Span Identification. We adopt a top-down
greedy approach formulated as follows.

k∗ = argmaxk ssplit(i, k, j) (3)

where ssplit(i, k, j) is the score of having a split-
point at position k (i ≤ k < j), as defined by the
following equation.

ssplit(i, k, j) = ρ(k) i) + ρ(k+1)j) (4)

where ρ(k) i) and ρ(k+1) j) are the pointing
scores (probabilities) for spans (i, k) and (k+1, j),
respectively. Note that the pointing scores are
asymmetric, meaning that ρ(i) j) may not be
equal to ρ(j) i), because pointing from i to j is
different from pointing from j to i. This is differ-
ent from previous approaches, where the score of
a span is defined to be symmetric. We build a tree
for the input sentence by computing Eq. 3 recur-
sively starting from the full sentence span (1, n).

In the general case when i < k < j − 1,
our pointing-based parsing model should learn to
assign high scores to the two spans (i, k) and
(k+1, j), or equivalently the pointing decisions
k) i and k+1) j. However, the pointing formula-
tion described so far omits the trivial self-pointing

3287

decisions, which represent the singleton spans. A
singleton span is only created when the splitting
decision splits an n-size span into a single-token
span (singleton span) and a sub-span of size n−1,
i.e., when k = i or k = j−1. For instance, for
the parsing process in Figure 2a, the splitting de-
cision at the root span (1, 5) results in a singleton
span (1, 1) and a general span (2, 5). For this split-
ting decision, Eq. 3 requires the scores of (1, 1)
and (2, 5). However, the set of pointing decisions
P(T) does not cover the pointing for (1, 1). This
discrepancy can be resolved by modeling the sin-
gleton spans separately. To achieve that, we rede-
fine Eq. 3 as follows:

ssplit(i, k, j) =
sp(i) i) + gp(i+1)j) if k = i
gp(j−1) i) + sp(j)j) if k = j − 1
gp(k) i) + gp(k+1)j) otherwise

(5)

where sp and gp respectively represent the scores
for the singleton and general pointing functions (to
be defined formally in Section 2.3).

Remark on structural consistency. It is impor-
tant to note that since the pointing functions are
defined to have a global structural property (i.e.,
the largest span that starts/ends with i), our model
inherently enforces structural consistency. The
pointing formulation of the parsing problem also
makes the training process simple and efficient; it
allows us to train the model effectively with sim-
ple cross entropy loss (see Section 2.4).

Label Assignment. Label assignment of spans
is performed after every split decision. Specifi-
cally, as we split a span (i, j) into two sub-spans
(i, k) and (k+1, j) which corresponds to the point-
ing functions of k) i and k+1) j, we perform the
label assignments for the two new sub-spans as

lk =argmax
l∈L

gc(l|k)

lk+1 =argmax
l∈L

gc(l|k + 1)
(6)

where gc is the label classifier for any general
(non-unary) span and L is the set of possible non-
terminal labels. Following Shen et al. (2018), we
use a separate classifier uc for determining the la-
bels of the unary spans, e.g., the first layer of labels
NP, ∅, . . ., NP, ∅) in Figure 2. Also, note that the
label assignment is done based on only the query
vector (the encoder state that is used to point).

Algorithm 2 Pointing parsing algorithm
Input: Sentence length n; pointing scores: gp(i, j), sp(i, j);

label scores: gc(l|i), uc(l|i), 1 ≤ i ≤ j ≤ n, l ∈ Lg/Lu

Output: Parse tree T
Q = [(1, n)] .queue of spans
S = [(1, n, argmaxl gc(l|1)] .general spans, labels
U ={((t, t), argmaxl uc(l|t))}nt=1 .unary spans, labels
whileQ 6= ∅ do

(i, j) = pop(Q)
if j ≤ i+ 1 then

Continue
end if
k∗ = argmaxi≤k<j ssplit(i, k, j) .using gp, sp
if k = i then

push(Q, (i+ 1, j))
push(S, (i+ 1, j, argmaxl gc(l|i+ 1)))

else if k = j − 1 then
push(Q, (i, j − 1))
push(S, (i, j − 1, argmaxl gc(l|j − 1)))

else
push(Q, (i, k))
push(Q, (k + 1, j))
push(S, (i, k, argmaxl gc(l|k)))
push(S, (k + 1, j, argmaxl gc(l|k + 1)))

end if
end while
T = S ∪ U

Figure 2 illustrates the top-down parsing pro-
cess for our running example. It consists of a
sequence of pointing decisions (Figure 2a, top to
bottom), which are then trivially converted to the
parse tree (Figure 2b). We also provide the pseu-
docode in Algorithm 2. Specifically, the algorithm
finds the best split for the current span (i, j) using
the pointing scores and pushes the newly created
sub-spans into the FIFO queueQ. The process ter-
minates when there are no more spans to be split.
Similar to Stern et al. (2017a), our parsing algo-
rithm has the worst and best case time complexi-
ties of O(n2) and O(n log n), respectively.

2.3 Model Architecture
We now describe the architecture of our parsing
model: the sentence encoder, the pointing model
and the labeling model.

Sentence Encoder. Given an input sequence of
n words X = (x1, . . . , xn), we first embed each
word xi to its respective vector representation ei
as:

ei = echar
i + eword

i + e
pos
i (7)

where echar
i , eword

i , epos
i are respectively the char-

acter, word, and part-of-speech (POS) embed-
dings of the word xi. Following Kitaev and
Klein (2018), we use a character LSTM to com-
pute the character embedding of a word. We ex-
periment with both randomly initialized and pre-

3288

(a) Execution of pointing parsing algorithm (b) Output parse tree.

Figure 2: Inferring the parse tree for a given sentence and its part-of-speech (POS) tags (predicted by an external
POS tagger). Starting with the full sentence span (1, 5) and its label S, we predict split point 1 using the base (sp)
and general (gp) pointing scores as per Eqn. 3-5. The left singleton span (1, 1) is assigned with a label NP and the
right span (2, 5) is assigned with a label ∅ using the label classifier gc as per Eqn. 6. The recursion of splitting
and labeling continues until the process reaches a terminal node. The label assignment for the unary spans is done
by the uc classifier.

trained word embeddings. If pretrained embed-
dings are used, the word embedding eword

i is the
summation of the word’s randomly-initialized em-
bedding and the pretrained embedding. The POS
embeddings (epos

i) are randomly initialized.
The word representations (ei) are then passed to

a neural network based sequence encoder to obtain
their hidden representations. Since our method
does not require any specific encoder, one may use
any encoder model, such as Bi-LSTM (Hochreiter
and Schmidhuber, 1997) or self-attentive encoder
(Kitaev and Klein, 2018). In this paper, unless oth-
erwise specified, we use the self-attentive encoder
model as our main sequence encoder because of its
efficiency with parallel computation. The model
is factorized into content and position information
in both the self-attention sub-layer and the feed-
forward layer. Details about this factorization pro-
cess is provided in Kitaev and Klein (2018).

Pointing and Labeling Models. The results of
the aforementioned sequence encoding process are
used to compute the pointing and labeling scores.
More formally, the encoder network produces a
sequence of n latent vectors H = (h1, . . . ,hn)
for the input sequence X = (x1, . . . , xn). Af-
ter that, we apply four (4) separate position-wise
two-layer Feed-Forward Networks (FFN), formu-

lated as FFN(x) = ReLU(xW1 + b1)W2 + b2, to
transform H into task-specific latent representa-
tions for the respective pointing and labeling tasks.

hgp
i = FFNgp(hi); hsp

i = FFNsp(hi) (8)

hgc
i = FFNgc(hi); huc

i = FFNuc(hi) (9)

Note that there is no parameter sharing between
FFNgp, FFNsp, FFNgc and FFNuc. The pointing
functions are then modeled as the multinomial (or
attention) distributions over the input indices for
each input position i as follows.

gp(i, k) =
exp(hgp

i (hgp
k)T)∑n

k=1 exp(h
gp
i (hgp

k)T)
(10)

sp(i, k) =
exp(hsp

i (hsp
k)T)∑n

k=1 exp(h
sp
i (hsp

k)T)
(11)

For label assignment functions, we simply feed
the label representations Hgc = (hgc

1 , . . . ,h
gc
n)

and Huc = (huc
1 , . . . ,h

uc
n) into the respective

softmax classification layers as follows.

gc(l|i) =
exp(hgc

i wgc
l)∑|Lg |

l=1 exp(hgc
i wgc

l)
(12)

uc(l|i) =
exp(huc

i wuc
l)∑|Lu|

l=1 exp(huc
i wuc

l)
(13)

3289

where Lg and Lu are the set of possible labels for
the general and unary spans respectively, wgc

l and
wuc

l are the class-specific trainable weight vectors.

2.4 Training Objective

We train our parsing model by minimizing the to-
tal loss Ltotal(θ) defined as:

Ltotal(θ) = Lgp(θe, θgp) + Lsp(θe, θsp)
+Lgc(θe, θgc) + Luc(θe, θuc) (14)

where each individual loss is a cross entropy loss
computed for the corresponding labeling or point-
ing task, and θ = {θe, θgp, θsp, θgc, θuc} represents
the overall model parameters; specifically, θe de-
notes the encoder parameters shared by all compo-
nents, while θgp, θsp, θgc and θuc denote the sepa-
rate parameters catering for the four pointing and
labeling functions, gp, sp, gc and uc, respectively.

3 Experiments

To show the effectiveness of our approach, we
conduct experiments on English and Multilingual
parsing tasks. For English, we use the standard
Wall Street Journal (WSJ) part of the Penn Tree-
bank (PTB) (Marcus et al., 1993), whereas for
multilingual, we experiment with seven (7) differ-
ent languages from the SPMRL 2013-2014 shared
task (Seddah et al., 2013): Basque, French, Ger-
man, Hungarian, Korean, Polish and Swedish.

For evaluation on PTB, we report the standard
labeled precision (LP), labeled recall (LR), and la-
belled F1 computed by evalb1. For the SPMRL
datasets, we report labeled F1 and use the same
setup in evalb as Kitaev and Klein (2018).

3.1 English (PTB) Experiments

Setup. We follow the standard train/valid/test
split, which uses sections 2-21 for training, sec-
tion 22 for development and section 23 for evalua-
tion. This gives 45K sentences for training, 1,700
sentences for development, and 2,416 sentences
for testing. Following previous studies, our model
uses POS tags predicted by the Stanford tagger
(Toutanova et al., 2003).

For our model, we adopt the self-attention en-
coder with similar hyperparameter details pro-
posed by Kitaev and Klein (2018). The charac-
ter embeddings are of 64 dimensions. For general

1http://nlp.cs.nyu.edu/evalb/

Model LR LP F1

Top-Down Inference
Stern et al. (2017a) 93.20 90.30 91.80
Shen et al. (2018) 92.00 91.70 91.80
Our Model 92.81 92.75 92.78

CKY/Chart Inference
Gaddy et al. (2018) - - 92.10
Kitaev and Klein (2018) 93.20 93.90 93.55

Other Approaches
Gómez and Vilares (2018) - - 90.7
Liu and Zhang (2017) - - 91.8
Stern et al. (2017b) 92.57 92.56 92.56
Zhou and Zhao (2019) 93.64 93.92 93.78

Table 1: Results for single models (no pre-training) on
the PTB WSJ test set, Section 23.

and unary label classifiers (gc and uc), the hid-
den dimension of the specific position-wise feed-
forward networks is 250, while those for pointing
functions (gp and sp) have hidden dimensions of
1024. Our model is trained using the Adam opti-
mizer (Kingma and Ba, 2015) with a batch size of
100 sentences. Additionally, we use 100 warm-up
steps, within which we linearly increase the learn-
ing rate from 0 to the base learning rate of 0.008.
Model selection for testing is performed based on
the labeled F1 score on the validation set.

Results for Single Models. The experimental
results on PTB for the models without pre-training
are shown in Table 1. As it can be seen, our
model achieves an F1 of 92.78, the highest among
the models using top-down inference strategies.
Specifically, our method outperforms Stern et al.
(2017a) and Shen et al. (2018) by about 1.0 point
in F1-score. Notably, our model with LSTM en-
coder achieves an F1 of 92.26, which is still better
than all the top-down parser methods.

On the other hand, while Kitaev and Klein
(2018) and Zhou and Zhao (2019) achieve higher
F1 score, their inference speed is significantly
slower than ours because of the use of CKY based
algorithms, which run at O(n3) time complexity
for Kitaev and Klein (2018) and O(n5) for Zhou
and Zhao (2019). Furthermore, their training ob-
jectives involve the use of structural hinge loss,
which requires online CKY inference during train-
ing. This makes their training time considerably
slower than that of our method, which is trained

http://nlp.cs.nyu.edu/evalb/

3290

Model F1

Our model BERTBASE-uncased 95.34
Our model BERTLARGE-cased 95.48

Kitaev and Klein (2018) ELMO 95.13
Kitaev et al. (2019) BERTLARGE-cased 95.59

Table 2: Restuls on PTB WSJ test set with pretraining.

directly with span-wise cross entropy loss. In ad-
dition, Zhou and Zhao (2019) uses external su-
pervision (head information) from the dependency
parsing task. Dependency parsing models, in fact,
have a strong resemblance to the pointing mecha-
nism that our model employs (Ma et al., 2018). As
such, integrating dependency parsing information
into our model may also be beneficial. We leave
this for future work.

Results with Pre-training Similar to Kitaev
and Klein (2018) and Kitaev et al. (2019), we
also evaluate our models with BERT (Devlin et al.,
2019) embeddings . Following them in the inclu-
sion of contextualized token representations, we
adjust the number of self-attentive layers to 2 and
the base learning rate to 0.00005.

As shown in Table 2, our model achieves an F1
score of 95.48, which is on par with the state-of-
the-art models. However, the advantage of our
method is that it is faster than those methods.
Specifically, our model runs at O(n2) worst-case
time complexity, while that of Kitaev et al. (2019)
is O(n3). Comparison on parsing speed is dis-
cussed in the following section.

Parsing Speed Comparison. In addition to
parsing performance in F1 scores, we also com-
pare our parser against the previous neural ap-
proaches in terms of parsing speed. We record
the parsing timing over 2416 sentences of the PTB
test set with batch size of 1, on a machine with
NVIDIA GeForce GTX 1080Ti GPU and Intel(R)
Xeon(R) Gold 6152 CPU. This setup is compara-
ble to the setup of Shen et al. (2018).

As shown in Table 3, our parser outperforms
Shen et al. (2018) by 19 more sentences per sec-
ond, despite the fact that our parsing algorithm
runs at O(n2) worse-case time complexity while
the one used by Shen et al. (2018) can theoreti-
cally run at O(n log n) time complexity. To elab-
orate further, the algorithm presented in Shen et al.

Model # sents/sec

Petrov and Klein (2007) 6.2
Zhu et al. (2013) 89.5
Liu and Zhang (2017) 79.2
Stern et al. (2017a) 75.5
Kitaev and Klein (2018) 94.40
Shen et al. (2018) 111.1

Our model 130.2

Table 3: Parsing speed for different models computed
on the PTB WSJ test set.

(2018) can only run at O(n2) complexity. To
achieve O(n log n) complexity, it needs to sort
the list of syntactic distances, which the provided
code2 does not implement. In addition, the speed
up for our method can be attributed to the fact
that our algorithm (see Algorithm 2) uses a while
loop, while the algorithm of Shen et al. (2018)
has many recursive function calls. Recursive al-
gorithms tend to be less empirically efficient than
their equivalent while/for loops in handling low-
level memory allocations and function call stacks.

3.2 SPMRL Multilingual Experiments

Setup. Similar to the English PTB experiments,
we use the predicted POS tags from external tag-
gers (provided in the SPMRL datasets). The
train/valid/test split is reported in Table 6. For sin-
gle model evaluation, we use the identical hyper-
parameters and optimizer setups as in English
PTB. For experiments with pre-trained models, we
use the multilingual BERT (Devlin et al., 2019),
which was trained jointly on 104 languages.

Results. The results for the single models are re-
ported in Table 4. We see that our model achieves
the highest F1 score in Basque and Swedish,
which are higher than the baselines by 0.52 and
1.37 respective in F1. Our method also performs
competitively with the previous state-of-the-art
methods on other languages.

Table 5 reports the performance of the mod-
els using pre-trained BERT. Evidently, our method
achieves state-of-the-art results in Basque and
Swedish, and performs on par with the previous
best method by Kitaev et al. (2019) in the other
five languages. Again, note that our method is
considerably faster and easier to train than the

2https://github.com/hantek/
distance-parser

https://github.com/hantek/distance-parser
https://github.com/hantek/distance-parser

3291

Model Basque French German Hebrew Hungarian Korean Polish Swedish

(Anders Bjorkelund and Szanto, 2014) 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50
(Coavoux and Crabbé, 2017) 88.81 82.49 85.34 89.87 92.34 86.04 93.64 84.0
(Kitaev and Klein, 2018) 89.71 84.06 87.69 90.35 92.69 86.59 93.69 84.45
Our Model 90.23 82.20 84.91 90.63 91.07 85.36 93.99 86.87

Table 4: SPMRL experiment single model test.

Model Basque French German Hebrew Hungarian Korean Polish Swedish

(Kitaev et al., 2019) 91.63 87.43 90.20 92.99 94.90 88.80 96.36 88.86
Our model 92.02 86.69 90.28 93.67 94.24 88.71 96.14 89.10

Table 5: SPMRL experiment pre-trained model test (with pretraining).

Language Train Valid Test

Basque 7,577 948 946
French 14,759 1,235 2,541
German 40,472 5,000 5,000
Hebrew 5,000 500 716
Hungarian 8,146 1,051 1,009
Korean 23,010 2,066 2,287
Polish 6,578 821 822
Swedish 5,000 494 666

Table 6: SPMRL Multilingual dataset split.

method of Kitaev et al. (2019).

4 Related Work

Prior to the neural tsunami in NLP, parsing meth-
ods typically model correlations in the output
space through probabilistic context-free grammars
(PCFGs) on top of sparse (and discrete) input rep-
resentations either in a generative regime (Klein
and Manning, 2003) or a discriminative regime
(Finkel et al., 2008) or a combination of both
(Charniak and Johnson, 2005). Beside the chart
parser approach, there is also a long tradition of
transition-based parsers (Sagae and Lavie, 2005)

Recently, however, with the advent of pow-
erful neural encoders such as LSTMs (Hochre-
iter and Schmidhuber, 1997), the focus has been
switched more towards effective modeling of cor-
relations in the input’s latent space, as the output
structures are nothing but a function of the input
(Gaddy et al., 2018). Various neural network mod-
els have been proposed to effectively encode the
dense input representations and correlations, and
have achieved state-of-the-art parsing results. To
enforce the structural consistency, existing neural

parsing methods either employ a transition-based
algorithm (Dyer et al., 2016; Liu and Zhang, 2017;
Kitaev and Klein, 2019) or a globally optimized
chart-parsing algorithm (Gaddy et al., 2018; Ki-
taev and Klein, 2018).

Meanwhile, researchers also attempt to convert
the constituency parsing problem into tasks that
can be solved in alternative ways. For instance,
Fernández-González and Martins (2015) trans-
form the phrase structure into a special form of
dependency structure. Such a dependency struc-
ture, however, requires certain corrections while
converting back to the corresponding constituency
tree. Gómez and Vilares (2018) and Shen et al.
(2018) propose to map the constituency tree for
a sentence of n tokens into a sequence of n − 1
labels or scalars based on the depth or height
of the lowest common ancestors between pairs
of consecutive tokens. In addition, methods like
(Vinyals et al., 2015b; Vaswani et al., 2017) apply
the sequence-to-sequence framework to “trans-
late” a sentence into the linearized form of its
constituency tree. While being trivial and simple,
parsers of this type do not guarantee structural cor-
rectness, because the syntax of the linearized form
is not constrained during tree decoding.

Our approach differs from previous work in that
it represents the constituency structure as a se-
ries of pointing representations and has a rela-
tively simpler cross entropy based learning objec-
tive. The pointing representations can be com-
puted in parallel, and can be efficiently converted
into a full constituency tree using a top-down al-
gorithm. Our pointing mechanism shares cer-
tain similarities with the Pointer Network (Vinyals
et al., 2015a), but is distinct from it in that our
method points a word to another word within the
same encoded sequence.

3292

5 Conclusion

We have presented a novel constituency parsing
method that is based on a pointing mechanism.
Our method utilizes an efficient top-down de-
coding algorithm that uses pointing functions for
scoring possible spans. The pointing formula-
tion inherently captures global structural proper-
ties and allows efficient training with cross entropy
loss. With experiments we have shown that our
method outperforms all existing top-down meth-
ods on the English Penn Treebank parsing task.
Our method with pre-training rivals the state-of-
the-art method, while being faster than it. On mul-
tilingual constituency parsing, it also establishes
new state-of-the-art in Basque and Swedish.

Acknowledgments

We would like to express our gratitude to the
anonymous reviewers for their insightful feed-
back on our paper. Shafiq Joty would like to
thank the funding support from his Start-up Grant
(M4082038.020).

References
Agnieszka Falenska Richard Farkas Thomas

Mueller Wolfgang Seeker Anders Bjorkelund,
Ozlem Cetinoglu and Zsolt Szanto. 2014. The ims-
wrocław-szeged-cis entry at the spmrl 2014 shared
task: Reranking and morphosyntax meet unlabeled
data. In Proceedings of the First Joint Workshop
on Statistical Parsing of Morphologically Rich
Languages and Syntactic Analysis of NonCanonical
Languages, pages 97–102.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’05), pages 173–180, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Maximin Coavoux and Benoı̂t Crabbé. 2017. Multi-
lingual lexicalized constituency parsing with word-
level auxiliary tasks. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, pages 331–336, Valencia, Spain. Associa-
tion for Computational Linguistics.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1–11, Austin,
Texas. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Greg Durrett and Dan Klein. 2015. Neural CRF pars-
ing. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguis-
tics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Pa-
pers), pages 302–312, Beijing, China. Association
for Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, Califor-
nia. Association for Computational Linguistics.

Daniel Fernández-González and André F. T. Martins.
2015. Parsing as reduction. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1523–1533, Beijing,
China. Association for Computational Linguistics.

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, condi-
tional random field parsing. In Proceedings of ACL-
08: HLT, pages 959–967, Columbus, Ohio. Associ-
ation for Computational Linguistics.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 999–1010.
Association for Computational Linguistics.

Carlos Gómez, Rodrı́guez and David Vilares. 2018.
Constituent parsing as sequence labeling. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1314–
1324. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862
https://www.aclweb.org/anthology/E17-2053
https://www.aclweb.org/anthology/E17-2053
https://www.aclweb.org/anthology/E17-2053
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/v1/P15-1030
https://doi.org/10.3115/v1/P15-1030
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.3115/v1/P15-1147
https://www.aclweb.org/anthology/P08-1109
https://www.aclweb.org/anthology/P08-1109
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/D18-1162

3293

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Mul-
tilingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3499–3505, Florence, Italy. Associa-
tion for Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency
parsing with a self-attentive encoder. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2676–2686, Melbourne, Australia. As-
sociation for Computational Linguistics.

Nikita Kitaev and Dan Klein. 2019. Tetra-tagging:
Word-synchronous parsing with linear-time infer-
ence. CoRR, abs/1904.09745.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Com-
putational Linguistics, pages 423–430, Sapporo,
Japan. Association for Computational Linguistics.

Jiangming Liu and Yue Zhang. 2017. Shift-reduce
constituent parsing with neural lookahead features.
Transactions of the Association for Computational
Linguistics, 5:45–58.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414, Melbourne, Australia.
Association for Computational Linguistics.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Comput. Lin-
guist., 19(2):313–330.

Slav Petrov and Dan Klein. 2007. Improved infer-
ence for unlexicalized parsing. In Human Language
Technologies 2007: The Conference of the North
American Chapter of the Association for Computa-
tional Linguistics; Proceedings of the Main Confer-
ence, pages 404–411, Rochester, New York. Associ-
ation for Computational Linguistics.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. In Proceed-
ings of the Ninth International Workshop on Parsing
Technology, pages 125–132. Association for Com-
putational Linguistics.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim
Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
Woliński, Alina Wróblewska, and Eric Villemonte
de la Clergerie. 2013. Overview of the SPMRL 2013

shared task: A cross-framework evaluation of pars-
ing morphologically rich languages. In Proceed-
ings of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146–182,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018. Straight to the tree: Constituency parsing
with neural syntactic distance. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1171–1180, Melbourne, Australia. Association for
Computational Linguistics.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017a.
A minimal span-based neural constituency parser.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, pages 818–827.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017b.
Effective inference for generative neural parsing.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1695–1700, Copenhagen, Denmark. Association for
Computational Linguistics.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology -
Volume 1, NAACL ’03, pages 173–180. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015a. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2692–2700. Curran Associates,
Inc.

Oriol Vinyals, Ł ukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015b. Gram-
mar as a foreign language. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2773–2781. Curran Associates,
Inc.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on penn treebank. In

https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
http://arxiv.org/abs/1904.09745
http://arxiv.org/abs/1904.09745
http://arxiv.org/abs/1904.09745
https://doi.org/10.3115/1075096.1075150
https://doi.org/10.3115/1075096.1075150
https://doi.org/10.1162/tacl_a_00045
https://doi.org/10.1162/tacl_a_00045
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
http://dl.acm.org/citation.cfm?id=972470.972475
http://dl.acm.org/citation.cfm?id=972470.972475
https://www.aclweb.org/anthology/N07-1051
https://www.aclweb.org/anthology/N07-1051
https://www.aclweb.org/anthology/W05-1513
https://www.aclweb.org/anthology/W05-1513
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/W13-4917
https://doi.org/10.18653/v1/P18-1108
https://doi.org/10.18653/v1/P18-1108
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.3115/1073445.1073478
https://doi.org/10.3115/1073445.1073478
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf
https://www.aclweb.org/anthology/P19-1230/
https://www.aclweb.org/anthology/P19-1230/

3294

Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, ACL 2019, Flo-
rence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, pages 2396–2408.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics, pages 434–443. Association for
Computational Linguistics.

Appendix

Proof of Proposition 1 Given P(T) = {(i)

pi, li) : i = 1, . . . , n− 1; i 6= pi}, generated from
tree T (here we omit the unary leaves and POS-
tags), we at first define the inverse H′ as follows:

H′(P(T)) = {((min(i, pi),max(i, pi)), li) :
i = 1, . . . , n− 1}

We would proveH′(P(T)) = T
A binary tree T has exactly n−1 internal nodes (or
spans). It is noteworthy to mention that for each
pointing (i) pi, li), ((min(i, pi),max(i, pi)), li)
is a span in T . As we consider i from 1 to
n − 1, there are totally at most n-1 such spans in
H′(P(T))(we do not know whether these spans
are not be distinct). Therefore, if we can prove
that all ((min(i, pi),max(i, pi)), li) spans are
distinct for i = 1, . . . , n−1,H′(P(T)) will cover
all the span in T , therefore, H′(P(T)) = T . We
prove this by contradiction.
Assume that there exist i, j ∈ {1, . . . , n − 1}
such that (min(i, pi),max(i, pi)) =
(min(j, pj),max(j, pj)) for j 6= i. First,
if pi = n, then according to the above
condition, (min(j, pj),max(j, pj)) =
(min(i, n),max(i, n)) = (i, n). This means,
either j = n or j = i, which contradicts
with our initial assumption that j 6= i and
j ∈ {1, . . . , n − 1}. So, pi cannot be equal to
n. Similarly, we can prove that pj also cannot
be equal to n. Thus, we can conclude that
pi, pj ∈ {1, . . . , n − 1}. Now, without loss of
generality, let us assume that j > i. With this
assumption, the two spans will be identical if and
only if pi = j and pj = i. In this case, the span
(i, j) would be the largest span that starts with i
and ends at j. However, since 1 ≤ i < j ≤ n− 1,
the span (i, j) must be a left or right child of an-
other (parent) span. If (i, j) is the left child, then
the parent span needs to start with i, making it

larger than (i, j). This contradicts to the property
that (i, j) = (i, pi) is the largest span that starts or
ends at i. Similarly, if (i, j) is the right child, then
the parent span needs to end at j, making it larger
than (i, j). This again contradicts to the property
that (j, i) = (j, pj) is the largest span that starts
or ends at j.
In conclusion, we have H′(P(T)) = T . This
would guarantee that H and H′ are one-to-one:
If there exist T1, T2 such that P(T1) = P(T2),
we would have H′(P(T1)) = H′(P(T2))
or T1 = T2.If there exist T1, T2 such that
H′(P(T1)) = H′(P(T2)), we would have
T1 = T2.

https://www.aclweb.org/anthology/P13-1043
https://www.aclweb.org/anthology/P13-1043

