
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3259–3266
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

3259

Towards Better Non-Tree Argument Mining: Proposition-Level Biaffine
Parsing with Task-Specific Parameterization

Gaku Morio, Hiroaki Ozaki, Terufumi Morishita, Yuta Koreeda and Kohsuke Yanai
Hitachi, Ltd.

Research and Development Group
Kokubunji, Tokyo, Japan

{gaku.morio.vn, hiroaki.ozaki.yu, terufumi.morishita.wp,
yuta.koreeda.pb, kohsuke.yanai.cs}@hitachi.com

Abstract

State-of-the-art argument mining studies have
advanced the techniques for predicting argu-
ment structures. However, the technology
for capturing non-tree-structured arguments is
still in its infancy. In this paper, we focus on
non-tree argument mining with a neural model.
We jointly predict proposition types and edges
between propositions. Our proposed model in-
corporates (i) task-specific parameterization
(TSP) that effectively encodes a sequence of
propositions and (ii) a proposition-level bi-
affine attention (PLBA) that can predict a
non-tree argument consisting of edges. Exper-
imental results show that both TSP and PLBA
boost edge prediction performance compared
to baselines.

1 Introduction

Argument mining, a research area that focuses on
predicting argumentation structures in a text, has
been receiving much attention. To date, efforts in
argument mining were devoted to predicting tree
arguments in which a claim proposition is repre-
sented as a root and premise propositions are repre-
sented as leaves. For example, Stab and Gurevych
(2017) introduced Argument Annotated Essays
(hereafter, Essay), and researchers attempted to
predict tree arguments in the corpus (Eger et al.,
2017; Potash et al., 2017; Kuribayashi et al., 2019).

However, these techniques lack the capability
of dealing with more flexible arguments such as
reason edges where a proposition can have several
parents. To this end, Park and Cardie (2018) pro-
vided a less restrictive argument mining dataset
known as Cornell eRulemaking Corpus (CDCP),
which contains flexible edges (see VALUES (a),
(b), and TESTIMONY (e) in Figure 1). Figure 2
shows a distribution of outgoing edges for Essay
and CDCP. Propositions in CDCP have sparse con-
nections, making the majority of propositions iso-

... [I'm with Massachusetts on this one.]a

... [Repetitive and robo - calls are
annoying and not productive.]b ... [
Another fact about robo - calls is that
their messages often start in the
middle,]c ... [or maybe this is done on
purpose.]d ... [When it has happened to
me, I just hang up.]e ... [Policies
regulating the number of contacts made
within a specific time period should
include all modes of technology.]f

VALUE	(a)

VALUE	(b)

FACT	(c)

VALUE	(d)

TESTIMONY	(e)

POLICY	(f)
REASON

REASON

REASON

Figure 1: Example graph in the CDCP corpus

0 1 2 3 4 5
#outgoing edge

0

2000

4000

fre
qu

en
cy Essay

CDCP

Figure 2: Distribution of the outgoing edges (i.e., Sup-
port/Attack or REASON/EVIDENCE relations) from a
node (proposition) in Essay and CDCP corpora

lated from the others. Besides, a proposition in
Essay has at most one outgoing edge, while that in
CDCP has a variable number of edges (i.e., there
are about 200 propositions which have two or more
outgoing edges). Therefore, it is important to work
on the less restrictive arguments. Yet, it has not
been deeply studied except a few studies (Niculae
et al., 2017; Galassi et al., 2018).

In this paper, we present a novel model for non-
tree argument mining. Different from the previ-
ous studies of Niculae et al. (2017); Galassi et al.
(2018), we focus on an effective encoding for the
propositions and a graph-based non-tree argument
parsing technique. Given sentence or clause spans
in an argument, our model jointly predicts proposi-
tion types for the spans, edges between the proposi-
tions and edge labels by employing following two
architectures:
– Task-Specific Parameterization (TSP) is an ef-
fective encoding step for the proposition sequence.
On top of a shared encoder, we prepare two dis-

3260

tinct attention-to-encoder layers to maintain task-
specific representations. One is for the proposition
type, and the other for the edges (and their labels).
TSP employs our expectation that edge- and propo-
sition type-specific representations should be sep-
arately obtained. This is because representations
of proposition types and edges are relatively less
bonded when compared to the tree-structured Es-
say where each premise proposition always has one
outgoing edge.
– Proposition-Level Biaffine Attention (PLBA)
is used to predict non-tree edges after the encod-
ing step. Biaffine attention has recently been used
for syntactic or semantic token-to-token depen-
dency parsing (Dozat and Manning, 2017, 2018;
Wang et al., 2019; Zhang et al., 2019; Li et al.,
2019b,a). We extend the biaffine attention to pre-
dict proposition-to-proposition dependencies.

Experimental results on CDCP show that our
proposed model improves performance. Analyses
also show that task-specific information can be cap-
tured by TSP.

2 Dataset

We use CDCP (Park and Cardie, 2018; Niculae
et al., 2017) with 731 arguments. The corpus
provides five types of propositions (32 REFER-
ENCE, 746 FACT, 1026 TESTIMONY, 2160 VALUE

and 815 POLICY), and two types of argumentative
edges (1307 REASON and 46 EVIDENCE). For ex-
ample, FACT poses a truth value that can be verified
with objective evidence: That process usually takes
as much as two years or more. CDCP also provides
directed edges between propositions and edge la-
bel. A proposition i is REASON for a proposition j
if i provides rationale for j, or is EVIDENCE if it
proves whether j is true or not.

3 Task Formalization

Input: We assume a text consisting of N tokens
and M proposition spans is given. We denote
the i-th proposition span as (START(i),END(i))
where START(i) and END(i) are the starting and
ending token indices, respectively. Thus, 1 ≤
START(i) ≤ END(i) ≤ N .
Output: For each given span i, we predict its
proposition type, outgoing edges, and edge labels
(i.e., REASON and EVIDENCE), where the graph
does not necessarily form a tree.

4 Approach

An overview of our proposed model is shown in
Figure 3 (right). We encode propositions by TSP,
and use PLBA to obtain non-tree arguments.

We use wt to denote the concatenation of t-th set
of word features, each set consisting of a surface,
a part-of-speech tag, a GloVe vector (Pennington
et al., 2014) and an optional ELMo vector (Peters
et al., 2018). The input words for span i are fed
into a bidirectional LSTM:

hSTART(i):END(i) = BILSTM
(
wSTART(i):END(i)

)
.

4.1 TSP: Task-Specific Parameterization
We provide task-specific encoding layers, one for
proposition types and the other for edges (and
their labels), on the top of the BILSTM. We
expect the lower layers to extract task-universal
representations and the upper layers to extract
more task-specific representations (Liu et al., 2019;
Ethayarajh, 2019). First, to be aware of infor-
mative tokens such as discourse markers, we ob-
tain task-aware span representations for each task
τ ∈ {type, edge}:

aτ,t = v>
τ (Wτht + bτ),

sτ,i,t =
exp(aτ,t)∑END(i)

k=START(i) exp(aτ,k)
,

h
span att
τ,i =

END(i)∑
t=START(i)

sτ,i,tht,

where vτ , Wτ and bτ are parameters. We note that
h

span att
τ,i ∈ {hspan att

type,i ,h
span att
edge,i }. Then, each type-

and edge-specific proposition span is represented
as:

h
span
type,i = hEND(i) ⊕ h

span att
type,i ⊕ φ(i),

h
span
edge,i = hEND(i) ⊕ h

span att
edge,i ⊕ φ(i),

where ⊕ is a concatenation operation and φ(i) is a
span length feature. The span representations are
then fed into new BiLSTMs to encode task-specific
proposition sequences:

stype,i = BILSTMtype(h
span
type,i),

sedge,i = BILSTMedge(h
span
edge,i).

4.2 PLBA: Proposition-Level Biaffine
Attention

To predict non-tree edges between propositions, we
use biaffine attention (Dozat and Manning, 2018)

3261

MLPtype

MLP
(trg)

edge

Value Value

edge

MLP
(src)
edge MLP

(src)
label

MLPtype

⊗

attentionattention

MLPtype

\

Value Value

MLPtype

⊗

START(�)

END(�)

attentionattention
attentionattention

edge
classifier

label
classifier

Task-Specific
Parameterization

(TSP)

type
classifier

Proposition-Level
Biaffine Attention

(PLBA)

MLP
(trg)

label

Span �

Span �

START(�)

END(�)

typeBILSTM

BILSTM

BILSTM

Figure 3: Simplified overview of (left) non-TSP model using a naive single attention-to-encoder system and (right)
our proposed model. Note that, for each figure, only two propositions in six propositions are shown for the
visibility.

that computes scores of all proposition pairs by the
following operation:

BIAFFINEk (x,y) =

[
x
1

]>
Uky,

where Uk is a parameter. We apply multi-layer per-
ceptrons (MLPs) and a biaffine operation to a pair
of edge-specific representations (sedge,i, sedge,j) to
obtain a probability of a directed edge from i-th
span to j-th span:

e(src)
i = MLP(src)

edge

(
sedge,i

)
,

e
(trg)
j = MLP(trg)

edge

(
sedge,j

)
,

ˆedgei,j = sigmoid
(

BIAFFINEedge

(
e(src)
i , e

(trg)
j

))
,

and the label for the edge (i, j) is calculated as

`(src)
i = MLP(src)

label(sedge,i),

`
(trg)
j = MLP(trg)

label(sedge,j),

ˆlabeli,j = softmax
(

BIAFFINElabel

(
`(src)
i , `

(trg)
j

))
.

We train edges and labels by summing the losses,
backpropagating gradients for the labels only
through gold edges. At inference, the predicted
labels are masked by the edges: ˆedgei,j ⊗ ˆlabeli,j .

4.3 Joint Learning with Proposition Type
We classify the proposition type for span i
with the type-specific representation: ˆtypei =
softmax

(
MLPtype

(
stype,i

))
. Finally, we mini-

mize the joint objective of edge loss Ledge
i , label

loss Llabel
i and type loss Ltype

i :

L =
M∑
i=1

(
λedgeLedge

i + λlabelLlabel
i + λtypeLtype

i

)
,

where λ are hyperparameters to adjust training.

5 Experiments

Following Niculae et al. (2017), we evaluate the test
set of CDCP that contains 973 propositions and 272
edges. F1 scores for the proposition type prediction
and the edge prediction along with their average
are used for the evaluations. For the edge labels,
we only consider the classification of EVIDENCE

rather than macro-averaged scores because labels
are highly imbalanced. We calculate label scores
on gold edges.

5.1 Baselines

To the best of our knowledge, two existing stud-
ies are comparable in our task settings. The first
set of baselines are factor-based models (SVM ba-
sic/full/strict ; RNN basic/full/strict; Niculae et al.,
2017). Another set of baselines are neural residual
models (deep basic PG/LG ; deep residual PG/LG;
Galassi et al., 2018), which are the state-of-the-art
models in terms of edge classification.

We also provided a non-TSP model for com-
parison where we use a joint aggregation to make
stype,i = sedge,i. To this end, we provide a shared

3262

model edge type
avg. avg. label

EVIDENCE
deep basic: LG 22.56 43.79 33.18 -
RNN: full 14.6 52.4 33.5 -
RNN: strict 10.5 65.9 38.2 -
deep basic: PG 22.45 63.31 42.88 -
RNN: basic 14.4 72.7 43.5 -
deep residual: PG 20.76 71.99 46.37 -
deep residual: LG 29.29 65.28 47.28 -
SVM: basic 24.7 71.6 48.1 -
SVM: full 25.1 73.5 49.3 -
SVM: strict 26.7 73.2 50.0 -
ours 34.04 78.91 56.48 18.73
+ checkpoint ensemble 33.84 79.48 56.66 21.28

Table 1: F1 comparison against the existing models on
CDCP

representation for both type and edge:

h
span
type&edge,i = h

span
type,i = h

span
edge,i,

= hEND(i) ⊕ h
span att
type&edge,i ⊕ φ(i).

and we use a joint encoder:

stype&edge,i = stype,i = sedge,i

= BILSTMtype&edge(h
span
type&edge,i).

According to the change above, the non-TSP model
also requires us to modify the pre-biaffine MLPs
and the proposition type classifier (see Appendix
for more details).

5.2 Implementation
GloVe (Pennington et al., 2014) and ELMo (Pe-
ters et al., 2018) were used as input embeddings.
The hyperparameters were tuned with Optuna (Ak-
iba et al., 2019) without using ELMo and TSP for
fair comparison (see Appendix for more details).
Each model was trained for 100 epochs with Adam
(Kingma and Ba, 2015), and we selected a model
that exhibited the highest average development F1
scores amongst all the classifiers.

6 Results

We ran the experiment 30 times with different ran-
dom seeds. Table 1 shows their average scores,
showing our models outperform all the baselines.
F1 performance for each proposition type are:
FACT=51.58, POLICY=83.32, REFERENCE=100.0,
TESTIMONY=78.99, and VALUE=80.67. We also
report the results of our model with checkpoint
ensemble (Chen et al., 2017)1, showing a stable

1Different from the study, we simply employed the best
three checkpoints.

25.0

30.0

35.0

65.0

70.0

75.0

80.0

(a) edge

65.0

70.0

75.0

80.0

(b) type

Figure 4: Task-specific ablation study (F1 scores). The
dashed red line indicates a state-of-the-art baseline.

but so because why disagree agree would i
0.00

0.25

0.50

0.75

1.00

at
te

nt
io

n
va

lu
e

edge
type

Figure 5: Attention weight analysis with a violin plot
by a kernel density estimation

performance for both the proposition type and EV-
IDENCE label classification.

6.1 Ablation Study

Figure 4 shows ablation studies. The non-ELMo
model already outperforms the state-of-the-art base-
line in the edge prediction task, showing that PLBA
is effective. Besides, ELMo boosted the type clas-
sification.

Figure 4a shows that the edge scores for the
non-multi-task model are significantly lower, while
Figure 4b shows that its type scores are barely af-
fected. The result implies the edge task utilizes type
information in the lower layer, but the type task is
less dependent on edges. Besides, the edge scores
for the non-TSP model are worse, indicating that
TSP is effective in obtaining a stable performance.
The result implies that TSP acquires edge-specific
representations independently from types.

6.2 What Does TSP Learn?

To further analyze TSP, we investigated the task-
specific token attention sτ,i,t. Figure 5 shows the at-
tention distributions by a kernel density estimation
for a number of selected tokens. The figure shows
that not only discourse markers (i.e., because, but
and so) but rhetorical or subjective claims (i.e., why
and disagree) were focused in edge predictions. We
found in the corpus that propositions with disagree
and why are likely to be a top (claim) node. This
suggests that these subjective statements can be

3263

used for predicting the top nodes.
For proposition types, a number of first-person

pronouns such as I were useful. We attribute this re-
sult to the TESTIMONY propositions which express
personal experiences, e.g., but I never received any
notice from my original mortgage lender that my
mortgage was sold.

7 Related Work

Researchers in argument mining have been utiliz-
ing Essay (Stab and Gurevych, 2014), a tree argu-
ment corpus. For example, Persing and Ng (2016)
employed integer linear programming. Eger et al.
(2017) investigated argument mining as a depen-
dency parsing problem with neural models. Potash
et al. (2017) developed a pointer network architec-
ture to predict edges. However, we cannot simply
utilize them for non-tree arguments because these
models were built upon the assumption that an ar-
gument forms a tree structure.

Non-tree arguments are relatively less empha-
sized. Niculae et al. (2017) attempted to resolve
the problem with a factor-based model. Our study
is primarily inspired by the semantic dependency
parsing of Dozat and Manning (2018) and we pre-
dict the whole graph jointly. Galassi et al. (2018)
proposed a deep learning-based model that utilizes
residual connections to predict proposition pair re-
lations.

8 Conclusion

This paper focused on non-tree argument mining.
We provided an approach to effectively encode a
proposition sequence and to predict non-tree edges.
Experimental results showed that our proposed
model outperforms baselines. This paper demon-
strated that we could successfully analyze more
flexible structures in arguments. For future work,
we aim to develop a universal model to handle both
tree and non-tree arguments.

Acknowledgments

We appreciate Prof. Dr. Naoaki Okazaki at Tokyo
Institute of Technology for his helpful comments.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase,

Takeru Ohta, and Masanori Koyama. 2019. Op-
tuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’19, pages 2623–
2631, New York, NY, USA. ACM.

Hugh Chen, Scott Lundberg, and Su-In Lee. 2017.
Checkpoint ensembles: Ensemble methods from a
single training process. CoRR, abs/1710.03282.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 484–490, Mel-
bourne, Australia. Association for Computational
Linguistics.

Steffen Eger, Johannes Daxenberger, and Iryna
Gurevych. 2017. Neural end-to-end learning for
computational argumentation mining. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 11–22, Vancouver, Canada. Association
for Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Andrea Galassi, Marco Lippi, and Paolo Torroni. 2018.
Argumentative link prediction using residual net-
works and multi-objective learning. In Proceedings
of the 5th Workshop on Argument Mining, pages
1–10, Brussels, Belgium. Association for Computa-
tional Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015.

Tatsuki Kuribayashi, Hiroki Ouchi, Naoya Inoue, Paul
Reisert, Toshinori Miyoshi, Jun Suzuki, and Ken-
taro Inui. 2019. An empirical study of span rep-
resentations in argumentation structure parsing. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4691–
4698, Florence, Italy. Association for Computational
Linguistics.

Ying Li, Zhenghua Li, Min Zhang, Rui Wang, Sheng
Li, and Luo Si. 2019a. Self-attentive biaffine de-
pendency parsing. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
http://arxiv.org/abs/1710.03282
http://arxiv.org/abs/1710.03282
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
http://aclweb.org/anthology/P17-1002
http://aclweb.org/anthology/P17-1002
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/W18-5201
https://doi.org/10.18653/v1/W18-5201
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/P19-1464
https://www.aclweb.org/anthology/P19-1464
https://doi.org/10.24963/ijcai.2019/704
https://doi.org/10.24963/ijcai.2019/704

3264

Intelligence, IJCAI-19, pages 5067–5073. Interna-
tional Joint Conferences on Artificial Intelligence
Organization.

Zuchao Li, Hai Zhao, Zhuosheng Zhang, Rui Wang,
Masao Utiyama, and Eiichiro Sumita. 2019b. SJTU-
NICT at MRP 2019: Multi-task learning for end-to-
end uniform semantic graph parsing. In Proceed-
ings of the Shared Task on Cross-Framework Mean-
ing Representation Parsing at the 2019 Conference
on Natural Language Learning, pages 45–54, Hong
Kong. Association for Computational Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Vlad Niculae, Joonsuk Park, and Claire Cardie. 2017.
Argument mining with structured SVMs and RNNs.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 985–995, Vancouver, Canada.
Association for Computational Linguistics.

Joonsuk Park and Claire Cardie. 2018. A corpus of
eRulemaking user comments for measuring evalua-
bility of arguments. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC 2018), Miyazaki, Japan. Eu-
ropean Language Resources Association (ELRA).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Isaac Persing and Vincent Ng. 2016. End-to-end ar-
gumentation mining in student essays. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1384–1394, San Diego, California. Association for
Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2017. Here’s my point: Joint pointer architecture
for argument mining. In Proceedings of the 2017

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1364–1373, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Christian Stab and Iryna Gurevych. 2014. Annotating
argument components and relations in persuasive es-
says. In COLING 2014, 25th International Con-
ference on Computational Linguistics, Proceedings
of the Conference: Technical Papers, August 23-29,
2014, Dublin, Ireland, pages 1501–1510.

Christian Stab and Iryna Gurevych. 2017. Parsing ar-
gumentation structures in persuasive essays. Com-
putational Linguistics, 43(3):619–659.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-order semantic dependency parsing with
end-to-end neural networks. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4609–4618, Florence,
Italy. Association for Computational Linguistics.

Yue Zhang, Wei Jiang, Qingrong Xia, Junjie Cao, Rui
Wang, Zhenghua Li, and Min Zhang. 2019. SUDA-
Alibaba at MRP 2019: Graph-based models with
BERT. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 149–157, Hong Kong. Association for Com-
putational Linguistics.

A Appendices

A.1 Input Representation

Following the work of Kuribayashi et al. (2019)
and Potash et al. (2017), we propose incorporating
multiple types of token representation to provide
rich input features. Specifically, the proposed sys-
tem combines surface, part-of-speech (POS) tags,
GloVe (Pennington et al., 2014) embedding, and
ELMo (Peters et al., 2018) as input features for
each token. The following descriptions explain
how we acquire each input representation:
Surface Tokens are parsed by SpaCy (https://

spacy.io/). Surfaces that appear less than
four times are replaced by special UNK tokens.

POS tags We employ POS tags obtained by
SpaCy.

GloVe We employ 300-dimensional GloVe vectors
(obtained from http://nlp.stanford.edu/

data/glove.840B.300d.zip).
ELMo We employ the pretrained ELMo (obtained

from https://s3-us-west-2.amazonaws.

com/allennlp/models/elmo/2x4096_512_

2048cnn_2xhighway/elmo_2x4096_512_

2048cnn_2xhighway_weights.hdf5 and
elmo_2x4096_512_2048cnn_2xhighway_

https://www.aclweb.org/anthology/K19-2004
https://www.aclweb.org/anthology/K19-2004
https://www.aclweb.org/anthology/K19-2004
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/P17-1091
https://www.aclweb.org/anthology/L18-1257
https://www.aclweb.org/anthology/L18-1257
https://www.aclweb.org/anthology/L18-1257
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/N16-1164
https://www.aclweb.org/anthology/N16-1164
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/D17-1143
https://www.aclweb.org/anthology/D17-1143
http://aclweb.org/anthology/C/C14/C14-1142.pdf
http://aclweb.org/anthology/C/C14/C14-1142.pdf
http://aclweb.org/anthology/C/C14/C14-1142.pdf
https://doi.org/10.1162/COLI_a_00295
https://doi.org/10.1162/COLI_a_00295
https://www.aclweb.org/anthology/K19-2014
https://www.aclweb.org/anthology/K19-2014
https://www.aclweb.org/anthology/K19-2014
https://spacy.io/
https://spacy.io/
http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x4096_512_2048cnn_2xhighway/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5
elmo_2x4096_512_2048cnn_2xhighway_options.json

3265

hyperparameter value or search space
GloVe dimention 300
GloVe embedding linear 100
POS embedding linear 100
ELMo type 2x4096, 512 2048cnn 2xhighway
input dropout 0.25, 0.33, 0.45
BILSTM dimension 200, 300, 400
BILSTM stack 1
BILSTMτ dimension 200, 300, 400
BILSTMτ stack 2, 3
recurrent dropout of all BiLSTMs 0.25, 0.33, 0.45
output dropout of all BiLSTMs 0.25, 0.33, 0.45
dimention of all MLPs 600, 700
dropout of all MLPs 0.25, 0.33, 0.45
activation of all MLPs ReLU
(λedge, λlabel, λtype) (0.6, 0.2, 0.2), (0.4, 0.3, 0.3), (0.333, 0.333, 0.333)
learning rate 0.0012, 0.0011, 0.001, 0.0009, 0.0008
Adam β1 0.9
Adam β2 0.999
epoch 100
mini-batch size 16

Table 2: List of hyperparameters. Multiple values indicates that the hyperparameter was tuned within those values.
Underlines show the selected hyperparameter by the Optuna framework.

options.json). Following Peters et al.
(2018), we mix different layers of ELMo for
each token:

s̃k =
exp(sk)∑
k′ exp(sk′)

,

wELMo
START(i):END(i)

=
∑
k

s̃kELMokSTART(i):END(i),

where ELMokSTART(i):END(i)(0 < k ≤
NELMo) is the hidden state of the k-th layer of
the ELMo obtained by START(i) to END(i)
tokens, ELMo0START(i):END(i) are the features
from character-level CNN in ELMo, and
sk are trainable parameters. The ELMo
paramters are fixed by truncating backpropa-
gation.

The surface and POS tag of a token are each
embedded into a vector. A multi-layered percep-
tron (MLP) is applied to each surface and POS. All
features are then concatenated to form input token
representation:

wt = wsurface
t ⊕wPOS

t ⊕wGloVe
t ,

Optionally, we can concatenate ELMo:

wt = wsurface
t ⊕wPOS

t ⊕wGloVe
t ⊕wELMo

t .

A.2 Non-TSP Model
For non-TSP model in experiments, we provide a
shared representation for both type and edge:

h
span
type&edge,i = h

span
type,i = h

span
edge,i,

= hEND(i) ⊕ h
span att
type&edge,i ⊕ φ(i).

and we use a joint encoder:

stype&edge,i = BILSTMtype&edge(h
span
type&edge,i).

According to the change above, the non-TSP also
requires us to modify the pre-biaffine operations:

e(src)
i = MLP(src)

edge

(
stype&edge,i

)
,

e
(trg)
j = MLP(trg)

edge

(
stype&edge,j

)
,

`(src)
i = MLP(src)

label(stype&edge,i),

`
(trg)
j = MLP(trg)

label(stype&edge,j),

and the proposition type classifier:

ˆtypei = softmax
(
MLPtype

(
stype&edge,i

))
.

A.3 Hyperparameter Tuning
We tuned the hyperparameters using a subset con-
sidering our preliminary experiments. See Table 2
for hyperparameter search space and list of hyper-
parameters chosen by the Optuna framework (Ak-
iba et al., 2019). We tried 20 hyperparameter sets.
As can be seen from the table, the high dropout rate
is effective. We estimate this is because the system
can prevent an overfitting. We also found stacking
BiLSTMs in TSP higher can improve performance,
implying the semantics can be captured in upper
layers.

elmo_2x4096_512_2048cnn_2xhighway_options.json
elmo_2x4096_512_2048cnn_2xhighway_options.json

3266

A.4 Single-task Setup
For the single-task setup (non-multi-task), we pro-
vide each task-specific learning: type, edge, and
edge label. Each model was optimized using its
objective using the same hyperparameters.

