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Abstract
Legal Judgment Prediction (LJP) is the task
of automatically predicting a law case’s judg-
ment results given a text describing its facts,
which has excellent prospects in judicial assis-
tance systems and convenient services for the
public. In practice, confusing charges are fre-
quent, because law cases applicable to similar
law articles are easily misjudged. For address-
ing this issue, the existing method relies heav-
ily on domain experts, which hinders its appli-
cation in different law systems. In this paper,
we present an end-to-end model, LADAN, to
solve the task of LJP. To distinguish confusing
charges, we propose a novel graph neural net-
work to automatically learn subtle differences
between confusing law articles and design a
novel attention mechanism that fully exploit-
s the learned differences to extract compelling
discriminative features from fact description-
s attentively. Experiments conducted on real-
world datasets demonstrate the superiority of
our LADAN.

1 Introduction

Exploiting artificial intelligence techniques to as-
sist legal judgment has become popular in recent
years. Legal judgment prediction (LJP) aims to
predict a case’s judgment results, such as appli-
cable law articles, charges, and terms of penalty,
based on its fact description, as illustrated in Fig-
ure 1. LJP can assist judiciary workers in process-
ing cases and offer legal consultancy services to
the public. In the literature, LJP is usually formu-
lated as a text classification problem, and several
rule-based methods (Liu et al., 2004; Lin et al.,
2012) and neural-based methods (Hu et al., 2018;
Luo et al., 2017; Zhong et al., 2018) have been
proposed.

The main drawback of existing methods is that
they cannot solve the confusing charges issue.

∗Corresponding authors.

Judgment results

Fact Description

Law Articles

Charges

Terms of Penalty

At 18:00 on October 26, 2015, the defendant Zhao XX and 

Zhang XX had an altercation. Zhao XX beat up Zhang 

and caused injuries. After identification, the injuries of 

bilateral nasal bone fractures of Zhang XX were minor 

injuries of grade ii……

Law Article 234:[The Crime of intentional injury]Whoever 

intentionally injures another person shall be sentenced to 

fixed-term imprisonment of not more than three years, 

criminal detention or public surveillance……

Crime of intentional injury

A fixed-term imprisonment of ten months

Figure 1: An illustration of the LJP. Generally, a judge
needs to conduct professional analysis and reasoning
on the fact description of the case, and then choose rea-
sonable law articles, charges and the term of penalty to
convict the offender.

That is, due to the high similarity of several law ar-
ticles, their corresponding law cases can be easily
misjudged. For example, in Figure 2, both Article
385 and Article 163 describe offenses of accept-
ing bribes, and their subtle difference is whether
the guilty parties are state staffs or not. The key to
solving the confusing charges issue is how to cap-
ture essential but rare features for distinguishing
confusing law articles. Hu et al. (2018) defined ten
discriminative attributes to distinguish confusing
charges. However, their method relies too much
on experts to hinder its applications in a large
number of laws. In practice, we desire a method
that can automatically extract textual features from
law articles to assist JLP. The most relevant exist-
ing work to this requirement is (Luo et al., 2017),
which used an attention mechanism to extract fea-
tures from fact descriptions with respect to a spe-
cific law article. As shown in Figure 3a, for each
law article, an attention vector is computed, which
is used to extract features from the fact description
of a law case to predict whether the law article is
applicable to the case. Nevertheless, the weakness
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Any state staffs who, taking advantage of his position, demands money or 

property from another person, or illegally accepts another person's 

money or property in return for securing benefits for the person shall be 

guilty of acceptance of bribes.

Article 385: The Crime of acceptance of bribes

Whoever, in order to seek illegitimate benefits, gives any state staffs with 

money and property, shall be the crime of bribery

Article 389: Crime of offering bribes

Whoever, in order to seek illegitimate benefits, gives employees of 

companies, enterprises or other units with money or property , shall be 

guilty of bribing non-state staffs.

Article 164: The crime of offering bribes to non-state staff

The employees of companies, enterprises or other units who, taking 

advantage of his position, demands money or property from another 

person, or illegally accepts another person's money or property in return 

for securing benefits for the person shall be guilty of bribery crime of non-

state staffs.

Article 163: Bribery crime of non-state staffs

Figure 2: Examples of confusing charges.

is that they learn each law article’s attention vector
independently, and this may result in that similar
attention vectors are learned for semantically close
law articles; hence, it is ineffective in distinguish-
ing confusing charges.

To solve the confusing charges issue, we pro-
pose an end-to-end framework, i.e., Law Article
Distillation based Attention Network (LADAN).
LADAN uses the difference among similar law ar-
ticles to attentively extract features from law cas-
es’ fact descriptions, which is more effective in
distinguishing confusing law articles, and improve
the performance of LJP. To obtain the difference
among similar law articles, a straightforward way
is to remove duplicated texts between two law arti-
cles and only use the leftover texts for the attention
mechanism. However, we find that this method
may generate the same leftover texts for differen-
t law article, and generate misleading information
to LJP. As shown in Fig. 2, if we remove the dupli-
cated phrases and sentences between Article 163
and Article 385 (i.e., the red text in Fig. 2), and
between Article 164 and Article 389 (i.e., the pink
text in Fig. 2), respectively, then Article 385 and
Article 389 will be almost same to each other (i.e.,
the blue text in Fig. 2).

We design LADAN based on the following ob-
servation: it is usually easy to distinguish dis-
similar law articles as sufficient distinctions exist,
but challenging to discriminate similar law articles
due to the few useful features. We first group law
articles into different communities, and law arti-
cles in the same community are highly similar to
each other. Then we propose a graph-based rep-
resentation learning method to automatically ex-
plore the difference among law articles and com-
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Figure 3: a. The fact-law attention model in (Luo et al.,
2017). b. Our framework. Variables α and β represent
the encoded vectors learned for attentively extracting
features from fact descriptions.

pute an attention vector for each community. For
an input law case, we learn both macro- and micro-
level features. Macro-level features are used for
predicting which community includes the applica-
ble law articles. Micro-level features are attentive-
ly extracted by the attention vector of the selected
community for distinguishing confusing law arti-
cles within the same community. Our main contri-
butions are summarized as follows:

(1) We develop an end-to-end framework, i.e.,
LADAN, to solve the LJP task. It addresses the
confusing charges issue by mining similarities be-
tween fact descriptions and law articles as well as
the distinctions between confusing law articles.

(2) We propose a novel graph distillation oper-
ator (GDO) to extract discriminative features for
effectively distinguishing confusing law articles.

(3) We conduct extensive experiments on real-
world datasets. The results show that our model
outperforms all state-of-the-art methods.

2 Related Work

Our work solves the problem of the confusing
charge in the LJP task by referring to the calcu-
lation principle of graph neural network (GNN).
Therefore, in this section, we will introduce relat-
ed works from these two aspects.

2.1 Legal Judgment Prediction

Existing approaches for legal judgment prediction
(LJP) are mainly divided into three categories. In
early times, works usually focus on analyzing ex-
isting legal cases in specific scenarios with math-
ematical and statistical algorithms (Kort, 1957;
Nagel, 1963; Keown, 1980; Lauderdale and Clark,
2012). However, these methods are limited to s-
mall datasets with few labels. Later, a number of
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machine learning-based methods (Lin et al., 2012;
Liu et al., 2004; Sulea et al., 2017) were develope-
d to solve the problem of LJP, which almost com-
bine some manually designed features with a lin-
ear classifier to improve the performance of case
classification. The shortcoming is that these meth-
ods rely heavily on manual features, which suffer
from the generalization problem.

In recent years, researchers tend to exploit neu-
ral networks to solve LJP tasks. Luo et al. (2017)
propose a hierarchical attentional network to cap-
ture the relation between fact description and rele-
vant law articles to improve the charge prediction.
Zhong et al. (2018) model the explicit dependen-
cies among subtasks with scalable directed acyclic
graph forms and propose a topological multi-task
learning framework for effectively solving these
subtasks together. Yang et al. (2019) further refine
this framework by adding backward dependencies
between the prediction results of subtasks. To the
best of our knowledge, Hu et al. (2018) are the
first to study the problem of discriminating con-
fusing charges for automatically predicting appli-
cable charges. They manually define 10 discrim-
inative attributes and propose to enhance the rep-
resentation of the case fact description by learning
these attributes. This method relies too much on
experts and cannot be easily extended to differen-
t law systems. To solve this issue, we propose a
novel attention framework that automatically ex-
tracts differences between similar law articles to
enhance the representation of fact description.

2.2 Graph Neural Network

Due to its excellent performance in graph struc-
ture data, GNN has attracted significant atten-
tion (Kipf and Welling, 2017; Hamilton et al.,
2017; Bonner et al., 2019). In general, exist-
ing GNNs focus on proposing different aggre-
gation schemes to fuse features from the neigh-
borhood of each node in the graph for extract-
ing richer and more comprehensive information:
Kipf et al. (2017) propose graph convolution net-
works which use mean pooling to pool neighbor-
hood information; GraphSAGE (Hamilton et al.,
2017) concatenates the node’s features and applies
mean/max/LSTM operators to pool neighborhood
information for inductively learning node embed-
dings; MR-GNN (Xu et al., 2019) aggregates the
multi-resolution features of each node to exploit n-
ode information, subgraph information, and glob-

al information together; Besides, Message Pass-
ing Neural Networks (Gilmer et al., 2017) further
consider edge information when doing the aggre-
gation. However, the aggregation schemes lead to
the over-smoothing issue of graph neural network-
s (Li et al., 2018), i.e., the aggregated node repre-
sentations would become indistinguishable, which
is entirely contrary to our goal of extracting distin-
guishable information. So in this paper, we pro-
pose our distillation operation, based on a distil-
lation strategy instead of aggregation schemes, to
extract the distinguishable features between simi-
lar law articles.

3 Problem Formulation

In this section, we introduce some notations and
terminologies, and then formulate the LJP task.

Law Cases. Each law case consists of a fact de-
scription and several judgment results (cf. Fig-
ure 1). The fact description is represented as a
text document, denoted by f . The judgment re-
sults may include applicable law articles, charges,
terms of penalty, etc. Assume there are t kinds
of judgment results, and the i-th judgment result
is represented as a categorical variable yi which
takes value from set Yi. Then, a law case can be
represented by a tuple (f, y1, . . . , yt).

Law Articles. Law cases are often analyzed and
adjudicated according to a legislature’s statutory
law (also known as, written law). Formally, we
denote the statutory law as a set of law articles
L , {L1, . . . , Lm} where m is the number of law
articles. Similar to the fact description of cases, we
also represent each law article Li as a document.

Legal Judgment Prediction. In this paper, we
consider three kinds of judgment results: appli-
cable law articles, charges, and terms of penalty.
Given a training datasetD , {(f, y1, y2, y3)z}qz=1

of size q, we aim to train a model F(·) that can
predict the judgment results for any test law case
with a fact description ftest, i.e., F(ftest,L) =
(ŷ1, ŷ2, ŷ3), where ŷi ∈ Yi, i = 1, 2, 3. Follow-
ing (Zhong et al., 2018; Yang et al., 2019), we as-
sume each case has only one applicable law arti-
cle.
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Figure 4: a. Overview of our framework LADAN: it takes the fact descriptions of cases and the text definitions
of law articles as inputs, then extracts the basic representation vb

f and distinguishing representation vd
f of the fact

descriptions through the basic encoder and the re-encoder, and finally combines this two representations for the
downstream prediction tasks; b. Law Distillation Module: this module communizes law articles and distills the
distinguishable features of each community for attention calculation of the re-encoder.

4 Our Method

4.1 Overview

In our framework LADAN (cf. Fig. 4a), the fact
description of a case is represented by two parts: a
basic representation, denoted by vb

f , and a distin-
guishable representation, denoted by vd

f . The ba-
sic representation vb

f contains basic semantic in-
formation for matching a group of law articles that
may apply to the case. In contrast, the distinguish-
able representation vd

f captures features that can
effectively distinguish confusing law articles. The
concatenation of vb

f and vd
f is fed into subsequent

classifiers to predict the labels of the JLP task.
As we mentioned, it is easy to distinguish dis-

similar law articles as sufficient distinctions ex-
ist, and the difficulty in solving confusing charges
lies in extracting distinguishable features of sim-
ilar law articles. To obtain the basic representa-
tion vb

f , therefore, we use one of the popular docu-
ment encoding methods (e.g., CNN encoder (Kim,
2014) and Bi-RNN encoder (Yang et al., 2016)).
To learn the distinguishable representation vd

f , we
use a law distillation module first to divide law ar-
ticles to several communities to ensure that the law
articles in each community are highly similar, and
then extract each community i’s distinction vector

(or, distinguishable features) βi from the basic rep-
resentation of law articles in community i. Given
the case’s fact description, from all communities’
distinction vectors, we select the most relevant one
(i.e., βĉ in Fig. 4(a)) for attentively extracting the
distinguishable features vd

f in the fact re-encode
module. In the follows, we elaborate law distilla-
tion module (Sec. 4.2) and fact re-encode module
(Sec. 4.3) respectively.

4.2 Distilling Law Articles

A case might be misjudged due to the high similar-
ity of some law articles. To alleviate this problem,
we design a law distillation module (cf. Fig. 4 b)
to extract distinguishable and representative infor-
mation from all law articles. Specifically, it first
uses a graph construction layer (GCL) to divide
law articles into different communities. For each
law article community, a graph distillation layer is
applied to learn its discriminative representation,
hereinafter, called distinction vector.

4.2.1 Graph Construction Layer
To find probably confusing law articles, we first
construct a fully-connected graph G∗ for all law
articles L, where the weight on the edge between
a pair of law article Li, Lj ∈ L is defined as
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the cosine similarity between their TF-IDF (Ter-
m Frequency-Inverse Document Frequency) rep-
resentations tf idf i and tf idf j . Since confusing
law articles are usually semantically similar and
there exists sufficient information to distinguish
dissimilar law articles, we remove the edges with
weights less than a predefined threshold τ from
graph G∗. By setting an appropriate τ , we ob-
tain a new graph G = {gi}Mi=1 composed of sev-
eral disconnected subgraphs g1, . . . , gM (or, com-
munities), where each gi, i = 1, . . . ,M contains
a specific community of probably confusing arti-
cles. Our later experimental results demonstrate
that this easy-to-implement method effectively im-
proves the performance of LADAN.

4.2.2 Graph Distillation Layer
To extract the distinguishable information from
each community gi, a straightforward way is to
delete duplicate words and sentences presented in
law articles within the community (as described
in Sec. 1). In addition to introducing significant
errors, this simple method cannot be plugged in-
to end-to-end neural architectures due to its non-
differentiability. To overcome the above issues,
inspired by the popular graph convolution oper-
ator (GCO) (Kipf and Welling, 2017; Hamilton
et al., 2017; Veličković et al., 2017), we propose
a graph distillation operator (GDO) to effectively
extract distinguishable features. Different from G-
CO, which computes the message propagation be-
tween neighbors and aggregate these messages to
enrich representations of nodes in the graph, the
basic idea behind our GDO is to learn effective
features with distinction by removing similar fea-
tures between nodes.

Specifically, for an arbitrary law article Li, G-
DO uses a trainable weight matrix Ψ to capture
similar information between it and its neighbors
in graph G, and a matrix Φ to extract effective se-
mantic features of Li. At each layer l ≥ 0, the ag-
gregation of similar information between Li and
its neighbors is removed from its representation,
that is,

v
(l+1)
Li

= Φ(l)v
(l)
Li
−

∑
Lj∈Ni

Ψ(l)[v
(l)
Li
,v

(l)
Lj

]

|Ni|
+ b(l)

where v
(l)
Li
∈ Rdl refers to the representation of

law Li in the lth graph distillation layer, Ni refers
to the neighbor set of Li in graph G, b(l) is the

bias, and Φ(l) ∈ Rdl+1×dl and Ψ(l) ∈ Rdl+1×2dl

are the trainable self weighted matrix and the
neighbor similarity extracting matrix respectively.
Note that dl is the dimension of the feature vector
in the lth graph distillation layer. We set d0 = ds,
where ds is the dimension of basic representations
vb
f and vLi . Similar to GCO, our GDO also sup-

ports multi-layer stacking.
Using GDO with H layers, we output law ar-

ticle representation of the last layer, i.e., v(H)
Li
∈

RdH , which contains rich distinguishable features
that can distinguish law article Li from the articles
within the same community. To further improve
law articles’ distinguishable features, for each sub-
graph gi, i = 1, 2, . . . ,M in graph G, we compute
its distinction vector βi by using pooling operators
to aggregate the distinguishable features of articles
in gi. Formally, βi is computed as:

βi = [MaP({v(H)
Li
}Lj∈gi),MiP({v(H)

Li
}Lj∈gi)]

where MaP(·) and MiP(·) are the element-wise
max pooling and element-wise min pooling oper-
ators respectively.

4.3 Re-encoding Fact with Distinguishable
Attention

To capture a law case’s distinguishable features
from its fact description f , we firstly define the
following linear function, which is used to predict
its most related community gĉ in graph G:

X̂ = softmax(Wgv
b
f + bg) (1)

where vb
f is the basic representation of fact de-

scription f , Wg ∈ RM×ds and bg ∈ RM are
the trainable weight matrix and bias respectively.
Each element X̂i ∈ X̂, i = 1, ...,M reflects the
closeness between fact description f and law arti-
cles community gi. The most relevant community
gĉ is computed as

ĉ = arg max
i=1,...,M

X̂i.

Then, we use the corresponding community’s dis-
tinction vector βĉ to attentively extract distin-
guishable features from fact description f .

Inspired by (Yang et al., 2016), we attentive-
ly extract distinguishable features based on word-
level and sentence-level Bi-directional Gated Re-
current Units (Bi-GRUs). Specifically, for each in-
put sentence Si = [wi,1, · · · , wi,ni ] in fact descrip-
tion f , word-level Bi-GRUs will output a hidden
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state sequence, that is,

hi,j = [
−−→
GRU(wi,j),

←−−
GRU(wi,j)], j = 1, ..., ni,

where wi,j represents the word embedding of
word wi.j and hi,j ∈ Rdw . Based on this hid-
den state sequence and the distinction vector βĉ,
we calculate an attentive vector [αi,1, . . . , αi,ni ],
where each αi,j evaluates the discrimination abil-
ity of word wi,j ∈ Si. αi,j is formally computed
as:

αi,j =
exp(tanh(Wwhi,j)

T(Wgwβĉ))∑
j exp(tanh(Wwhi,j)T(Wgwβĉ))

,

where Ww and Wgw are trainable weight matri-
ces. Then, we get a representation of sentence Si
as:

vsi =

ni∑
j=1

αi,jhi,j ,

where ni denotes the word number in sentence Si.
By the above word-level Bi-GRUs, we

get a sentence representations sequence
[vs1 , . . . ,vsnf

], where nf refers to the num-
ber of sentences in the fact description f . Based
on this sequence, similarly, we build sentence-
level Bi-GRUs and calculate a sentence-level
attentive vector [α1, . . . , αnf

] that reflects the
discrimination ability of each sentence, and
then get the fact’s distinguishable representation
vd
f ∈ Rds . Our sentence-level Bi-GRUs are

formulated as:

hi = [
−−→
GRU(vsi),

←−−
GRU(vsi)], i = 1, 2, ..., nf ,

αi =
exp(tanh(Wshi)

T(Wgsβĉ))∑
i exp(tanh(Wshi)T(Wgsβĉ))

,

vd
f =

∑
i

αihi.

4.4 Prediction and Training
We concatenate the basic representation vb

f and
the distinguishable representation vd

f as the final
representation of fact description f , i.e., ṽf =
[vb

f ,v
d
f ]. Based on ṽf , we generate a correspond-

ing feature vector ṽj
f for each subtask tj , j =

1, 2, 3 mentioned in Sec. 3, i.e., t1: law article
prediction; t2: charge prediction; t3: term of
penalty prediction. To obtain the prediction for
each subtask, we use a linear classifier:

ŷj = softmax(Wj
pṽ

j
f + bj

p),

where Wj
p and bj

p are parameters specific to task
tj . For training, we compute a cross-entropy loss
function for each subtask and take the loss sum of
all subtasks as the overall prediction loss:

Lp = −
3∑

j=1

|Yj |∑
k=1

yj,k log(ŷj,k),

where |Yj | denotes the number of different class-
es (or, labels) for task tj and [yj,1, yj,2, . . . , yj,|Yj |]
refers to the ground-truth vector of task tj . Be-
sides, we also consider the loss of law article com-
munity prediction (i.e., Eq. 1):

Lc = −λ
M∑
j=1

Xj log(X̂j),

where [X1, X2, . . . , XM ] is the ground-truth vec-
tor of the community including the correct law ar-
ticle applied to the law case. In summary, our final
overall loss function is:

L = Lp + Lc (2)

5 Experiments

5.1 Datasets

To evaluate the performance of our method, we
use the publicly available datasets of the Chinese
AI and Law challenge (CAIL2018)1 (Xiao et al.,
2018): CAIL-small (the exercise stage dataset) and
CAIL-big (the first stage dataset). The case sam-
ples in both datasets contain fact description, ap-
plicable law articles, charges, and the terms of
penalty. For data processing, we first filter out
samples with fewer than 10 meaningful words. To
be consistent with state-of-the-art methods, we fil-
ter out the case samples with multiple applicable
law articles and multiple charges. Meanwhile, re-
ferring to (Zhong et al., 2018), we only keep the
law articles and charges that apply to not less than
100 corresponding case samples and divide the
terms of penalty into non-overlapping intervals.
The detailed statistics of the datasets are shown in
Table 1.

5.2 Baselines and Settings

Baselines. We compare LADAN with some
baselines, including:

1http://cail.cipsc.org.cn/index.html

http://cail.cipsc.org.cn/index.html
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Dataset CAIL-small CAIL-big

#Training Set Cases 101,619 1,587,979
#Test Set Cases 26,749 185,120
#Law Articles 103 118
#Charges 119 130
#Term of Penalty 11 11

Table 1: Statistics of datasets.

• CNN (Kim, 2014): a CNN-based model with
multiple filter window widths for text classi-
fication.

• HARNN (Yang et al., 2016): an RNN-based
neural network with a hierarchical attention
mechanism for document classification.

• FLA (Luo et al., 2017): a charge prediction
method that uses an attention mechanism to
capture the interaction between fact descrip-
tion and applicable laws.

• Few-Shot (Hu et al., 2018): a discriminating
confusing charge method, which extracts fea-
tures about ten predefined attributes from fact
descriptions to enforce semantic information.

• TOPJUDGE (Zhong et al., 2018): a topo-
logical multi-task learning framework for
LJP, which formalizes the explicit dependen-
cies over subtasks in a directed acyclic graph.

• MPBFN-WCA (Yang et al., 2019): a multi-
task learning framework for LJP with multi-
perspective forward prediction and back-
ward verification, which is the state-of-the-
art method.

Similar to existing works (Luo et al., 2017;
Zhong et al., 2018), we train the baselines CNN,
HLSTM and FLA using a multi-task framework
(recorded as MTL) and select a set of the best
experimental parameters according to the range
of the parameters given in their original paper-
s. Besides, we use our method LADAN with the
same multi-task framework (i.e., Landan+MTL,
LADAN+TOPJUDGE, and LADAN+MPBFN) to
demonstrate our superiority in feature extraction.

Experimental Settings. We use the THU-
LAC (Sun et al., 2016) tool to get the word seg-
mentation because all case samples are in Chi-
nese. Afterward, we use the Skip-Gram mod-
el (Mikolov et al., 2013) to pre-train word embed-
dings on these case documents, where the mod-
el’s embedding size and frequency threshold are

set to 200 and 25 respectively. Meanwhile, we
set the maximum document length as 512 word-
s for CNN-based models in baselines and set the
maximum sentence length to 100 words and max-
imum document length to 15 sentences for LSTM-
based models. As for hyperparameters setting, we
set the dimension of all latent states (i.e., dw, ds,
dl and df ) as 256 and the threshold τ as 0.3. In
our method LADAN, we use two graph distilla-
tion layers, and a Bi-GRU with a randomly ini-
tialized attention vector u is adopted as the basic
document encoder. For training, we set the learn-
ing rate of Adam optimizer to 10−3, and the batch
size to 128. After training every model for 16 e-
pochs, we choose the best model on the validation
set for testing.2

5.3 Experimental Results

To compare the performance of the baselines
and our methods, we choose four metrics that
are widely used for multi-classification tasks, in-
cluding accuracy (Acc.), macro-precision (MP),
macro-recall (MR), and macro-F1 (F1). Since
the problem of confusing charges often occurs be-
tween a few categories, the main metric is the
F1 score. Tables 2 and 3 show the experimen-
tal results on datasets CAIL-small and CAIL-big,
respectively. Our method LADAN performs the
best in terms of all evaluation metrics. Because
both CAIL-small and CAIL-big are imbalanced
datasets, we focus on comparing the F1-score,
which more objectively reflects the effectiveness
of our LADAN and other baselines. Compared
with the state-of-the-art MPBFN-WCA, LADAN
improved the F1-scores of law article prediction,
charge prediction, and term of penalty predic-
tion on dataset CAIL-small by 2.02%, 2.42% and
4.20% respectively, and about 3.18%, 1.44% and
5.79% on dataset CAIL-big. Meanwhile, the com-
parison under the same multi-task framework (i.e.,
MTL, TOPJUDGE, and MPBFN) shows that our
LADAN extracted more effective features from
fact descriptions than all baselines. Meanwhile,
we can observe that the performance of Few-shot
on charge prediction is close to LADAN, but it-
s performance on the term of penalty prediction
is far from ideal. It is because the ten predefined
attributes of Few-Shot are only effective for iden-
tifying charges, which also proves the robustness

2Our source codes are available at https://github.
com/prometheusXN/LADAN

https://github.com/prometheusXN/LADAN
https://github.com/prometheusXN/LADAN
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Tasks Law Articles Charges Term of Penalty

Metrics Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1

FLA+MTL 77.74 75.32 74.36 72.93 80.90 79.25 77.61 76.94 36.48 30.94 28.40 28.00
CNN+MTL 78.71 76.02 74.87 73.79 82.41 81.51 79.34 79.61 35.40 33.07 29.26 29.86
HARNN+MTL 79.79 75.26 76.79 74.90 83.80 82.44 82.78 82.12 36.17 34.66 31.26 31.40
Few-Shot+MTL 79.30 77.80 77.59 76.09 83.65 80.84 82.01 81.55 36.52 35.07 26.88 27.14
TOPJUDGE 79.88 79.77 73.67 73.60 82.10 83.60 78.42 79.05 36.29 34.73 32.73 29.43
MPBFN-WCA 79.12 76.30 76.02 74.78 82.14 82.28 80.72 80.72 36.02 31.94 28.60 29.85

LADAN+MTL 81.20 78.24 77.38 76.47 85.07 83.42 82.52 82.74 38.29 36.16 32.49 32.65
LADAN+TOPJUDGE 81.53 78.62 78.29 77.10 85.12 83.64 83.57 83.14 38.34 36.39 32.75 33.53
LADAN+MPBFN 82.34 78.79 77.59 76.80 84.83 83.33 82.80 82.85 39.35 36.94 33.25 34.05

Table 2: Judgment prediction results on CAIL-small.

Tasks Law Articles Charges Term of Penalty

Metrics Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1

FLA+MTL 93.23 72.78 64.30 66.56 92.76 76.35 68.48 70.74 57.63 48.93 45.00 46.54
CNN+MTL 95.84 83.20 75.31 77.47 95.74 86.49 79.00 81.37 55.43 45.13 38.85 39.89
HARNN+MTL 95.63 81.48 74.57 77.13 95.58 85.59 79.55 81.88 57.38 43.50 40.79 42.00
Few-Shot+MTL 96.12 85.43 80.07 81.49 96.04 88.30 80.46 83.88 57.84 47.27 42.55 43.44
TOPJUDGE 95.85 84.84 74.53 77.50 95.78 86.46 78.51 81.33 57.34 47.32 42.77 44.05
MPBFN-WCA 96.06 85.25 74.82 78.36 95.98 89.16 79.73 83.20 58.14 45.86 39.07 41.39

LADAN+MTL 96.57 86.22 80.78 82.36 96.45 88.51 83.73 85.35 59.66 51.78 45.34 46.93
LADAN+TOPJUDGE 96.62 86.53 79.08 81.54 96.39 88.49 82.28 84.64 59.70 51.06 45.46 46.96
LADAN+MPBFN 96.60 86.42 80.37 81.98 96.42 88.45 83.08 84.95 59.85 51.75 45.59 47.18

Table 3: Judgment prediction results on CAIL-big.

of our LADAN. The highest MP- and MR-scores
of LADAN also demonstrates its ability to distin-
guish confusing law articles. Note that all method-
s’ performance on dataset CAIL-big is better than
that on CAIL-small, which is because the training
set on CAIL-big is more adequate.

5.4 Ablation Experiments

To further illustrate the significance of considering
the difference between law articles, we conduct-
ed ablation experiments on model LADAN+MTL
with dataset CAIL-small. To prove the effective-
ness of our graph construction layer (GCL), we
build a LADAN model with the GCL’s remov-
ing threshold τ = 0 (i.e., “-no GCL” in Table
4), which directly applies the GDO on the fully-
connected graph G∗ to generate a global distinc-
tion vector βg for re-encoding the fact description.
To verify the effectiveness of our graph distillation
operator (GDO), we build a no-GDO LADAN
model (i.e., “-no GDO” in Table 4), which direct-
ly pools each subgraph gi to a distinction vector
βi without GDOs. To evaluate the importance of
considering the difference among law articles, we
remove both GCL and GDO from LADAN by set-
ting τ = 1.0 (i.e., “-no both” in Table 4), i.e.,
each law article independently extracts the atten-
tive feature from fact description. In Table 4, we

Tasks Law Charge Penalty

Metrics Acc. F1 Acc. F1 Acc. F1

LADAN+MTL 81.20 76.47 85.07 83.14 38.29 32.65
-no GCL 80.46 75.98 84.04 82.33 37.80 31.85
-no GDO 80.82 76.19 84.65 82.50 36.69 31.62
-no both 79.79 74.97 83.72 82.02 34.87 31.34

Table 4: Ablation analysis on CAIL-small.

see that both GCL and GDO effectively improve
the performance of LADAN. GCL is more crit-
ical than GDO because GDO has a limited per-
formance when the law article communities ob-
tained by GCL are not accurate. When remov-
ing both GCL and GDO, the accuracy of LADAN
decreases to that of HARNN+MTL, which power-
fully demonstrates the effectiveness of our method
exploiting differences among similar law articles.

5.5 Case Study
To intuitively verify that LADAN effectively ex-
tracts distinguishable features, we visualize the at-
tention of LADAN’s encoders. Figure 5 shows t-
wo law case examples, each for Article 385 and
Article 163, respectively, where the darker the
word is, the higher the attention weight it gets in
the corresponding encoder, i.e., its information is
more important to the encoder. For the basic en-
coder, we see that the vital information in these
two cases is very similar, which both contain the
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Fact Re-encoder:

Basic Encoder:

Case example of Law Article 163：
Bribery crime of non-state emplotees

Basic Encoder:

Case example of Law Article 185：
Crimeof acceptance of bribes

Fact Re-encoder:

Figure 5: The attention visualization on case examples for Article 185 and Article 163.

word like “use position” “accept benefit” “accept
... cash”, etc. Therefore, when using just the rep-
resentation of basic encoder to predict acceptable
law articles, charges and terms of penalty, these t-
wo cases tend to be misjudged. As we mentioned
in Sec. 4.3, with the distinction vector, our fact re-
encoder focuses on extracting distinguishable fea-
tures like defendants’ identity information (e.g.,
“company manager” “working in the Cadastral
Unit of Luocheng Branch of Luohe City Land and
Resources Bureau” in our examples), which effec-
tively distinguish the applicable law articles and
charges of these two cases.

6 Conclusion

In this paper, we present an end-to-end model,
LADAN, to solve the issue of confusing charges
in LJP. In LADAN, a novel attention mechanis-
m is proposed to extract the key features for dis-
tinguishing confusing law articles attentively. Our
attention mechanism not only considers the inter-
action between fact description and law articles
but also the differences among similar law articles,
which are effectively extracted by a graph neural
network GDL proposed in this paper. The experi-
mental results on real-world datasets show that our
LADAN raises the F1-score of state-of-the-art by
up to 5.79%. In the future, we plan to study com-
plicated situations such as a law case with multiple
defendants and charges.
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