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Abstract

Confidence calibration, which aims to make
model predictions equal to the true correct-
ness measures, is important for neural machine
translation (NMT) because it is able to offer
useful indicators of translation errors in the
generated output. While prior studies have
shown that NMT models trained with label
smoothing are well-calibrated on the ground-
truth training data, we find that miscalibration
still remains a severe challenge for NMT dur-
ing inference due to the discrepancy between
training and inference. By carefully design-
ing experiments on three language pairs, our
work provides in-depth analyses of the correla-
tion between calibration and translation perfor-
mance as well as linguistic properties of mis-
calibration and reports a number of interest-
ing findings that might help humans better an-
alyze, understand and improve NMT models.
Based on these observations, we further pro-
pose a new graduated label smoothing method
that can improve both inference calibration
and translation performance. 1

1 Introduction

Calibration requires that the probability a model
assigns to a prediction (i.e., confidence) equals to
the correctness measure of the prediction (i.e., ac-
curacy). Calibrated models are important in user-
facing applications such as natural language pro-
cessing (Nguyen and O’Connor, 2015) and speech
recognition (Yu et al., 2011), in which one needs to
assess the confidence of a prediction. For example,
in computer-assisted translation, a calibrated ma-
chine translation model is able to tell a user when
the model’s predictions are likely to be incorrect,
which is helpful for the user to correct errors.

∗Work was done when Shuo Wang was interning at Ten-
cent AI Lab under the Rhino-Bird Elite Training Program.

1The source code is available at https://github.
com/shuo-git/InfECE.
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Figure 1: Reliability diagrams in training and inference
for the WMT14 En-De task. “Gap” denotes the differ-
ence between confidence and accuracy. Smaller gaps
denotes better calibrated outputs. We find that the av-
erage gaps between confidence and accuracy are much
larger in inference than in training (i.e., 15.83 > 1.39).

The study of calibration on classification tasks
has a long history, from statistical machine learn-
ing (Platt et al., 1999; Niculescu-Mizil and Caru-
ana, 2005) to deep learning (Guo et al., 2017).
However, calibration on structured generation tasks
such as neural machine translation (NMT) has not
been well studied. Recently, Müller et al. (2019)
and Kumar and Sarawagi (2019) studied the cali-
bration of NMT in the training setting, and found
that NMT trained with label smoothing (Szegedy
et al., 2016) is well-calibrated. We believe that
this setting would cover up a central problem of
NMT, the exposure bias (Ranzato et al., 2015) – the
training-inference discrepancy caused by teacher
forcing in the training of auto-regressive models.

In response to this problem, this work focuses
on the calibration of NMT in inference, which
can better reflect the generative capacity of NMT
models. To this end, we use translation error rate
(TER) (Snover et al., 2006) to automatically an-
notate the correctness of generated tokens, which
makes it feasible to evaluate calibration in infer-

https://github.com/shuo-git/InfECE
https://github.com/shuo-git/InfECE
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ence. Experimental results on several datasets
across language pairs show that even trained with
label smoothing, NMT models still suffer from mis-
calibration errors in inference. Figure 1 shows an
example. While modern neural networks on classi-
fication tasks have been found to be miscalibrated
in the direction of over-estimation (i.e., confidence
> accuracy) (Guo et al., 2017), NMT models are
also under-estimated (i.e., confidence < accuracy)
on low-confidence predictions. In addition, we
found that miscalibrated predictions correlate well
with the translation errors in inference. Specifically,
the over-estimated predictions correlate more with
over-translation and mis-translation errors, while
the under-estimated predictions correlate more with
under-translation errors. This demonstrates the ne-
cessity of studying inference calibration for NMT.

By investigating the linguistic properties of mis-
calibrated tokens in NMT outputs, we have several
interesting findings:

• Frequency: Low-frequency tokens generally
suffer from under-estimation. Moreover, low-
frequency tokens contribute more to over-
estimation than high-frequency tokens, espe-
cially on large-scale data.

• Position: Over-estimation does not have a bias
on the position of generated tokens, while
under-estimation occurs more in the left part
of a generated sentence than in the right part.

• Fertility: Predicted tokens that align to more
than one source token (“fertility≥2”) suffer
more from under-estimation, while tokens
with fertility < 1 suffer from over-estimation.

• Syntactic Roles: Content tokens are more
likely to suffer from miscalibration than
content-free tokens. Specifically, verbs are
more likely to suffer from over-estimation
than under-estimation.

• Word Granularity: sub-words suffer more
from both over-estimation and under-
estimation, while full words are less likely to
be miscalibrated.

Inspired by the finding that miscalibration on
classification tasks is closely related to lack of reg-
ularization and increased model size (Guo et al.,
2017), we revisit these techniques on the NMT (i.e.,
structured generation) task:

• Regularization Techniques: We investigate
label smoothing and dropout (Hinton et al.,
2012), which directly affect the confidence
estimation. Both label smoothing and dropout
improve the inference calibration by alleviat-
ing the over-estimation. Label smoothing is
the key for well-calibration, which is essen-
tial for maintaining translation performance
for inference in large search space. Inspired
by this finding, we propose a novel gradu-
ated label smoothing approach, in which the
smoothing penalty for high-confidence predic-
tions is higher than that for low-confidence
predictions. The graduated label smoothing
can improve translation performance by alle-
viating inference miscalibration.

• Model Size: Increasing model size consis-
tently improves translation performance at the
cost of negatively affecting inference calibra-
tion. The problem can be alleviated by in-
creasing the capacity of encoder only, which
maintains the inference calibration and ob-
tains a further improvement of translation per-
formance in large search space.

To summarize, the main contributions of our
work are listed as follows:

• We demonstrate the necessity of studying in-
ference calibration for NMT, which can serve
as useful indicators of translation errors.

• We reveal certain linguistic properties of mis-
calibrated predictions in NMT, which pro-
vides potentially useful information for the
design of training procedures.

• We revisit recent advances in architectures and
regularization techniques, and provide vari-
ants that can boost translation performance by
improving inference calibration.

2 Related Work

Calibration on Classification Calibration on
classification tasks has been studied for a long
history in the statistics literature, including Platt
scaling (Platt et al., 1999), isotonic regres-
sion (Niculescu-Mizil and Caruana, 2005) and
many other methods for non-binary classifica-
tion (Zadrozny and Elkan, 2002; Menon et al.,
2012; Zhong and Kwok, 2013). For modern deep
neural networks, Guo et al. (2017) demonstrated
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Figure 2: An example of TER labels. “C”: correct, “S”: substitution, corresponding to mis-translation, “I”: in-
sertion, corresponding to over-translation, “D”: deletion, corresponding to under-translation. Dash line denotes
mapping the label “D” from the ground-truth sequence to the generated sequence.

that recent advances in training and model architec-
ture have strong effects on the calibration. Szegedy
et al. (2016) propose the label smoothing technique
which can effectively reduce the calibration error.
Ding et al. (2019) extend label smoothing to adap-
tive label regularization.

Calibration on Structured Prediction Differ-
ent from classification tasks, most natural language
processing (NLP) tasks deal with complex struc-
tures (Kuleshov and Liang, 2015). Nguyen and
O’Connor (2015) verified the finding of Niculescu-
Mizil and Caruana (2005) in NLP tasks on log-
linear structured models. For NMT, some works
directed their attention to the uncertainty in predic-
tion (Ott et al., 2018; Wang et al., 2019), Kumar and
Sarawagi (2019) studied the calibration of several
NMT models and found that the end of a sentence
is severely miscalibrated. Müller et al. (2019) in-
vestigated the effect of label smoothing, finding
that NMT models are well-calibrated in training.
Different from previous works, we are interested in
the calibration of NMT models in inference, given
that the training and inference are discrepant for
standard NMT models (Vaswani et al., 2017).

3 Definitions of Calibration

3.1 Neural Machine Translation
Training In machine translation task, an NMT
model F : x → y maximizes the probability of a
target sequence y = {y1, ..., yT } given a source
sentence x = {x1, ..., xS}:

P (y|x;θ) =
T∏
t=1

P (yt|y<t, x;θ), (1)

where θ is a set of model parameters and y<t is a
partial translation. At each time step, the model
generates an output token of the highest probability
based on the source sentence x and the partial trans-
lation y<t. The training objective is to minimize the
negative log-likelihood loss on the training corpus.

Inference NMT models are trained on the
ground-truth data distribution (teaching forcing),
while in inference the models generate target tokens
based on previous model predictions, which can
be erroneous. The training-inference discrepancy
caused by teacher forcing in maximum likelihood
estimation training (Equation 1) is often referred
to as exposure bias (Ranzato et al., 2015). In this
work, we aim to investigate the calibration of NMT
in inference, which we believe can better reflect the
generation capacity of NMT models.

3.2 Calibration of NMT

Calibration requires that the probability a model
assigns to a prediction (i.e., confidence) equals to
the true correctness measure of the prediction (i.e.,
accuracy). Modern neural networks have been
found to be miscalibrated in the direction of over-
estimation (Guo et al., 2017). In this study, we
revisit the calibration problem in NMT. If an NMT
model is well-calibrated, the gap between the con-
fidence of the generated tokens and the accuracy of
them will be small. 2

Expected Calibration Error (ECE) ECE is a
commonly-used metric to evaluate the miscalibra-
tion, which measures the difference in expectation
between confidence and accuracy (Naeini et al.,
2015). Specifically, ECE partitions predictions into
M bins {B1, . . . , BM} according to their confi-
dence and takes a weighted average of the bin’s
accuracy/confidence difference:

ECE =

M∑
m=1

|Bm|
N

∣∣∣acc(Bm)−conf(Bm)
∣∣∣, (2)

where N is the number of prediction samples and
|Bm| is the number of samples in the m-th bin.

2For example, given 100 predictions, each with confidence
0.7. If the accuracy is also 0.7 (i.e., 70 of the 100 tokens are
correct), then the NMT model is well calibrated.
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Figure 3: Reliability diagrams on (a) En-Jp and (b) Zh-En datasets. Left: training, right: inference.

ECE in Training and Inference In the case of
considering just the topmost token in structured
prediction tasks (e.g., machine translation), the
prediction is ŷ = argmaxy∈V P (y) with P (ŷ) as
confidence. The accuracy C(ŷ) ∈ {1, 0} denotes
whether the prediction ŷ is correct.

In training, the correctness of the prediction ŷ is
calculated as whether ŷ matches the ground-truth
token yn: C(ŷ) ∈ {1, 0}. However, in inference it
is not straightforward to measure the accuracy of
ŷ, since it requires to build an alignment between
the generated tokens and the ground-truth tokens.

To this end, we turn to the metric of Transla-
tion Error Rate (TER) (Snover et al., 2006), which
measures the number of edits required to change
a model output into the ground-truth sequence.
Specifically, it assigns a label l ∈ {C, S, I} to
each generated token. Figure 2 shows an exam-
ple of TER labels of each generated token with
respect to the reference. As a side product, TER
annotations provide the information of translation
errors. While TER only labels the mis-translation
(“S”) and over-translation (“I”) errors, we describe
a simple heuristic method to annotate the under-
translation error by mapping the label “D” from the
ground-truth sequence to the generated sequence.

4 Miscalibration in NMT

Data and Setup We carried out experiments on
three different language pairs, including WAT17
English-Japanese (En-Jp), WMT14 English-
German (En-De), and WMT17 Chinese-English
(Zh-En). The training datasets consist of 1.9M,
4.5M, and 20.6M sentence pairs respectively. We
employed Byte pair encoding (BPE) (Sennrich
et al., 2016) with 32K merge operations for all
the three language pairs. We used BLEU (Pap-
ineni et al., 2001) to evaluate the NMT models. We

used the TER toolkit (Snover et al., 2006) to label
whether the tokens in NMT outputs are correctly
translated. Normalization was not used, and the
maximum shift distance was set to 50.

The NMT model that we used in our experiments
is Transformer (Vaswani et al., 2017). We used
base model as default, which consists of a 6-layer
encoder and a 6-layer decoder and the hidden size
is 512. The model parameters are optimized by
Adam (Kingma and Ba, 2015), with β1 = 0.9,
β2 = 0.98 and ε = 10−9. We used the same warm-
up strategy for learning rate as Vaswani et al. (2017)
with warmup steps = 4, 000.

4.1 Observing Miscalibration

Reliability diagrams are a visual representation of
model calibration, which plot accuracy as a func-
tion of confidence (Niculescu-Mizil and Caruana,
2005). Specifically, it partitions the output tokens
into several bins according to their prediction con-
fidence, and calculate the average confidence and
accuracy of each bin. Figure 1 shows the reliability
diagrams of both training and inference on En-De
and Figure 3 shows those on En-Jp and Zh-En. Re-
sults are reported on the validation sets.

NMT still suffers from miscalibration. The dif-
ference between training and inference ECEs is
that when estimating training ECE, NMT mod-
els are fed with ground-truth prefixes (Kumar and
Sarawagi, 2019; Müller et al., 2019), while for in-
ference ECE, NMT models are fed with previous
model predictions. As seen, the training ECE is
very small, indicating that NMT models are well-
calibrated in training. This is consistent with the
findings of Kumar and Sarawagi (2019); Müller
et al. (2019). However, the inference ECE is much
higher, suggesting that NMT models still suffer
from miscalibration in inference.
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Translation Well-Cali. Mis-Cali.

C
or

re
ct

En-Jp 0.53 0.47
En-De 0.57 0.43
Zh-En 0.60 0.40

All 0.57 0.43

E
rr

or

En-Jp 0.46 0.54
En-De 0.43 0.57
Zh-En 0.36 0.63

All 0.42 0.58

Table 1: Cosine similarity between the calibration and
the translation errors on the held-out data.

NMT models are miscalibrated in directions of
both over- and under-estimation. Modern neu-
ral networks have been found to be miscalibrated
on classification tasks in the direction of over-
estimation (Guo et al., 2017). In contrast, NMT
models also suffer from under-estimation problems.
The under-estimation problem is more serious on
En-Jp than on Zh-En, which we attribute to the
smaller size of the training data of the En-Jp task.

4.2 Correlation with Translation Errors

We investigated the calibration error of tokens with
different TER labels. As the development set is
small, to make the results more convincing, we
sampled 100K sentences from the training set as a
held-out set and retrained the NMT model on the re-
mained training set excluding the held-out set. All
results in this section is reported by the retrained
model. We firstly compute the gap between the
confidence and the accuracy of each token in each
confidence bin on the held-out set. Tokens in bins
whose gaps are less than a threshold are labeled
as well-calibrated, otherwise they are labeled as
miscalibrated. We use the inference ECE estimated
on the development set as the threshold for each
language pair respectively. Miscalibrated tokens
can be divided into two categories: over-estimation
and under-estimation.

As shown in Table 1, correct translations (i.e.,
“C”) have higher correlations to well-calibrated pre-
dictions and erroneous translations (i.e., “S”, “I”,
and “D”) correlate more to miscalibrated predic-
tions. This finding is more obvious when NMT
models are trained on larger data (e.g., Zh-En).

Table 2 lists the correlation between different
translation errors and different kinds of miscalibra-
tion. We find that over-estimated predictions are
closely correlated with over-translation and mis-

Type Under-Est. Over-Est.

U
nd

er
-T

ra
. En-Jp 0.35 0.22

En-De 0.28 0.24
Zh-En 0.31 0.31

All 0.32 0.26

O
ve

r-
Tr

a. En-Jp 0.28 0.32
En-De 0.20 0.36
Zh-En 0.29 0.35

All 0.26 0.34

M
is

-T
ra

. En-Jp 0.24 0.36
En-De 0.17 0.42
Zh-En 0.24 0.40

All 0.21 0.39

Table 2: Cosine similarity between the miscalibration
errors (under-estimation and over-estimation) and the
translation errors (under-translation, mis-translation,
and over-translation) on the held-out data.

translation errors, while the under-estimated pre-
dictions correlate well with under-translation errors.
This finding demonstrates the necessity of studying
inference calibration for NMT.

5 Linguistic Properties of Miscalibration

In this section, we investigate the linguistic proper-
ties of miscalibrated tokens in NMT outputs. We
explore the following five types of properties: fre-
quency, position, fertility, syntactic roles, and word
granularity.

Frequency is generally related to miscalibration;
position, fertility, and word granularity are three
factors associated with structured prediction; syn-
tactic roles or linguistic roles may vary across lan-
guage pairs. The results in this section are reported
on the held-out set by the retrained model.

Relative Change We use the relative change of
the proportion of a certain category of tokens
to quantify to what extent they suffer from the
under/over-estimation. For instance, in the Zh-En
task, high-frequency tokens account for 87.6% on
the whole held-out set, and among over-estimated
tokens, high-frequency tokens account for 77.3%,
thus for over-estimation the relative change of high-
frequency tokens is (77.3-87.6)/87.6=-11.76% in
Zh-En. Accordingly, the value of the red rectangle
of Zh-En is -11.76% in Figure 4a.

Positive relative change denotes that a certain
type of linguistic property accounts more in mis-
calibrated predictions than in all the predictions,
suggesting this type of linguistic property suffers
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Figure 4: Effect of frequency on miscalibration.

from the miscalibration problem. Similarly, nega-
tive relative change suggests that a certainty type
of linguistic property is less likely to be impaired
by the miscalibration problem.

5.1 Frequency

We divide tokens into three categories based on
their frequency, including High: the most 3,000
frequent tokens; Medium: the most 3,001-12,000
frequent tokens; Low: the other tokens.

Low-frequency tokens are miscalibrated in the
direction of under-estimation. As shown in Fig-
ure 4, the relative changes of low- and medium-
frequency tokens are much bigger than those of
high-frequency tokens. The under-estimation in
low- and medium-frequency tokens can be allevi-
ated by increasing the size of training data (Fig-
ure 4b, data size: En-Jp < En-De < Zh-En).

Low-frequency tokens contribute more to over-
estimation. As shown in Figure 4a, the relative
changes of low- and medium-frequency tokens are
positive while those of high-frequency tokens are
negative, regarding over-estimation.

High-frequency tokens are less likely to be mis-
calibrated. We find the relative changes of high
frequency tokens are negative across the three lan-
guage pairs. The imbalance in token frequency
plays an important role in the calibration of NMT.

5.2 Position

In structured prediction, different positions may
behave differently regarding miscalibration. Thus
we divide all the tokens equally into three cate-
gories: Left: tokens on the left third; Middle: to-
kens on the middle third; Right: tokens on the right
third. Figure 5 depicts the relative changes of these
three positions. Since Japanese is a head-final lan-
guage (Wu et al., 2018), we also include the results
of Japanese-English (“Jp-En”) for comparison.
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Figure 5: Effect of relative position on miscalibration.

Over-estimation does not have a bias on position.
And this holds for both left-branching and right-
branching languages. Increasing the size of training
data is less likely to affect the over-estimation in
different positions.

Under-estimation occurs more in the left part.
This phenomenon is more obvious in left-branching
languages (e.g., Japanese) than in right-branching
languages (e.g., English and German), confirming
that characteristics of a language play an important
role in machine translation (Wu et al., 2018).

5.3 Fertility
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Figure 6: Effect of fertility on miscalibration.

Fertility indicates how many source tokens a tar-
get token is aligned to, which is highly related to
inference in NMT. We use Fast Align (Dyer
et al., 2013) to extract bilingual alignment. We
distinguish between four categories regarding fer-
tility: “≥ 2”: target tokens that are aligned to more
than one source tokens; “1”: target tokens that are
aligned to a single source token; “(0, 1)”: target to-
kens that are aligned to a single source token along
with other target tokens; “0”: target tokens that are
not aligned to any source token. Figure 6 plots the
results.

Tokens aligning to less than one source token
suffer from over-estimation. The extent grows with
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Figure 7: Effect of POS tags on miscalibration.

the data size. In addition, these tokens (“(0, 1)”)
are less likely to suffer from under-estimation.

Tokens aligning to more than one source token
suffer more from under-estimation. The relative
change of fertility>=2 is much larger than that
of the other types of fertility. Meanwhile, the
null-aligned target tokens (fertility=0) also suf-
fer from under-estimation problem instead of over-
estimation problem on the large-scale Zh-En data.

5.4 Syntactic Roles

In this experiment, we investigate the syntac-
tic roles of miscalibrated tokens. 3 Words in
English and German sentences are labeled by
Stanford POS tagger4, and Japanese sen-
tences are labeled by Kytea5. We distinguish
between the following POS tags: noun, verb, adjec-
tive, preposition, determiner, punctuation, and the
others. Noun, verb, and adjective belong to content
tokens. Preposition, determiner, punctuation and
the others belong to content-free tokens.

Content tokens are more likely to suffer from
miscalibration. From Figure 7 we find that the most
relative changes of content tokens (i.e., “Noun”,
“Verb” and “Adj”) are positive, while most of the
relative changes of the content-free tokens (i.e.,
“Prep.”, “Dete.”, “Punc.”, “Others”) are negative.
Among content tokens, the verbs (“Verb”) face
the over-estimation problem instead of the under-
estimation problem. Surprisingly, the adjectives
(“Adj”) suffer from under-estimation problem on
large data (e.g., En-De and Zh-En).

5.5 Word Granularity

BPE segmentation is the preliminary step for cur-
rent NMT systems, which may segment some

3If a token is a sub-word segmented by BPE, the token
shares the syntactic role of the full word that it belongs to.

4https://nlp.stanford.edu/software/tagger.shtml
5http://www.phontron.com/kytea/
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Figure 8: Effect of word granularity on miscalibration.

words into sub-words. To explore the effect of word
granularity on the miscalibration of NMT models,
we divide the tokens after BPE segmentation into
two categories: Sub-Words that are divided into
word fragments by BPE (e.g., with “@@”), and
Full Words that are not divided by BPE. Figure 8
depicts the results.

Sub-words suffer more from miscalibration,
while full words are less likely to be miscalibrated.
The relative changes of sub-words are all positive
for both over- and under-estimation, while those of
full words are all negative. Sennrich et al. (2016)
showed that BPE addresses the open-vocabulary
translation by encoding rare and unknown words
as sequences of sub-word units. Our results con-
firm their claim: the behaviors of sub-words and
full words correlate well with those of low- and
high-frequency tokens respectively.

6 Revisiting Advances in Architecture
and Regularization

Guo et al. (2017) have revealed that the miscalibra-
tion on classification tasks is closely related to lack
of regularization and increased model size. In this
section we check whether the conclusion holds on
the inference of NMT models, which belong to a
family of structured generation.
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Label Dropout Beam Size = 10 Beam Size = 100
Smoothing BLEU ECE Over. Under. BLEU ECE Over. Under.

× × 23.03 25.49 58.3% 9.6% 22.90 26.46 59.4% 9.3%
X × 24.51 14.99 42.3% 17.3% 24.58 15.97 42.8% 16.9%
× X 27.52 20.75 52.3% 10.1% 26.93 22.57 53.6% 9.8%
X X 27.65 14.26 39.7% 14.1% 27.68 14.75 40.1% 14.2%

GRADUATED X 27.76 5.07 29.1% 31.6% 28.07 5.23 29.5% 31.4%

Table 3: Results of label smoothing and dropout on the En-De task. “Over.” and “Under.” denote over-estimation
and under-estimation, respectively.

None-Constant-Graduate

(a) None

None-Constant-Graduate

(b) Vanilla

None-Constant-Graduate

(c) Graduated

Figure 9: Reliability diagrams of different label smoothing strategies: (a) no label smoothing; (b) vanilla label
smoothing; (c) graduated label smoothing. The results are reported on the WMT14 En-De translation task.

One criticism of NMT inference is that the trans-
lation performance inversely decreases with the
increase of search space (Tu et al., 2017). Quite
recently, Kumar and Sarawagi (2019) claimed that
this problem can be attributed to miscalibration.
Accordingly, we also report results on large beam
size and find that reducing miscalibration can im-
prove the NMT performance in large beam size.

6.1 Regularization Techniques

We revisit two important regularization techniques
that directly affect confidence estimation:

• Label Smoothing (Szegedy et al., 2016): dis-
tributing a certain percentage of confidence
from the ground truth label to other labels
uniformly in training.

• Dropout (Hinton et al., 2012): randomly omit-
ting a certain percentage of the neural net-
works on each training case, which has been
shown effective to prevent the over-fitting
problem for large neural networks.

For comparison, we disable label smoothing or
dropout to retrain the model on the whole training
set. The results are shown in Table 3. We find
that label smoothing improves the performance by

greatly reducing the over-estimation, at the cost
of increasing the percentage of under-estimation
error. Dropout alleviates the over-estimation prob-
lem, and does not aggravate under-estimation. Al-
though label smoothing only marginally improves
performance on top of dropout, it is essential for
maintaining the translation performance in larger
search space (i.e., Beam Size = 100).

As seen from Table 3, reducing ECE can only
lead to marginal BLEU gains. We attribute this
phenomenon to the fact that ECE is another met-
ric to evaluate NMT models, which is potentially
complementary to BLEU. Accordingly, ECE is not
necessarily strictly negatively related to BLEU.

Graduated Label Smoothing Inspired by this
finding, we propose a novel graduated label
smoothing approach, in which the smoothing
penalty for high-confidence predictions is bigger
than that for low-confidence predictions. We firstly
use the model trained by vanilla label smoothing to
estimate the confidence of each token in the train-
ing set, then we set the smoothing penalty to 0.3
for tokens with confidence above 0.7, 0.0 for to-
kens with confidence below 0.3, and 0.1 for the
remaining tokens.

As shown in Table 3, the graduated label smooth-
ing can improve translation performance by alle-
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Enc. Dec. Para. Beam Size = 10 Beam Size = 100
BLEU ECE Over. Under. BLEU ECE Over. Under.

BASE BASE 88M 27.65 14.26 39.7% 14.1% 27.68 14.75 40.1% 14.2%
DEEP DEEP 220M 28.86 14.99 40.3% 14.1% 28.64 15.55 41.8% 14.0%
DEEP BASE 145M 29.09 14.28 39.6% 14.1% 29.29 14.53 39.6% 14.2%
WIDE WIDE 264M 28.66 16.09 42.3% 12.6% 28.42 17.22 43.2% 12.5%
WIDE BASE 160M 28.97 14.83 39.7% 13.6% 29.09 15.06 39.8% 13.7%

Table 4: Effect of model size by enlarging encoder (“Enc.”) and decoder (“Dec.”) on the En-De dataset.

viating inference miscalibration, and the improve-
ment is more significant in large beam size. Fig-
ure 9 shows the reliability diagrams of different
label smoothing strategies. The graduated label
smoothing can effectively calibrate the predictions
with 0.4 ≤ confidence ≤ 0.8, while is less effec-
tive for low- (i.e., < 0.4) and high-confidence (i.e.,
> 0.8) predictions. We believe that the design of
more advanced techniques to solve this problem is
a worthwhile future direction of research.

6.2 Increased Model Size

The model size of NMT models has increased sig-
nificantly recently (Bahdanau et al., 2015; Vaswani
et al., 2017; Wang et al., 2019). We evaluated the
inference calibration of models with different sizes.
We increase model size in the following two ways:

• Deeper model: both the encoder and the de-
coder are deepened to 24 layers;

• Wider model: the hidden size of the encoder
and the decoder is widened to 1024.

The BLEU score and inference ECE of different
models are shown in Table 4.

Increasing model size negatively affects infer-
ence calibration. We find that increasing both
the encoder and the decoder increases the infer-
ence calibration error despite increasing the BLEU,
confirming the finding of Guo et al. (2017) that
increased model size is closely related to model
miscalibration. This leads to a performance drop
in a larger search space (i.e., Beam Size = 100).

Only enlarging the encoder improves translation
quality while maintaining inference calibration. As
the decoder is more directly related to the gener-
ation, it is more likely to result in miscalibration.
In order to maintain the performance improvement
and do not aggravate over-estimation, we propose
to only increase the size of encoder and keep the
decoder unchanged. Results in Table 4 indicate

that only enlarging the encoder can achieve better
performance with fewer parameters compared to
enlarging both the encoder and the decoder. In a
larger search space (i.e., Beam Size = 100), models
with high inference ECE will generate worse trans-
lations while models with low inference ECE can
achieve improved translation performance.

7 Conclusion

Although NMT models are well-calibrated in train-
ing, we observe that they still suffer from miscali-
bration during inference because of the discrepancy
between training and inference. Through a series
of in-depth analyses, we report several interesting
findings which may help to analyze, understand
and improve NMT models. We revisit recent ad-
vances and find that label smoothing and dropout
play key roles in calibrating modern NMT mod-
els. We further propose graduated label smoothing
that can reduce the inference calibration error ef-
fectively. Finally, we find that increasing model
size can negatively affect the calibration of NMT
models and this can be alleviated by only enlarging
the encoder. As well-calibrated confidence esti-
mation is more likely to establish trustworthiness
with users, we plan to apply our work to interactive
machine translation scenarios in the future.
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