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Abstract

Non-autoregressive neural machine translation
(NAT) predicts the entire target sequence si-
multaneously and significantly accelerates in-
ference process. However, NAT discards the
dependency information in a sentence, and
thus inevitably suffers from the multi-modality
problem: the target tokens may be provided
by different possible translations, often caus-
ing token repetitions or missing. To allevi-
ate this problem, we propose a novel semi-
autoregressive model RecoverSAT in this
work, which generates a translation as a se-
quence of segments. The segments are gen-
erated simultaneously while each segment is
predicted token-by-token. By dynamically de-
termining segment length and deleting repet-
itive segments, RecoverSAT is capable of re-
covering from repetitive and missing token er-
rors. Experimental results on three widely-
used benchmark datasets show that our pro-
posed model achieves more than 4× speedup
while maintaining comparable performance
compared with the corresponding autoregres-
sive model.

1 Introduction

Although neural machine translation (NMT) has
achieved state-of-the-art performance in recent
years (Cho et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017), most NMT models still suf-
fer from the slow decoding speed problem due to
their autoregressive property: the generation of a
target token depends on all the previously gener-
ated target tokens, making the decoding process
intrinsically nonparallelizable.

Recently, non-autoregressive neural machine
translation (NAT) models (Gu et al., 2018; Li et al.,
2019; Wang et al., 2019; Guo et al., 2019a; Wei
et al., 2019) have been investigated to mitigate the
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Src. es gibt heute viele Farmer mit diesem Ansatz

Feasible there are lots of farmers doing this today
Trans. there are a lot of farmers doing this today

Trans. 1 there are lots of of farmers doing this today
Trans. 2 there are a lot farmers doing this today

Table 1: A multi-modality problem example: NAT
models generate each target token independently such
that they may correspond to different feasible transla-
tions, which usually manifests as repetitive (Trans. 1)
or missing (Trans. 2) tokens.

slow decoding speed problem by generating all tar-
get tokens independently in parallel, speeding up
the decoding process significantly. Unfortunately,
these models suffer from the multi-modality prob-
lem (Gu et al., 2018), resulting in inferior transla-
tion quality compared with autoregressive NMT.
To be specific, a source sentence may have mul-
tiple feasible translations, and each target token
may be generated with respect to different fea-
sible translations since NAT models discard the
dependency among target tokens. This generally
manifests as repetitive or missing tokens in the
translations. Table 1 shows an example. The Ger-
man phrase “viele Farmer” can be translated as
either “lots of farmers” or “a lot of farmers”. In
the first translation (Trans. 1), “lots of” are trans-
lated w.r.t. “lots of farmers” while “of farmers” are
translated w.r.t. “a lot of farmers” such that two
“of” are generated. Similarly, “of” is missing in
the second translation (Trans. 2). Intuitively, the
multi-modality problem has a significant negative
effect on the translation quality of NAT.

Intensive efforts have been devoted to alleviate
the above problem, which can be roughly divided
into two lines. The first line of work leverages
the iterative decoding framework to break the in-
dependence assumption, which first generates an
initial translation and then refines the translation
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Figure 1: An overview of our RecoverSAT model. RecoverSAT generates a translation as a sequence of segments.
The segments are generated simultaneously while each segment is generated token-by-token conditioned on both
the source tokens and the translation history of all segments (e.g., the token “are” in the first segment is predicted
based on all the tokens colored green). Repetitive segments (e.g., the third segment “lots of”) are detected and
deleted automatically.

iteratively by taking both the source sentence and
the translation of last iteration as input (Lee et al.,
2018; Ghazvininejad et al., 2019). Nevertheless, it
requires to refine the translations for multiple times
in order to achieve better translation quality, which
hurts decoding speed significantly. The other line
of work tries to improve the vanilla NAT model to
better capture target-side dependency by leverag-
ing extra autoregressive layers in the decoder (Shao
et al., 2019a; Wang et al., 2018), introducing latent
variables and/or more powerful probabilistic frame-
works to model more complex distributions (Kaiser
et al., 2018; Akoury et al., 2019; Shu et al., 2019;
Ma et al., 2019), guiding the training process with
an autoregressive model (Li et al., 2019; Wei et al.,
2019), etc. However, these models cannot alter
a target token once it has been generated, which
means these models are not able to recover from
an error caused by the multi-modality problem.

To alleviate the multi-modality problem while
maintaining a reasonable decoding speedup, we
propose a novel semi-autoregressive model named
RecoverSAT in this work. RecoverSAT features in
three aspects: (1) To improve decoding speed, we
assume that a translation can be divided into several
segments which can be generated simultaneously.
(2) To better capture target-side dependency, the to-
kens inside a segment is autoregressively generated
conditioned not only on the previously generated
tokens in this segment but also on those in other
segments. On one hand, we observe that repeti-
tive tokens are more likely to occur within a short
context. Therefore, autoregressively generating a
segment is beneficial for reducing repetitive tokens.
On the other hand, by conditioning on previously

generated tokens in other segments, the model is
capable of guessing what feasible translation candi-
dates have been chosen by each segment and adapts
accordingly, e.g., recovering from missing token
errors. As a result, our model captures more target-
side dependency such that the multi-modality prob-
lem can be alleviated naturally. (3) To make the
model capable of recovering from repetitive token
errors, we introduce a segment deletion mechanism
into our model. Informally speaking, our model
will mark a segment to be deleted once it finds the
content has been translated in other segments.

We conduct experiments on three benchmark
datasets for machine translation to evaluate the
proposed method. The experimental results show
that RecoverSAT is able to decode over 4× faster
than the autoregressive counterpart while maintain-
ing comparable performance. The source code
of this work is released on https://github.com/

ranqiu92/RecoverSAT.

2 Background

2.1 Autoregressive Neural Machine
Translation

Autoregressive neural machine translation (AT)
generates the translation token-by-token condi-
tioned on translation history. Denoting a source
sentence as x = {xi}T

′
i=1 and a target sentence as

y = {yj}Tj=1, AT models the joint probability as:

P (y|x) =

T∏
t=1

P (yt|y<t,x). (1)

where y<t denotes the generated tokens before yt.

https://github.com/ranqiu92/RecoverSAT
https://github.com/ranqiu92/RecoverSAT
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During decoding, the translation history depen-
dency makes the AT model predict each token after
all previous tokens have been generated, which
makes the decoding process time-consuming.

2.2 Non-Autoregressive Neural Machine
Translation

Non-autoregressive neural machine translation
(NAT) (Gu et al., 2018) aims to accelerate the de-
coding process, which discards the dependency of
translation history and models P (y|x) as a prod-
uct of the conditionally independent probability of
each token:

P (y|x) =
T∏
t=1

P (yt|x). (2)

The conditional independence enables the NAT
models to generate all target tokens in parallel.

However, independently predicting all target to-
kens is challenging as natural language often ex-
hibits strong correlation across context. Since the
model knows little information about surrounding
target tokens, it may consider different possible
translations when predicting different target tokens.
The problem is known as the multi-modality prob-
lem (Gu et al., 2018) and significantly degrades the
performance of NAT models.

3 Approach

3.1 Overview
RecoverSAT extends the original Trans-
former (Vaswani et al., 2017) to enable the
decoder to perform generation autoregressively
in local and non-autoregressively in global. An
overview of the architecture of our RecoverSAT
model is shown in Figure 1. As illustrated in
the figure, RecoverSAT simultaneously predicts
all segments “there are EOS”, “lots of farmers
EOS”, “a lot DEL” and “doing this today EOS”.
And at each time step, it generates a token for
each incomplete segment. The special token DEL
denotes the segment should be deleted and EOS
denotes the end of a segment. Combining all the
segments, we obtain the final translation “there are
lots of farmers doing this today”.

Formally, assuming a translation y is generated
as K segments S1,S2, · · · ,SK , where Si is a sub-
sequence of the translation1. For description sim-
plicity, we assume that all the segments have the

1Note that, by fixing segment length (token number of
each segment) instead, the segment number K can be changed

same length. RecoverSAT predicts a token for each
segment conditioned on all previously generated
tokens at each generation step, which can be for-
mulated as:

P (y|x) =
L∏

t=1

K∏
i=1

P (Si
t|S1

<t · · ·SK
<t;x), (3)

where Si
t denotes the t-th token in the i-th segment,

Si
<t = {Si

1, · · · ,Si
t−1} denotes the translation his-

tory in the i-th segment, and L is segment length.
Here, two natural problems arise for the decod-

ing process:

• How to determine the length of a segment?

• How to decide a segment should be deleted?

We address the two problems in a uniform way in
this work. Suppose the original token vocabulary
is V , we extend it with two extra tokens EOS and
DEL. Then for the segment Si, the most probable
token Ŝi

t at time step t:

Ŝi
t = arg max

Si
t∈V ∪{EOS,DEL}

P (Si
t|S1

<t · · ·SK
<t;x) (4)

has three possibilities:
(1) Ŝi

t ∈ V : the segment Si is incomplete and
the decoding process for it should continue;

(2) Ŝi
t = EOS: the segment Si is complete and

the decoding process for it should terminate;
(3) Ŝi

t = DEL: the segment Si is repetitive and
should be deleted. Accordingly, the decoding pro-
cess for it should terminate.

The entire decoding process terminates when
all the segments meet EOS/DEL or reach the maxi-
mum token number. It should be noticed that we
do not explicitly delete a segment when DEL is
encountered but do it via post-processing. In other
words, the model is trained to ignore the segment
to be deleted implicitly.

3.2 Learning to Recover from Errors
As there is little target-side information available
in the early stage of the decoding process, the er-
rors caused by the multi-modality problem is in-
evitable. In this work, instead of reducing such
errors directly, we propose two training mecha-
nisms to teach our RecoverSAT model to recover
dynamically according to the sentence length. In other words,
we can predict the target sentence length to determine the
segment number during inference. In this case, our model can
also decode in constant time.
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from errors: (1) Dynamic Termination Mechanism:
learning to determine segment length according to
target-side context; (2) Segment Deletion Mecha-
nism: learning to delete repetitive segments.

3.2.1 Dynamic Termination Mechanism

As shown in Section 3.1, instead of pre-specifying
the lengths of segments, we let the model determine
the lengths by emitting the EOS token. This strat-
egy helps our model recover from multi-modality
related errors in two ways:

1. The choice of the first few tokens is more
flexible. Taking Figure 1 as an example, if the de-
coder decides the first token of the second segment
is “of” instead of “lots” (i.e., “lots” is not generated
in the second segment), it only needs to generate
“lots” before “EOS” in the first segment in order to
recover from missing token errors. In contrast, if
the decoder decides the first token is “are”, it can
avoid repetitive token error by not generating “are”
in the first segment;

2. As shown in Eq. 3, a token is generated con-
ditioned on all the previously generated tokens in
all the segments. Therefore, the decoder has richer
target-side information to detect and recover from
such errors.

However, it is non-trivial to train the model to
learn such behaviour while maintaining a reason-
able speedup. On one hand, as the decoding time
of our RecoverSAT model is proportional to the
maximum length of the segments, we should di-
vide the target sentences of training instances into
equal-length segments to encourage the model to
generate segments with identical length. On the
other hand, the model should be exposed to the
multi-modality related errors to enhance its ability
of recovering from such errors, which suggests that
the target sentences of training instances should be
divided randomly to simulate these errors.

To alleviate the problem, we propose a mixed
annealing dividing strategy. To be specific, we ran-
domly decide whether to divide a target sentence
equally or randomly at each training step and grad-
ually anneal to the equally-dividing method at the
end of training. Formally, given the target sentence
y and the segment number K, we define the seg-
ment dividing indice set r as follows:

s ∼ Bernoulli(p), (5)

r =

{
EQUAL(T,K − 1) s = 0

RAND(T,K − 1) s = 1
, (6)

where Bernoulli(p) is the Bernoulli distri-
bution with parameter p, EQUAL(n,m) ={
d n
m+1e, d

2n
m+1e, · · · , d

mn
m+1e

}
, RAND(n,m)

sampling m non-duplicate indices from [1, n]. A
larger value of p leads to better error recovering
ability while a smaller one encourages the model
to generate segments with similar lengths (in
other words, better speedup). To balance the
two aspects, we gradually anneal p from 1 to 0
in the training process, which achieves better
performance (Section 4.5).

3.2.2 Segment Deletion Mechanism
Although the dynamic termination mechanism
makes the model capable of recovering from miss-
ing token errors and reducing repetitive tokens, the
model still can not recover from errors where token
repetition errors have already occurred. We find
the major errors of our model occur when generat-
ing the first token of each segment since it cannot
see any history and future. In this situation, two
repetitive segments will be generated. To alleviate
this problem, we propose a segment-wise deletion
strategy, which uses a special token DEL to indicate
a segment is repetitive and should be deleted2.

A straightforward way to train the model to learn
to delete a segment is to inject pseudo repetitive
segments into the training data. The following is
an example:

Target Sentence there are lots of farmers doing
this today

+ Pseudo Repetitive
Segment

there are lots of farmers lots of
DEL doing this today

Given the target sentence “there are lots of farmers
doing this today”, we first divide it into 3 segments
“there are”, “lots of farmers” and “doing this today”.
Then we copy the first two tokens of the second
segment and append the special token DEL to the
end to construct a pseudo repetitive segment “lots
of DEL”. Finally, we insert the repetitive segment
to the right of the chosen segment, resulting in 4
segments. Formally, given the expected segment
numberK and the target sentence y, we first divide
y intoK−1 segments S1,S2, · · · ,SK−1 and then
build a pseudo repetitive segment Si

rep by copying
the first m tokens of a randomly chosen segment
Si and appending DEL to the end, m is uniformly

2It is more flexible to employ token-wise deletion strategy
which could handle more complex cases. We will explore this
in future.
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sampled from [1, |Si|]. Finally, Si
rep is inserted

at the right side of Si. The final K segments are
S1,S2, · · · ,Si,Si

rep,S
i+1, · · · ,SK−1.

However, injecting such pseudo repetitive seg-
ments to all training instances will mislead the
model that generating then deleting a repetitive
segment is a must-to-have behaviour, which is not
desired. Therefore, we inject pseudo repetitive seg-
ment into a training instance with probability q in
this work.

4 Experiments

4.1 Datasets

We conduct experiments on three widely-used ma-
chine translation datasets: IWSLT16 En-De (196k
pairs), WMT14 En-De (4.5M pairs) and WMT16
En-Ro (610k pairs). For fair comparison, we use
the preprocessed datasets in Lee et al. (2018), of
which sentences are tokenized and segmented into
subwords using byte-pair encoding (BPE) (Sen-
nrich et al., 2016) to restrict the vocabulary size.
We use a shared vocabulary of 40k subwords for
both source and target languages. For the WMT14
En-De dataset, we use newstest-2013 and newstest-
2014 as validation and test sets respectively. For
the WMT16 En-Ro dataset, we employ newsdev-
2016 and newstest-2016 as validation and test sets
respectively. For the IWSLT16 En-De dataset, we
use test2013 as the validation set.

4.2 Experimental Settings

For model hyperparameters, we follow most of
the settings in (Gu et al., 2018; Lee et al., 2018;
Wei et al., 2019). For the IWSLT16 En-De dataset,
we use a small Transformer model (dmodel = 278,
dhidden = 507, nlayer = 5, nhead = 2, pdropout =
0.1). For the WMT14 En-De and WMT16 En-
Ro datasets, we use a larger Transformer model
(dmodel = 512, dhidden = 512, nlayer = 6,
nhead = 8, pdropout = 0.1). We linearly an-
neal the learning rate from 3 × 10−4 to 10−5 as
in Lee et al. (2018) for the IWSLT16 En-De dataset,
while employing the warm-up learning rate sched-
ule (Vaswani et al., 2017) with twarmup = 4000 for
the WMT14 En-De and WMT16 En-Ro datasets.
We also use label smoothing of value εls = 0.15
for all datasets. We utilize the sequence-level dis-
tillation (Kim and Rush, 2016), which replaces the
target sentences in the training dataset with sen-
tences generated by an autoregressive model, and
set the beam size of the technique to 4. We use the

encoder of the corresponding autoregressive model
to initialize the encoder of RecoverSAT, and share
the parameters of source and target token embed-
ding layers and the pre-softmax linear layer. We
measure the speedup of model inference in each
task on a single NVIDIA P40 GPU with the batch
size 1.

4.3 Baselines

We use the Transformer (Vaswani et al., 2017) as
our AT baseline and fifteen latest strong NAT mod-
els as NAT baselines, including: (1) fertility-based
model: NAT-FT (Gu et al., 2018); (2) iterative de-
coding based models: NAT-IR (Lee et al., 2018)
and CMLM (Ghazvininejad et al., 2019); (3) mod-
els learning from AT teachers: imitate-NAT (Wei
et al., 2019), NART (Li et al., 2019) and FCL-
NAT (Guo et al., 2019b); (4) latent variable frame-
work based models: LV NAR (Shu et al., 2019)
and FlowSeq (Ma et al., 2019); (5) regularization
framework based model: NAT-REG (Wang et al.,
2019); (6) models introducing extra target-side de-
pendencies: SAT (Wang et al., 2018), SynST (Ak-
oury et al., 2019), NAT-FS (Shao et al., 2019a),
PNAT (Bao et al., 2019), NART-DCRF (Sun et al.,
2019) and ReorderNAT (Ran et al., 2019).

4.4 Overall Results

The performance of our RecoverSAT model and
the baselines is shown in Table 2. Due to the space
limitation, we only show the results corresponding
to the settings of the best BLEU scores for the
baselines 3. From Table 2, we can observe that:

(1) Our RecoverSAT model achieves comparable
performance with the AT baseline (Transformer)
while keeping significant speedup. When K = 2,
the BLEU score gap is moderate (from 0.06 to
0.4, even better than Transformer on the WMT16
En→Ro and Ro→En tasks) and the speedup is
about 2×. When K = 10, the BLEU scores drop
less than 5% relatively, and the speedup is consid-
erably good (over 4×).

(2) Our RecoverSAT model outperforms all
the strong NAT baselines except CMLM (on the
WMT16 En→Ro and Ro→En tasks). However,
the performance gap is negligible (0.16 and 0.12
respectively), and CMLM is a multi-step NAT
method which is significantly slower than our
model.

3A thorough comparison under other settings can be found
in Appendix B.



3064

Model Iterative WMT14 En-De WMT16 En-Ro IWSLT16 En-De
Decoding En→ De→ Speedup En→ Ro→ Speedup En→ Speedup

Transformer 27.17 31.95 1.00× 32.86 32.60 1.00× 31.18 1.00×

NAT-FT+NPD (n = 100) 19.17 23.20 - 29.79 31.44 - 28.16 2.36×
SynST 20.74 25.50 4.86× - - - 23.82 3.78×
NAT-IR (iter = 10) X 21.61 25.48 2.01× 29.32 30.19 2.15× 27.11 1.55×
NAT-FS 22.27 27.25 3.75× 30.57 30.83 3.70× 27.78 3.38×
imitate-NAT+LPD (n = 7) 24.15 27.28 - 31.45 31.81 - 30.68 9.70×
PNAT+LPD (n = 9) 24.48 29.16 - - - - - -
NAT-REG+LPD (n = 9) 24.61 28.90 - - - - 27.02 -
LV NAR 25.10 - 6.8× - - - - -
NART+LPD (n = 9) 25.20 29.52 17.8× - - - - -
FlowSeq+NPD (n = 30) 25.31 30.68 <1.5× 32.20 32.84 - - -
FCL-NAT+NPD (n = 9) 25.75 29.50 16.0× - - - - -
ReorderNAT 26.51 31.13 - 31.70 31.99 - 30.26 5.96×
NART-DCRF+LPD (n = 19) 26.80 30.04 4.39× - - - - -
SAT (K = 2) 26.90 - 1.51× - - - - -
CMLM (iter = 10) X 27.03 30.53 <1.5× 33.08 33.31 - - -

RecoverSAT (K = 2) 27.11 31.67 2.16× 32.92 33.19 2.02× 30.78 2.06×
RecoverSAT (K = 5) 26.91 31.22 3.17× 32.81 32.80 3.16× 30.55 3.28×
RecoverSAT (K = 10) 26.32 30.46 4.31× 32.59 32.29 4.31× 29.90 4.68×

Table 2: Performance (BLEU) of Transformer, the NAT/semi-autoregressive models and RecoverSAT on three
widely-used machine translation benchmark datasets. NPD denotes the noisy parallel decoding technique (Gu
et al., 2018) and LPD denotes the length parallel decoding technique (Wei et al., 2019). n denotes the sample size
of NPD or LPD. iter denotes the refinement number of the iterative decoding method.

(3) As K grows, the BLEU scores drop moder-
ately and the speedup grows significantly, indicat-
ing that our RecoverSAT model has a good gen-
eralizability. For example, the BLEU scores drop
less than 0.45 when K grows from 2 to 5, and drop
no more than 0.90 except on the WMT14 De→En
task when K further grows to 10. Meanwhile, the
speedup for K = 10 is larger than 4×, which is
considerably good.

(4) There are only 7 baselines (SynST,
imitate-NAT+LPD, LV NAR, NART+LPD, FCL-
NAT+NPD, ReorderNAT and NART-DCRF+LPD)
achieving better speedup than our RecoverSAT
model when K = 10. However, only Reorder-
NAT and NART-DCRF+LPD achieve comparable
BLEU scores with our model.The improvements
of both ReorderNAT and NART-DCRF are comple-
mentary to our method. It is an interesting future
work to join these works together.

4.5 Effect of Dynamic Termination
Mechanism

As discussed in Section 3.2.1, the dynamic termi-
nation mechanism is used to train our RecoverSAT
model to learn to determine segment length dynam-
ically conditioned on target-side context such that
it is recoverable from multi-modality related errors.
In this section, we investigate the effect of this
mechanism and the results are shown in Table 3.

As multi-modality related errors generally man-
ifest as repetitive or missing tokens in the trans-
lation, we propose two quantitative metrics “Rep”
and “Mis” to measure these two phenomenons re-
spectively. “Rep” is defined as the relative incre-
ment of repetitive token ratio w.r.t. to a reference
AT model. And “Mis” is defined as the relative
increment of missing token ratio given the refer-
ences w.r.t. to a reference AT model. Formally,
given the translations Ŷ = {ŷ1 · · · ŷk · · · } pro-
duced by the model to be evaluated and the trans-
lations Ŷauto = {ŷ1

auto · · · ŷk
auto · · · } produced by

the reference AT model, “Rep” is defined as

Rep =
r(Ŷ)− r(Ŷauto)

r(Ŷauto)
, (7)

r(Y) =

∑
k

|yk|∑
j=2

1

(
9∑

i=1
1(yk

j = yk
j−i) ≥ 1

)
∑
k

|yk|
,

(8)
where 1(cond) = 1 if the condition cond holds
otherwise 0, and yk

j is the j-th token of the transla-
tion sentence yk.

Given Ŷ, Ŷauto and references Ȳ =
{ȳ1 · · · ȳk · · · }, “Mis” is defined as

Mis =
m(Ŷ, Ȳ)−m(Ŷauto, Ȳ)

m(Ŷauto, Ȳ)
, (9)
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p BLEU Rep Mis Step

NAT 24.57 50.09 9.09 1

0.0 27.09 22.05 6.95 4.2
RecoverSAT 0.5 29.80 12.69 3.96 5.5
(K=10) 1.0 29.89 13.00 4.75 7.2

1→0 29.90 7.09 3.56 5.1

Table 3: Effect of the dynamic termination mechanism.
The results are evaluated on the IWSLT16 En-De val-
idation set. p is the parameter of Bernoulli distribu-
tion in Eq. 5. “Rep” and “Mis” measure the relative
increment (%) of repetitive and missing token ratios
(see Section 4.5), the smaller the better. “Step” denotes
the average number of decoding steps. And “1→0” de-
notes annealing p from 1 to 0 linearly.

where m(·, ·) computes the missing token ratio and
is defined as follows:

cw(yk, ȳk) = max
(
c(ȳk, w)− c(yk, w), 0

)
,

m(Y, Ȳ) =

∑
k

∑
w∈ȳk cw(yk, ȳk)∑

k |ȳk|
, (10)

where c(y, w) is the occurrence number of a token
w in the sentence y.

From Table 3, we can observe that: (1) By us-
ing the dynamic termination mechanism (p = 0.5,
1.0, 1→ 0, where p is the parameter of Bernoulli
distribution (Eq. 5)), both repetitive and missing
token errors are reduced (“Rep” & “Mis”), and the
BLEU scores are increased, indicating the effec-
tiveness of the mechanism; (2) As p grows larger,
the average number of decoding steps (“Step”) in-
creases significantly. The reason is that more target
sentences are divided into segments equally with
smaller p during training and the model is biased to
generate segments with similar lengths. However,
if the model is not exposed to randomly divided
segments (p = 0.0), it fails to learn to recover from
multi-modality related errors and the BLEU score
drops significantly. (3) By using the annealing di-
viding strategy (p = 1→ 0, see Section 3.2.1), we
achieve a good balance between decoding speed
and translation quality. Therefore, we use it as the
default setting in this paper.

4.6 Effect of Segment Deletion Mechanism
In this section, we investigate the effect of the
segment deletion mechanism and the results are
shown in Table 4, where q is the probability of in-
jecting pseudo repetitive segments to each training
instance. From the results we can observe that:
(1) Without using the segment deletion mechanism

q BLEU Rep Step

NAT 24.57 50.09 1

0.0 28.56 26.24 4.4
0.1 29.73 5.11 4.7

RecoverSAT 0.3 29.61 7.71 5.1
(K = 10) 0.5 29.90 7.09 5.1

0.7 29.76 11.47 5.2
0.9 29.25 21.38 5.3
1.0 29.13 20.55 5.2

Table 4: Effect of segment deletion mechanism. The
results are evaluated on the IWSLT16 En-De validation
set. q is the probability of injecting pseudo repetitive
segments to each training instance (see Section 3.2.2).
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Figure 2: Translation quality on the IWSLT16 En-De
validation set over sentences in different length.

(q = 0), the BLEU score drops significantly and
the repetitive token errors (“Rep”) increase dras-
tically, indicating that the mechanism is effective
for recovering from repetitive token errors. (2) As
q grows larger, the average number of decoding
steps (“Step”) increases steadily because the model
is misled that to generate then delete a repetitive
segment is expected. Thus, q should not be too
large. (3) The repetitive token errors (“Rep”) in-
crease drastically when q > 0.7. We believe that
the reason is that the pseudo repetitive segments
are constructed randomly, making it hard to learn
the underlying mapping. (4) The model achieves
the best performance with q = 0.5. Therefore, we
set q = 0.5 in our experiments.

4.7 Performance over Sentence Lengths

Figure 2 shows the translation quality of the Trans-
former, our RecoverSAT model with K = 10 and
NAT on the IWSLT16 En-De validation set buck-
eted by different source sentence lengths. From the
figure, we can observe that RecoverSAT surpasses
NAT significantly and achieves comparable perfor-
mance to the Transformer on all length buckets,
which indicates the effectiveness of our model.
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Source die er greif endste Abteilung ist das Denk mal für die Kinder , das zum Ged enken an die 1,5
Millionen Kinder , die in den Konzent rations lagern und Gas k ammern vernichtet wurden ,
erbaut wurde .

Reference the most tragic section is the children’s mem orial , built in memory of 1.5 million children
killed in concentration camps and gas cham bers .

NAT Translation the most tangible department department the monument monument the children , which
was built commem commem orate 1.5 1.5 million children were destroyed in the
concentration camps and gas cham bers .

RecoverSAT
(K = 10)

Translation A: [1]the EOS [2]most tangible department is the EOS [3]monument for children EOS [4]built to
EOS [5]commem orate the 1.5 EOS [6]million children destroyed EOS [7]in the concentration
camps and EOS [8]in DEL [9]gas EOS [10]cham bers . EOS

Forced
Translation

B: [1]the EOS [2]most tangible department is the EOS [3]monument for children EOS [4]built to
EOS [5]commem orate EOS [6]the 1.5 million children destroyed EOS [7]in the concentration
camps and EOS [8]in DEL [9]gas EOS [10]cham bers . EOS

C: [1]the EOS [2]most tangible department is the EOS [3]monument for children EOS [4]built
to EOS [5]commem orate the 1.5 million children EOS [6]destroyed EOS [7]in concentration
camps and EOS [8]in DEL [9]gas EOS [10]cham bers . EOS

D: [1]the EOS [2]most tangible department is the EOS [3]monument for children EOS [4]built
to EOS [5]commem orate the 1.5 million children destroyed EOS [6]in the concentration
camps and EOS [7]in the DEL [8]in DEL [9]gas EOS [10]cham bers . EOS

Table 5: Translation examples of NAT and RecoverSAT. “Forced Translation” denotes the generated sentence
when we manually force the model to generate a certain token (colored green) at a certain position. We use yellow
color to label repetitive tokens, red color to label missing tokens, and gray color to label the segments to be deleted.
We use “ ” to concatenate sub-words and subscript numbers (e.g., [1]) to mark the beginning of each segment.

4.8 Case Study

We present translation examples of NAT and our
RecoverSAT model on the WMT14 De→En valida-
tion set in Table 5. From the table, we can observe
that: (1) The multi-modality problem (repetitive
and missing tokens) is severe in the sentence gen-
erated by NAT, while it is effectively alleviated by
RecoverSAT (see translations A to D); (2) Recov-
erSAT can leverage target contexts to dynamically
determine the segment length to reduce repetitive
token errors (see translation B) or recover from
missing token errors (see translations C and D); (3)
RecoverSAT is capable of detecting and deleting
the repetitive segments, even if there are multiple
such segments (see translation D).

5 Related Work

There has been various work investigating to ac-
celerate the decoding process of sequence genera-
tion models (Kalchbrenner et al., 2018; Gu et al.,
2018). In the field of neural machine translation,
which is the focus of this work, Gu et al. (2018)
first propose non-autoregressive machine transla-
tion (NAT), which generates all target tokens si-
multaneously. Although accelerating the decoding
process significantly, NAT suffers from the multi-
modality problem (Gu et al., 2018) which generally

manifests as repetitive or missing tokens in transla-
tion. Therefore, intensive efforts have been devoted
to alleviate the multi-modality problem in NAT.
Wang et al. (2019) regularize the decoder hidden
states of neighboring tokens to reduce repetitive
tokens; Sun et al. (2019) utilize conditional ran-
dom field to model target-side positional contexts;
Shao et al. (2019a) and Shao et al. (2019b) intro-
duce target-side information via specially designed
training loss while Guo et al. (2019a) enhance the
input of the decoder with target-side information;
Kaiser et al. (2018), Akoury et al. (2019), Shu et al.
(2019) and Ma et al. (2019) incorporate latent vari-
ables to guide generation; Li et al. (2019), Wei
et al. (2019) and Guo et al. (2019b) use autore-
gressive models to guide the training process of
NAT; Ran et al. (2019) and Bao et al. (2019) con-
sider the reordering information in decoding. Wang
et al. (2018) further propose a semi-autoregressive
Transformer method, which generates segments
autoregressively and predicts the tokens in a seg-
ment non-autoregressively. However, none of the
above methods explicitly consider recovering from
multi-modality related errors.

Recently, multi-step NAT models have also been
investigated to address this issue. Lee et al. (2018)
and Ghazvininejad et al. (2019) adopt an iterative
decoding methods which have the potential to re-



3067

cover from generation errors. Besides, Stern et al.
and Gu et al. (2019) also propose to use dynamic
insertion/deletion to alleviate the generation repeti-
tion/missing. Different from these work, our model
changes one-step NAT to a semi-autoregressive
form, which maintains considerable speedup and
enables the model to see the local history and fu-
ture to avoid repetitive/missing words in decoding.
Our work can further replace the one-step NAT to
improve its performance.

6 Conclusion

In this work, we propose a novel semi-
autoregressive model RecoverSAT to alleviate the
multi-modality problem, which performs transla-
tion by generating segments non-autoregressively
and predicts the tokens in a segment autoregres-
sively. By determining segment length dynami-
cally, RecoverSAT is capable of recovering from
missing token errors and reducing repetitive to-
ken errors. By explicitly detecting and deleting
repetitive segments, RecoverSAT is able to re-
cover from repetitive token errors. Experiments on
three widely-used benchmark datasets show that
our RecoverSAT model maintains comparable per-
formance with more than 4× decoding speedup
compared with the AT model.
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A Positional Encoding

Our RecoverSAT model utilizes the positional en-
coding method in Vaswani et al. (2017) to encode
the information about the positions of source to-
kens. The positional embedding is defined as:

PEpos[2i] = sin
( pos

100002i/d

)
, (11)

PEpos[2i+ 1] = cos
( pos

100002i/d

)
, (12)

where PEpos[i] is the i-th element of the positional
embedding vector PEpos for the position pos, and
d is the dimension of the positional embedding
vector. Then we can compute the input vector of
the encoder for the m-th source token w as:

Ew = Etoken
w + PEm, (13)

where Etoken
w is the token embedding vector of w.

However, we can not apply this method to target
tokens directly. Since lengths of segments are dy-
namically determined, the positions of the tokens
in the target sentence, except those in the first seg-
ment, are not available during generation. To solve
the problem, we use the aforementioned method
to independently encode the position in the corre-
sponding segment of each token instead and adopt
an absolute segment embedding method, which
uses a distinct trainable vector to represent the posi-
tion of each segment. Formally, the input vector of
the decoder for the n-th target token v of the j-th
segment is computed as:

Ev = Etoken
v + PEn + Eseg

j , (14)

where Eseg
j is the segment embedding vector for

the segment position j.
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Model Iterative WMT14 En-De WMT16 En-Ro IWSLT16 En-De
Decoding En→ De→ Speedup En→ Ro→ Speedup En→ Speedup

Transformer 27.17 31.95 1.00× 32.86 32.60 1.00× 31.18 1.00×

NAT-FT 17.69 21.47 - 27.29 29.06 - 26.52 15.6×
NAT-FT+NPD (n = 10) 18.66 22.41 - 29.02 30.76 - 27.44 7.68×
NAT-FT+NPD (n = 100) 19.17 23.20 - 29.79 31.44 - 28.16 2.36×
SynST 20.74 25.50 4.86× - - - 23.82 3.78×
NAT-IR (iter = 1) X 13.91 16.77 11.39× 24.45 25.73 16.03× 22.20 8.98×
NAT-IR (iter = 10) X 21.61 25.48 2.01× 29.32 30.19 2.15× 27.11 1.55×
NAT-FS 22.27 27.25 3.75× 30.57 30.83 3.70× 27.78 3.38×
imitate-NAT 22.44 25.67 - 28.61 28.90 - 28.41 18.6×
imitate-NAT+LPD (n = 7) 24.15 27.28 - 31.45 31.81 - 30.68 9.70×
PNAT 23.05 27.18 - - - - - -
PNAT+LPD (n = 9) 24.48 29.16 - - - - - -
NAT-REG 20.65 24.77 - - - - 23.14 -
NAT-REG+LPD (n = 9) 24.61 28.90 - - - - 27.02 -
LV NAR 25.10 - 6.8× - - - - -
NART 21.11 25.24 30.2× - - - - -
NART+LPD (n = 9) 25.20 29.52 17.8× - - - - -
FlowSeq-base 21.45 26.16 <1.5× 29.34 30.44 - - -
FlowSeq-base+NPD (n = 30) 23.48 28.40 <1.5× 31.75 32.49 - - -
FlowSeq-large 23.72 28.39 <1.5× 29.73 30.72 - - -
FlowSeq-large+NPD (n = 30) 25.31 30.68 <1.5× 32.20 32.84 - - -
FCL-NAT 21.70 25.32 28.9× - - - - -
FCL-NAT+NPD (n = 9) 25.75 29.50 16.0× - - - - -
ReorderNAT 26.51 31.13 - 31.70 31.99 - 30.26 5.96×
NART-DCRF 23.44 27.22 10.4× - - - - -
NART-DCRF+LPD (n = 19) 26.80 30.04 4.39× - - - - -
SAT (K = 2) 26.90 - 1.51× - - - - -
SAT (K = 6) 24.83 - 2.98× - - - - -
CMLM-small (iter = 1) X 15.06 19.26 - 20.12 20.36 - - -
CMLM-small (iter = 10) X 25.51 29.47 - 31.65 32.27 - - -
CMLM-base (iter = 1) X 18.05 21.83 - 27.32 28.20 - - -
CMLM-base (iter = 10) X 27.03 30.53 <1.5× 33.08 33.31 - - -

RecoverSAT (K = 2) 27.11 31.67 2.16× 32.92 33.19 2.02× 30.78 2.06×
RecoverSAT (K = 5) 26.91 31.22 3.17× 32.81 32.80 3.16× 30.55 3.28×
RecoverSAT (K = 10) 26.32 30.46 4.31× 32.59 32.29 4.31× 29.90 4.68×

Table 6: Performance (BLEU) of Transformer and the NAT/semi-autoregressive models on three widely-used
machine translation benchmark datasets. NPD denotes the noisy parallel decoding technique (Gu et al., 2018) and
LPD denotes the length parallel decoding technique (Wei et al., 2019). n denotes the sample size of NPD or LPD.
iter denotes the refinement number of the iterative decoding method.


