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Abstract

Training on only perfect Standard English cor-
pora predisposes pre-trained neural networks
to discriminate against minorities from non-
standard linguistic backgrounds (e.g., African
American Vernacular English, Colloquial Sin-
gapore English, etc.). We perturb the inflec-
tional morphology of words to craft plausible
and semantically similar adversarial examples
that expose these biases in popular NLP mod-
els, e.g., BERT and Transformer, and show
that adversarially fine-tuning them for a single
epoch significantly improves robustness with-
out sacrificing performance on clean data.’

1 Introduction

In recent years, Natural Language Processing
(NLP) systems have gotten increasingly better
at learning complex patterns in language by pre-
training large language models like BERT, GPT-2,
and CTRL (Devlin et al., 2019; Radford et al., 2019;
Keskar et al., 2019), and fine-tuning them on task-
specific data to achieve state of the art results has
become a norm. However, deep learning models
are only as good as the data they are trained on.

Existing work on societal bias in NLP primarily
focuses on attributes like race and gender (Boluk-
basi et al., 2016; May et al., 2019). In contrast, we
investigate a uniquely NLP attribute that has been
largely ignored: linguistic background.

Current NLP models seem to be trained with
the implicit assumption that everyone speaks fluent
(often U.S.) Standard English, even though two-
thirds (>700 million) of the English speakers in
the world speak it as a second language (L2) (Eber-
hard et al., 2019). Even among native speakers,
a significant number speak a dialect like African
American Vernacular English (AAVE) rather than
Standard English (Crystal, 2003). In addition, these

!Code and adversarially fine-tuned models available at
https://github.com/salesforce/morpheus.
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Figure 1: MORPHEUS looks at each noun, verb, or ad-
jective in the sentence and selects the inflected form
(marked in red) that maximizes the target model’s loss.
To maximize semantic preservation, MORPHEUS only
considers inflections belonging to the same universal
part of speech as the original word.

World Englishes exhibit variation at multiple levels
of linguistic analysis (Kachru et al., 2009).

Therefore, putting these models directly into pro-
duction without addressing this inherent bias puts
them at risk of committing linguistic discrimination
by performing poorly for many speech communi-
ties (e.g., AAVE and L2 speakers). This could
take the form of either failing to understand these
speakers (Rickford and King, 2016; Tatman, 2017),
or misinterpreting them. For example, the recent
mistranslation of a minority speaker’s social media
post resulted in his wrongful arrest (Hern, 2017).

Since L2 (and many L1 dialect) speakers of-
ten exhibit variability in their production of inflec-
tional morphology? (Lardiere, 1998; Prévost and
White, 2000; Haznedar, 2002; White, 2003; Sey-
mour, 2004), we argue that NLP models should
be robust to inflectional perturbations in order to
minimize their chances of propagating linguistic
discrimination. Hence, in this paper, we:

Inflections convey tense, quantity, etc. See Appendix A
for dialectal examples.
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e Propose MORPHEUS, a method for generating
plausible and semantically similar adversaries by
perturbing the inflections in the clean examples
(Figure 1). In contrast to recent work on ad-
versarial examples in NLP (Belinkov and Bisk,
2018; Ebrahimi et al., 2018; Ribeiro et al., 2018),
we exploit morphology to craft our adversaries.

e Demonstrate its effectiveness on multiple ma-
chine comprehension and translation models, in-
cluding BERT and Transformer (Tables 1 & 2).

e Show that adversarially fine-tuning the model
on an adversarial training set generated via
weighted random sampling is sufficient for it to
acquire significant robustness, while preserving
performance on clean examples (Table 5).

To the best of our knowledge, we are the first to
investigate the robustness of NLP models to inflec-
tional perturbations and its ethical implications.

2 Related Work

Fairness in NLP. It is crucial that NLP systems
do not amplify and entrench social biases (Hovy
and Spruit, 2016). Recent research on fairness
has primarily focused on racial and gender biases
within distributed word representations (Boluk-
basi et al., 2016), coreference resolution (Rudinger
et al., 2018), sentence encoders (May et al., 2019),
and language models (Bordia and Bowman, 2019).
However, we posit that there exists a significant
potential for linguistic bias that has yet to be inves-
tigated, which is the motivation for our work.

Adversarial attacks in NLP. First discovered in
computer vision by Szegedy et al. (2014), adversar-
ial examples are data points crafted with the intent
of causing a model to output a wrong prediction.
In NLP, this could take place at the character, mor-
phological, lexical, syntactic, or semantic level.
Jia and Liang (2017) showed that question an-
swering models could be misled into choosing a
distractor sentence in the passage that was cre-
ated by replacing key entities in the correct an-
swer sentence. Belinkov and Bisk (2018) followed
by demonstrating the brittleness of neural machine
translation systems against character-level perturba-
tions like randomly swapping/replacing characters.
However, these attacks are not optimized on the
target models, unlike Ebrahimi et al. (2018), which
makes use of the target model’s gradient to find the
character change that maximizes the model’s error.

Since these attacks tend to disrupt the sentence’s
semantics, Ribeiro et al. (2018) and Michel et al.
(2019) propose searching for adversaries that pre-
serve semantic content. Alzantot et al. (2018) and
Jin et al. (2019) explore the use of synonym substi-
tution to create adversarial examples, using word
embeddings to find the n nearest words. Eger
et al. (2019) take a different approach, arguing that
adding visual noise to characters leaves their se-
mantic content undisturbed. Iyyer et al. (2018)
propose to create paraphrase adversaries by con-
ditioning their generation on a syntactic template,
while Zhang et al. (2019b) swap key entities in the
sentences. Zhang et al. (2019a) provide a compre-
hensive survey of this topic.

Adversarial training. In order to ensure our
NLP systems are not left vulnerable to powerful
attacks, most existing work make use of adversarial
training to improve the model’s robustness (Good-
fellow et al., 2015). This involves augmenting the
training data either by adding the adversaries to or
replacing the clean examples in the training set.

Summary. Existing work in fairness mostly fo-
cus on tackling bias against protected attributes like
race and gender, while those in adversarial NLP pri-
marily investigate character- and word-level pertur-
bations and seek to improve the models’ robustness
by retraining them from scratch on the adversarial
training set. Our work makes use of perturbations
in inflectional morphology to highlight the linguis-
tic bias present in models such as BERT and Trans-
former, before showing that simply fine-tuning the
models for one epoch on the adversarial training
set is sufficient to achieve significant robustness
while maintaining performance on clean data.

3 Generating Inflectional Perturbations

Inflectional perturbations inherently preserve the
general semantics of a word since the root remains
unchanged. In cases where a word’s part of speech
(POS) is context-dependent (e.g., duck as a verb
or a noun), restricting perturbations to the original
POS further preserves its original meaning.
Additionally, since second language speakers
are prone to inflectional errors (Haznedar, 2002;
White, 2003), adversarial examples that perturb the
inflectional morphology of a sentence should be
less perceivable to people who interact heavily with
non-native speakers or are themselves non-native
speakers. Hence, we present MORPHEUS, our pro-
posed method for crafting inflectional adversaries.
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Extractive Question Answering

Original ~ When is the suspended team scheduled to return?
Adversary  When are the suspended team schedule to returned?
Prediction Before: 2018  After: No answer
Original ~ Who upon arriving gave the original viking settlers a common identity?
Adversary  Who upon arrive give the original viking settler a common identities?
Prediction Before: Rollo  After: almost no foreign settlers
Neural Machine Translation
Original  Israeli warplanes struck a target inside the Syrian port city of Latakia Thursday night, a senior administration
official confirms to Fox News.
Adversary  Israeli warplanes strikes a target inside the Syrian port city of Latakia Thursday night, a senior administration
official confirms to Foxes News.
Prediction  Before: Un haut responsable de I’administration confirme & Fox News que des avions de combat israéliens

ont frappé une cible a I’intérieur de la ville portuaire syrienne de Lattaquié dans la nuit de jeudi.
After: Le président de la République, Nicolas Sarkozy, a annoncé jeudi que le président de la République,
Nicolas Sarkozy, s’est rendu en République démocratique du Congo.

Table 1: Adversarial examples found for BERT, SpanBERT, and Transformer-big. While not perfectly grammatical,
it is plausible for English dialect and second language (L.2) speakers to produce such sentences.

(Top) Models trained on SQuAD 2.0 are more fragile than those trained on SQuAD 1.1, and have a bias towards
predicting “no answer”. Examples are answerable questions and therefore present in both SQuAD 1.1 and 2.0.
(Bottom) Perturbing two inflections caused Transformer-big to output a completely irrelevant sentence. In addition,
adversarial examples for ~1.4% of the test set caused the model to output the source (English) sentences.

3.1 MORPHEUS: A Greedy Approach

Problem formulation. Given a target model f
and an original input example x for which the
ground truth label is y, our goal is to generate the
adversarial example 2’ that maximizes f’s loss.
Formally, we aim to solve the following problem:

2’ = argmax L(y, f(z.)) (1)

Ze

where x. is an adversarial example generated by
perturbing x, f(z) is the model’s prediction, and
L(+) is the model’s loss function. In this setting, f
is a neural model for solving a specific NLP task.

Proposed solution. To solve this problem, we
propose MORPHEUS (Algorithm 1), an approach
that greedily searches for the inflectional form of
each noun, verb, or adjective in x that maximally
increases f’s loss (Eq. 1). For each token in =z,
MORPHEUS calls MAXINFLECTED to find the in-
flected form that caused the greatest increase in f’s
loss.? Table 1 presents some adversarial examples
obtained by running MORPHEUS on state-of-the-
art machine reading comprehension and translation
models: namely, BERT (Devlin et al., 2019), Span-
BERT (Joshi et al., 2019), and Transformer-big
(Vaswani et al., 2017; Ott et al., 2018).

3 A task-specific evaluation metric may be used instead of
the loss in situations where it is unavailable. However, as we
discuss later, the choice of metric is important for optimal
performance and should be chosen wisely.

Algorithm 1 MORPHEUS

Require: Original instance x, Label y, Model f
Ensure: Adversarial example x’
T < TOKENIZE(z)
foralli=1,...,|T|do
if POS(T;) € {NOUN, VERB, ADJ} then
I < GETINFLECTIONS(T3)
T; + MAXINFLECTED(I, T, y, f)
end if
end for
x’ < DETOKENIZE(T)
return z’

There are two possible approaches to implement-
ing MAXINFLECTED: one is to modify each token
independently from the others in parallel, and the
other is to do it sequentially such that the increase
in loss is accumulated as we iterate over the to-
kens. A major advantage of the parallel approach
is that it is theoretically possible to speed it up by ¢
times, where t is the number of tokens which are
nouns, verbs, or adjectives. However, since current
state-of-the-art models rely heavily on contextual
representations, the sequential approach is likely to
be more effective in finding combinations of inflec-
tional perturbations that cause major increases in
loss. We found this to be the case in our preliminary
experiments (see Table 6 in Appendix D).

Assumptions. MORPHEUS treats the target
model as a black box and maximally requires only
access to the model’s logits to compute the loss. As
mentioned, task-specific metrics may be used in-
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stead of the loss as long as the surface is not overly
“flat”, like in a step function. Examples of inappro-
priate metrics are the exact match and F; scores for
extractive question answering, which tend to be 1
for most candidates but drop drastically for specific
ones. This may affect MORPHEUS’ ability to find
an adversary that induces absolute model failure.
While the black box assumption has the advan-
tage of not requiring access to the target model’s
gradients and parameters, a limitation is that we
need to query the model for each candidate inflec-
tion’s impact on the loss, as opposed to Ebrahimi
et al. (2018)’s approach. However, this is not an
issue for inflectional perturbations since each word
usually has less than 5 possible inflections.

Candidate generation. We make use of
lemminflect® to generate candidate inflec-
tional forms in the GETINFLECTIONS method, a
simple process in which the token is first lemma-
tized before being inflected. In our implementation
of GETINFLECTIONS, we also allow the user to
specify if the candidates should be constrained to
the same universal part of speech.

Semantic preservation. MORPHEUS constrains
its search to inflections belonging to the same uni-
versal part of speech. For example, take the word
“duck”. Depending on the context, it may either
be a verb or a noun. In the context of the sen-
tence “There’s a jumping duck”, “duck” is a noun
andMORPHEUS may only choose alternate inflec-
tions associated with nouns.

This has a higher probability of preserving the
sentence’s semantics compared to most other ap-
proaches, like character/word shuffling or synonym
swapping, since the root word and its position in
the sentence remains unchanged.

Early termination. MORPHEUS selects an in-
flection if it increases the loss. In order to avoid
unnecessary searching, it terminates once it finds
an adversarial example that induces model failure.
In our case, we define this as a score of 0 on the
task’s evaluation metric (the higher, the better).

Other implementation details. In order to in-
crease overall inflectional variation in the set of
adversarial examples, GETINFLECTIONS shuffles
the generated list of inflections before returning
it (see Figure 4 in Appendix). Doing this has no

4 https://github.com/bjascob/LemmInflect

effect on MORPHEUS’ ability to induce misclassifi-
cation, but prevents overfitting during adversarial
fine-tuning, which we discuss later in Section 6.
Additionally, since MORPHEUS greedily perturbs
each eligible token in z, it may get stuck in a local
maximum for some x values. To mitigate this, we
run it again on the reversed version of x if the early
termination criterion was not fulfilled during the
forward pass.

Finally, we use sacremoses? for tokenization
and NLTK (Bird et al., 2009) for POS tagging.

4 Experiments

NLP tasks. To evaluate the effectiveness of
MORPHEUS at inducing model failure in NLP mod-
els, we test it on two popular NLP tasks: question
answering (QA) and machine translation (MT). QA
involves language understanding (classification),
while MT also involves language generation. Both
are widely used by consumers of diverse linguis-
tic backgrounds and hence have a high chance of
propagating discrimination.

Baseline. In the below experiments, we include
a random baseline that randomly inflects each eli-
gible word in each original example.

Measures. In addition to the raw scores, we also
report the relative decrease for easier comparison
across models since they perform differently on the
clean dataset. Relative decrease (d,) is calculated
using the following formula:

SCOICoriginal — SCOICadversarial

dy = 2

SCOI€original

4.1 Extractive Question Answering

Given a question and a passage containing spans
corresponding to the correct answer, the model is
expected to predict the span corresponding to the
answer. Performance for this task is computed
using exact match or average Fy (Rajpurkar et al.,
2016). We evaluate the effectiveness of our attack
using average Fy, which is more forgiving (for the
target model). From our experiments, the exact
match score is usually between 3-9 points lower
than the average F; score.

SQuAD 1.1 and 2.0. The Stanford Question An-
swering Dataset (SQuAD) comprises over 100,000
question—answer pairs written by crowdworkers

5https ://github.com/alvations/sacremoses

2923


https://github.com/bjascob/LemmInflect
https://github.com/alvations/sacremoses

Dataset Model Clean Random MORPHEUS
GloVe-BiDAF 78.67  74.00 (—5.93%) 53.94 (—31.43%)
ELMo-BiDAF 80.90  76.81 (—5.05%) 62.17 (—23.15%)
SQuAD 2.0 Answerable Questions BERTsquaD 1.1 93.14  90.90 (—2.40%) 82.79 (—11.11%)
(F1) SpanBERTsquap 1.1 91.88  91.61 (—0.29%) 82.86 (—9.81%)
BERTsquap 2 81.19  74.13 (—8.69%) 57.47 (—29.21%)
SpanBERTsquap 2 88.52  84.88 (—4.11%) 69.47 (—21.52%)
SQuAD 2.0 All Questions BERTSsquab 2 81.52  78.87(—3.25%) 67.24 (—17.51%)
(F1) SpanBERTsquaD 2 87.71 85.46 (—2.56%)  73.26 (—16.47%)
newstest2014 En-Fr ConvS2S 40.83 27.72(—32.10%) 17.31 (—57.60%)
(BLEU) Transformer-big 43.16  30.41(—29.54%) 20.57 (—56.25%)

Table 2: Results for MORPHEUS on QA and NMT models. The subscript in Modelgaser indicates the dataset used
to fine-tune the model. Negated % decrease w.r.t. the scores on clean data are reported in parentheses for easy
comparison across models. Bolded values indicate the largest % decrease.

based on Wikipedia articles. SQuAD 1.1 guaran-
tees that the passages contain valid answers to the
questions posed (Rajpurkar et al., 2016). SQuAD
2.0 increases the task’s difficulty by including an-
other 50,000 unanswerable questions, and models
are expected to identify when a passage does not
contain an answer for the given question (Rajpurkar
et al., 2018). Since the test set is not public, we
generate adversarial examples from and evaluate
the models on the standard dev set.

In addition, the answerable questions from
SQuAD 2.0 are used in place of SQuAD 1.1 to
evaluate models trained on SQuAD 1.1. This al-
lows for easy comparison between the performance
of the SQuUAD 1.1-fine-tuned models and SQuAD
2.0-fine-tuned ones for answerable questions. We
found performance on the answerable questions
from SQuAD 2.0 to be comparable to SQuAD 1.1.

Models. We evaluate MORPHEUS on Gardner
et al. (2018)’s implementation of BiDAF (Seo
et al., 2017), a common baseline model for
SQuAD 1.1, ELMo-BiDAF (Peters et al., 2018),
the t ransformers implementation (Wolf et al.,
2019) of BERT, and SpanBERT, a pre-training
method focusing on span prediction that outper-
forms BERT on multiple extractive QA datasets.

4.2 Results and Discussion

From Table 2, we see that models based on contex-
tual embeddings (e.g., ELMo and BERT variants)
tend to be more robust than those using fixed word
embeddings (GloVe-BiDAF). This difference is
likely due to the pre-training process, which gives
them greater exposure to a wider variety of contexts
in which different inflections occur. Removing the
POS constraint further degrades the models’ per-

formance by another 10% of the original score,
however, this difference is likely due to changes in
the semantics and expected output of the examples.

BiDAF vs. BERT. Even after accounting for the
performance difference on clean data, the BIDAF
variants are significantly less robust to inflectional
adversaries compared to the BERT variants. This
is likely a result of BERT’s greater representational
power and masked language modeling pre-training
procedure. Randomly masking out words during
pre-training could have improved the models’ ro-
bustness to small, local perturbations (like ours).

BERT vs. SpanBERT. In the context of ques-
tion answering, SpanBERT appears to be slightly
more robust than vanilla BERT when comparing
overall performance on the two SQuAD datasets.
However, the difference becomes significant if we
look only at the SQuAD 2.0-fine-tuned models’
performance on answerable questions (7% differ-
ence). This indicates that BERT has a stronger bias
towards predicting “no answer” when it encounters
inflectional perturbations compared to SpanBERT.

SQuAD 1.1 vs. SQuAD 2.0. The ability to
“know what you don’t know” (Rajpurkar et al.,
2018) appears to have been obtained at a great
cost. The SQuAD 2.0-fine-tuned models are not
only generally less robust to inflectional errors than
their SQuAD 1.1 equivalents (6.5% difference), but
also significantly less adept at handling answerable
questions (12-18% difference). This discrepancy
suggests a stronger bias in SQuAD 2.0 models to-
wards predicting “no answer’” upon receiving sen-
tences containing inflectional errors (see Table 1).

As we alluded to earlier, this is particularly trou-
bling: since SQuAD 2.0 presents a more realistic
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SQuAD 2.0 Answerable Questions (F;)

Original Transfer Clean MORPHEUS
BERTsquap 1.1 93.14 89.67
G]OVC— SpanBERTsQuAD 1.1 9188 9075
BiDAF BERTsquap 2 81.19 72.21
SpanBERTsquap 2 88.52 81.95
GloVe-BiDAF 78.67 71.33
SpanBERTsQuAD 1.1 91.88 88.68
BERTsquap 11 BERTs0u > 81.19  69.68
SpanBERTSQuADg 88.52 80.11
GloVe-BiDAF 78.67 71.41
BERTsquap 1.1 93.14 87.48
SpanBERTsquAp 11 BERT 1o 81.19 70.05
Spal’lBERTsQuA[)z 88.52 77.89
SQuAD 2.0 All Questions (F;)
Original Transfer Clean MORPHEUS
BERTSQUAD 2 Spal’lBERTSQuAD 2 87.71 82.49
SpanBERTsQuADZ BERTSQUADZ 81.52 75.54

Table 3: Transferability of our adversarial examples.

scenario than SQuAD 1.1, it is fair to conclude that
such models will inadvertently discriminate against
L2 speakers if put into production as is.

Transferability. Next, we investigate the trans-
ferability of adversarial examples found by MOR-
PHEUS across different QA models and present
some notable results in Table 3. The adversarial
examples found for GloVe-BiDAF transfer to a
limited extent to other models trained on SQuAD
1.1, however, they have a much greater impact on
BERTsquap 2 and SpanBERTsquap 2 (3—4x more).

We observe a similar pattern for adversar-
ial examples found for SpanBERTsquap 1.1. Of
the two, BERT is more brittle in general: the
SpanBERTsquap 1.1 adversaries have a greater ef-
fect on BERTsquap 2’s performance on answerable
questions than on SpanBERTsquap 2’s.

Discussion. One possible explanation for the
SQuAD 2.0 models’ increased fragility is the differ-
ence in the tasks they were trained for: SQuAD 1.1
models expect all questions to be answerable and
only need to contend with finding the right span,
while SQuAD 2.0 models have the added burden
of predicting whether a question is answerable.
Therefore, in SQUAD 1.1 models, the feature
space corresponding to a possible answer ends
where the space corresponding to another possible
answer begins, and there is room to accommodate
slight variations in the input (i.e., larger individual
spaces). We believe that in SQuAD 2.0 models,
the need to accommodate the unanswerable
prediction forces the spaces corresponding to the
possible answers to shrink, with unanswerable

spaces potentially filling the gaps between them.
For SQuAD 2.0 models, this increases the probabil-
ity of an adversarial example “landing” in the space
corresponding to the unanswerable prediction.
This would explain the effectiveness of adversarial
fine-tuning in Section 6, which intuitively creates a
“buffer” zone and expands the decision boundaries
around each clean example.

The diminished effectiveness of the transferred
adversaries at inducing model failure is likely due
to each model learning slightly different segmen-
tations of the answer space. As a result, different
small, local perturbations have different effects on
each model. We leave the in-depth investigation of
the above phenomena to future work.

4.3 Machine Translation

We now demonstrate MORPHEUS’ ability to craft
adversaries for NMT models as well, this time with-
out access to the models’ logits. The WMT’ 14
English-French test set (newstest2014), contain-
ing 3,003 sentence pairs, is used for both evalu-
ation and generating adversarial examples. We
evaluate our attack on the fairseq implementa-
tion of both the Convolutional Seq2Seq (Gehring
et al., 2017) and Transformer-big models, and re-
port the BLEU score (Papineni et al., 2002) using
fairseq’s implementation (Ott et al., 2019).
From our experiments (Table 2), ConvS2S and
Transformer-big appear to be extremely brittle even
to inflectional perturbations constrained to the same
part of speech (56-57% decrease). In addition,
some adversarial examples caused the models to re-
generate the input verbatim instead of a translation:
1.4% of the test set for Transformer-big, 3% for
ConvS2S (see Table 9 in the Appendix for some ex-
amples). This is likely due to the joint source/target
byte—pair encoding (Sennrich et al., 2016) used by
both NMT systems to tackle rare word translation.
We experimented with both BLEU and chrF
(Popovié, 2015) as our optimizing criterion® and
achieved comparable results for both, however,
MORPHEUS found more adversarial examples that
caused the model to output random sentences about
Nicolas Sarkozy when optimizing for chrF.

5 Human Evaluation

To test our hypothesis that inflectional perturba-
tions are likely to be relatively natural and seman-
tics preserving, we randomly sample 130 adversar-

®We use the sacrebleu implementation (Post, 2018).
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Plausibility

Native U.S. English Speakers Unrestricted

SQuUAD 2.0  newstest2014 | SQuAD 2.0 newstest2014
Native 11.58% 25.64% 22.82% 32.56%
L2 Speaker 42.82% 42.30% 53.58% 52.82%
Beginner 31.79% 23.33% 17.17% 10.25%
Non-human 13.84% 8.71% 6.41% 4.35%

Semantic Equivalence

Native U.S. English Speakers Unrestricted

SQuAD 2.0  newstest2014 | SQuAD 2.0 newstest2014
Highly Likely 52.82% 62.30% 33.84% 40.76 %
Likely 20.51% 18.71% 36.15% 33.84%
Somewhat Likely 11.02% 7.94% 22.82% 19.48%
Somewhat Unlikely — 6.92% 6.15% 5.38% 4.35%
Unlikely 3.58% 3.07% 1.53% 1.28%
Highly Unlikely 5.12% 1.79% 0.25% 0.25%

Table 4: Human judgements for adversarial examples
that caused a significant degradation in performance.

ial examples’ from each dataset and ask 3 Amazon
Mechanical Turk workers to indicate (1) whether
the sentences could have been written by a native
speaker, L2 speaker, beginner learner®, or no hu-
man; and (2) the likelihood of the original and ad-
versarial examples sharing the same meaning. To
ensure the quality of our results, only Turkers who
completed >10,000 HITs with a >99% acceptance
rate could access our task. For comparison, we
also report ratings by native U.S. English speakers,
who were selected via a demographic survey and
fluency test adapted from Hartshorne et al. (2018).
Workers were paid a rate of at least $12/hr.”

Table 4 shows that Turkers from our unrestricted
sample judged ~95% of our adversaries to be
plausibly written by a human and 92% generally
likely to be semantically equivalent to the origi-
nal examples 92% of the time, hence validating
our hypothesis. Qualitative analysis revealed that
“is/are”—“‘am/been” changes accounted for 48% of
the implausible adversaries.

Discussion. We believe that non-native speakers
may tend to rate sentences as more human-like for
the following reasons:

o Their exposure to another language as a na-
tive speaker leads them to accept sentences that
mimic errors made by L2 English speakers who
share their first language.

o Their exposure to the existence of these above-
mentioned errors may lead them to be more for-
giving of other inflectional errors that are un-
common to them; they may deem these errors as

"Only adversarial examples that degraded the F; score by
> 50 and the BLEU score by > 15 were considered.

8We define a beginner as one who has just started learning
the language, and an L2 speaker to be an experienced speaker.

Each task was estimated to take 20-25s to be comfortably
completed, but they were routinely completed in under 20s.

EEE Original Distribution
Morpheus Adversarial Distribution

Proportion in Dataset

JJS RB NN NNS NNP VB VBD VBG VBN VBP VBZ
Penn Treebank POS Tag

(a) SQuAD 2.0 dev set

I Original Training Set Distribution
I Adversarial Training Set Distribution
Morpheus Adversarial Distribution

Proportion in Dataset

RB NN NNS NNP VB VBD VBG VBN VBP VBZ
Penn Treebank POS Tag

(b) SQUAD 2.0 training set

bR S

Figure 2: Comparison of inflectional distributions for
SpanBERTsquap2. The adversarial distributions in-
clude only examples that degrade model performance.
To make the best use of limited space, we omit the
RBR, RBS, and NNPS tags since they do not vary much
across distributions. Full figures in Appendix D.

plausibly made by an L2 speaker who speaks a
different first language from them.

e They do not presume mastery of English, and
hence may choose to give the higher score when
deciding between 2 choices.

6 Adversarial Fine-tuning

In this section, we extend the standard adversar-
ial training paradigm (Goodfellow et al., 2015) to
make the models robust to inflectional perturba-
tions. Since directly running MORPHEUS on the en-
tire training dataset to generate adversaries would
be far too time-consuming, we use the findings
from our experiments on the respective dev/test
sets (Section 4) to create representative samples
of good adversaries. This significantly improves
robustness to inflectional perturbations while main-
taining similar performance on the clean data.

We first present an analysis of the inflectional
distributions before elaborating on our method for
generating the adversarial training set.
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SpanBERTsquap 2 (F1)

Original Adversarially Fine-tuned
Dataset Clean MORPHEUS Epoch Clean MORPHEUSorig MORPHEUSuqv
_ 1 86.80 85.17 (—1.87%) 82.76 (—4.65%)
SQUAD 2.0 Ans  88.52 6947 (=21.52%) 4 86.15 84.93(—1.41%) 82.92 (~3.74%)
3 1 86.00  84.72 (—1.48%)  82.41 (—4.17%)
SQUAD20AIL  87.71 7326 (=1647%) 4 87.08 8593 (~132%)  84.71(-2.72%)
Transformer-big (BLEU)
Original Adversarially Fine-tuned
Dataset Clean MORPHEUS Epoch Clean MORPHEUS orig MORPHEUS a4y
-~ 1 39.84  31.79 (—20.20%) 31.43(—21.10%)
newstest2014  43.16  20.57 (=56.25%) 4 4060  31.99 (~2120%)  30.82 (—24.08%)

Table 5: Results from adversarially fine-tuning SpanBERTsquap 2 and Transformer-big. MORPHEUS¢ refers to
the initial adversarial examples, while MORPHEUS,q4, refers to the new adversarial examples obtained by running
MORPHEUS on the robust model. Relevant results from Table 2 reproduced here for ease of comparison.

6.1 Distributional Analysis

Figure 2a illustrates the overall distributional differ-
ences in inflection occurrence between the original
and adversarial examples found by MORPHEUS
for SQUAD 2.0. Note that these distributions are
computed based on the Penn Treebank (PTB) POS
tags, which are finer-grained than the universal
POS (UPOS) tags used to constrain MORPHEUS’
search (Section 4). For example, a UPOS VERB
may be actually be a PTB VBD, VBZ, VBG, etc.

We can see obvious differences between the
global inflectional distributions of the original
datasets and the adversaries found by MORPHEUS.
The differences are particularly significant for the
NN, NNS, and VBG categories. NNS and VBG also
happen to be uncommon in the original distribu-
tion. Therefore, we conjecture that the models
failed (Section 4) because MORPHEUS is able to
find the contexts in the training data where these
inflections are uncommon.

6.2 Adversarial Training Set Generation

Since there is an obvious distributional difference
between the original and adversarial examples, we
hypothesize that bringing the training set’s inflec-
tional distribution closer to that of the adversarial
examples will improve the models’ robustness.

To create the adversarial training set, we first iso-
late all the adversarial examples (from the dev/test
set) that caused any decrease in F1/BLEU score and
count the number of times each inflection is used
in this adversarial dataset, giving us the inflectional
distribution in Figure 2a.

Next, we randomly select an inflection for each

eligible token in each training example, weight-
ing the selection with this inflectional distribution
instead of a uniform one. To avoid introducing
unnecessary noise into our training data, only in-
flections from the same UPOS as the original word
are chosen. We do this 4 times per training exam-
ple, resulting in an adversarial training set with a
clean—adversarial ratio of 1 : 4. This can be done
in linear time and is highly scalable. Algorithm 2
in Appendix C details our approach and Figure 2b
depicts the training set’s inflectional distribution
before and after this procedure.

Fine-tuning vs. retraining. Existing adversar-
ial training approaches have shown that retraining
the model on the augmented training set improves
robustness (Belinkov and Bisk, 2018; Eger et al.,
2019; Jin et al., 2019). Howeyver, this requires sub-
stantial compute resources. We show that fine-
tuning the pre-trained model for just a single epoch
is sufficient to achieve significant robustness to
inflectional perturbations yet still maintain good
performance on the clean evaluation set (Table 5).

6.3 Experiments

SpanBERT. Following Joshi et al. (2019), we
fine-tune SpanBERTsquap 2 for another 4 epochs
on our adversarial training set. Table 5 shows the ef-
fectiveness of our approach for SpanBERTsquaD 2.

After just a single epoch of fine-tuning,
SpanBERTsquap 2 becomes robust to most of the
initial adversarial examples with a < 2-point drop
in performance on the clean dev set. More impor-
tantly, running MORPHEUS on the robust model
fails to significantly degrade its performance.
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After 4 epochs, the performance on the clean
SQuAD 2.0 dev set is almost equivalent to the orig-
inal SpanBERTsquap 2’s, however this comes at
a slight cost: the performance on the answerable
questions is slightly lower than before. In fact, if
performance on answerable questions is paramount,
our results show that fine-tuning on the adversarial
training set for 1 epoch would be a better (and more
cost effective) decision. Retraining SpanBERT ad-
versarially did not result in better performance.

We also found that weighting the random sam-
pling with the adversarial distribution helped to
improve the robust model’s performance on the an-
swerable questions (refer to Table 7 in Appendix).

Transformer-big. Similarly, model robustness
improves dramatically (56.25% to 20.20% de-
crease) after fine-tuning for 1 epoch on the adver-
sarial training set with a ~3 BLEU point drop in
clean data performance (Table 5). Fine-tuning for
a further 3 epochs reduced the difference but made
the model less robust to new adversarial examples.

We also experimented with using randomly sam-
pled subsets but found that utilizing the entire origi-
nal training set was necessary for preserving perfor-
mance on the clean data (see Table 8 in Appendix).

6.4 Discussion

Our anonymous reviewers brought up the possibil-
ity of using grammatical error correction (GEC)
systems as a defense against inflectional adver-
saries. Although we agree that adding a GEC
model before the actual NLU/translation model
would likely help, this would not only require an
extra model—often another Transformer (Bryant
etal., 2019)—and its training data to be maintained,
but would also double the resource usage of the
combined system at inference time.

Consequently, institutions with limited resources
may choose to sacrifice the experience of minor-
ity users rather than incur the extra maintenance
costs. Adversarial fine-tuning only requires the
NLU/translation model to be fine-tuned once and
consumes nho extra resources at inference time.

7 Limitations and Future Work

Although we have established our methods’ effec-
tiveness at both inducing model failure and robusti-
fying said models, we believe they could be further
improved by addressing the following limitations:

1. MORPHEUS finds the distribution of examples
that are adversarial for the target model, rather

than that of real L2 speaker errors, which pro-
duced some unrealistic adversarial examples.

2. Our method of adversarial fine-tuning is anal-
ogous to curing the symptom rather than ad-
dressing the root cause since it would have to be
performed for each domain-specific dataset the
model is trained on.

In future work, we intend to address these limi-
tations by directly modeling the L2 and dialectal
distributions and investigating the possibility of
robustifying these models further upstream.

8 Conclusion

Ensuring that NLP technologies are inclusive, in
the sense of working for users with diverse lin-
guistic backgrounds (e.g., speakers of World En-
glishes such as AAVE, as well as L2 speakers), is
especially important since natural language user
interfaces are becoming increasingly ubiquitous.
We take a step in this direction by revealing the
existence of linguistic bias in current English NLP
models—e.g., BERT and Transformer—through
the use of inflectional adversaries, before using ad-
versarial fine-tuning to significantly reduce it. To
find these adversarial examples, we propose MOR-
PHEUS, which crafts plausible and semantically
similar adversaries by perturbing an example’s in-
flectional morphology in a constrained fashion,
without needing access to the model’s gradients.
Next, we demonstrate the adversaries’ effective-
ness using QA and MT, two tasks with direct and
wide-ranging applications, before validating their
plausibility and semantic content with real humans.
Finally, we show that, instead of retraining the
model, fine-tuning it on a representative adversar-
ial training set for a single epoch is sufficient to
achieve significant robustness to inflectional adver-
saries while preserving performance on the clean
dataset. We also present a method of generating
this adversarial training set in linear time by mak-
ing use of the adversarial examples’ inflectional dis-
tribution to perform weighted random sampling.
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A Examples of Inflectional Variation in
English Dialects

African American Vernacular English
(Wolfram, 2004)

e They seen it.
e They run there yesterday.
e The folks was there.

Colloquial Singapore English (Singlish)
(Leimgruber, 2009)

e He want to see how we talk.

e It cover up everything in the floss. It’s not
nice. It look very cheap.

e | want to shopping only.

B More Details on Human Evaluation

Please choose the most suitable option for each question.

Who was this sentence likely written by?

Who upon arrive give the original viking settler a common identities?
Native English speaker
Someone who speaks English as a second language
Beginner English learner or young child

Not a human
What is the likelihood that the below sentences mean the same thing?
Who upon arrive give the original viking settler a common identities?

Who upon arriving gave the original viking settlers a common identity?
Highly likely
Likely
Somewhat likely
Somewhat unlikely
Uniikely

Highly unlikely

Figure 3: Amazon Mechanical Turk UL

Figure 3 contains a screenshot of the Ul we
present to crowd workers. We intentionally prime
Turkers by asking if the sentence could be written
by an L2 speaker instead of directly asking for ac-
ceptability/naturalness ratings in order to ensure
that they consider these possibilities.

We also do not use the Semantic Textual Similar-
ity evaluation scheme (Agirre et al., 2013); during
preliminary pilot studies, we discovered that anno-
tators interpreted certain words in the scheme (e.g.,
“information”, “details”, and “topics”) considerably
differently, introducing substantial noise into an
already subjective judgement task.

Possible limitations. It is possible that seeing
the original sentence could affect the worker’s judg-
ment of the perturbed sentence’s plausibility. How-
ever, we argue that this is not necessarily negative
since seeing the original sentence would make it
easier to spot perturbations that are just outright
wrong (i.e., a human will not make that error re-
gardless of their level of fluency).
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C Adversarial Training Set Generation

D Tables and Figures

Algorithm 2 RandomlInflect

SpanBERTsquap 2 (F1)

Require: Original instance x, hyperparameter k
Adpversarial distribution D g,
Ensure: Adversarial training dataset X, for =
X, + {z}
for i = 1to k do
T < TOKENIZE(x)
foralli =1,...,|7| do
if POS(T;) € {NOUN, VERB, ADJ} then
I < GETINFLECTIONS(T3)
T; + RANDOMWEIGHTED(I, Dgdy)
end if
end for
x’ < DETOKENIZE(T)
X+ X, u{x'}
end for
return X,

Dataset Clean Morpheusseq Morpheusparaliel

SQuAD 2.0 Ans  88.52  69.47 (-21.52%) 74.38 (-15.97%)
SQuAD 2.0 Al  87.71 73.26 (-16.47%) 76.64 (-12.62%)

Transformer-big (BLEU)

Dataset Clean Morpheusseq Morpheusparaliel
newstest2014 43.16  20.57 (-56.25%) 20.85 (-51.69%)

Table 6: Results of the parallel and sequen-
tial approaches to implementing MORPHEUS on
SpanBERTsquap 2 and Transformer-big.

SpanBERTsquap 2 (F1)

Weighted Dataset Clean  Morpheusoyig
Yes SQuAD 2.0 Ans  86.80 85.17 (-1.87%)
SQuAD 2.0 Al  86.00 84.72 (-1.48%)
No SQuUAD 2.0 Ans 84.52 83.15 (-1.62%)

SQuUAD 2.0 Al 87.12 86.03 (-1.25%)

Table 7: Comparison of results from using weighted
vs. uniform random sampling to the create adversarial
training set for fine-tuning SpanBERTsquaD 2

Transformer-big (BLEU)

Subset  Original Clean Morpheus,g
%5 43.16  30.90 24.95
1 43.16  36.59 29.46
Full ~ 43.16  40.60 31.99

Table 8: Results from adversarially fine-tuning
Tranformer-big on different subsets of the original
training set.
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Figure 4: Effect of shuffling the inflection list on the adversarial distribution. We observe that shuffling the inflec-
tion list induces a more uniform inflectional distribution by reducing the higher frequency inflections and boosting
the lower frequency ones.

Original Source According to Detroit News, the queen of Soul will be performing at the Sound
Board hall of MotorCity Casino Hotel on 21 December.

Adversarial Source  Accorded to Detroit News, the queen of Soul will be performing at the Sound
Board hall of MotorCity Casino Hotel on 21 December.

Original Translation ~Selon Detroit News, la reine de Soul se produira au Sound Board Hall de 1’hotel
MotorCity Casino le 21 décembre.

Original Source Intersex children pose ethical dilemma.
Adversarial Source  Intersex child posing ethical dilemma.
Original Translation Les enfants intersexuels posent un dilemme éthique.

Original Source The Guangzhou-based New Express made a rare public plea for the release of
journalist Chen Yongzhou.

Adversarial Source  The Guangzhou-based New Expresses making a rare public plea for the release
of journalist Chen Yongzhou.

Original Translation Le New Express, basé a Guangzhou, a lancé un rare appel public en faveur de
la libération du journaliste Chen Yongzhou.

Original Source Cue stories about passport controls at Berwick and a barbed wire border along
Hadrian’s Wall.

Adversarial Source  Cue story about passport controls at Berwick and a barbed wires borders along
Hadrian’s Walls.

Original Translation Cue histoires sur le contréle des passeports a Berwick et une frontiere de
barbelés le long du mur d’Hadrien.

Table 9: Some of the adversaries that caused Transformer-big to output the source sentence instead of a translation.
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Figure 5: Full versions of Figure 2
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