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Abstract

Neural architectures are the current state of
the art in Word Sense Disambiguation (WSD).
However, they make limited use of the vast
amount of relational information encoded in
Lexical Knowledge Bases (LKB). We present
Enhanced WSD Integrating Synset Embed-
dings and Relations (EWISER), a neural su-
pervised architecture that is able to tap into
this wealth of knowledge by embedding infor-
mation from the LKB graph within the neural
architecture, and to exploit pretrained synset
embeddings, enabling the network to predict
synsets that are not in the training set. As a re-
sult, we set a new state of the art on almost all
the evaluation settings considered, also break-
ing through, for the first time, the 80% ceil-
ing on the concatenation of all the standard all-
words English WSD evaluation benchmarks.
On multilingual all-words WSD, we report
state-of-the-art results by training on nothing
but English.

1 Introduction

There is a growing body of research dealing with
the integration of prior knowledge into neural net-
works for Natural Language Processing (NLP)
tasks, be it through pretraining on self-supervised
tasks such as language modeling (Peters et al.,
2018; Devlin et al., 2019), or through the incorpora-
tion of information from knowledge bases (Peters
etal., 2019; Logan et al., 2019). In Word Sense Dis-
ambiguation (WSD), i.e., the task of associating a
word in context with the most appropriate meaning
from a finite set of possible choices (Navigli, 2009),
the gap between supervision and knowledge (Nav-
igli, 2018) has been overcome by several efforts
directed at learning effective vector representations
(Loureiro and Jorge, 2019; Scarlini et al., 2020) in
the same space as contextualized embeddings, and
exploring the usage of definitional knowledge in
supervised sequence learning neural architectures

(Luo et al., 2018; Kumar et al., 2019; Huang et al.,
2019).

However, the Lexical Knowledge Bases (LKBs)
from which such information is retrieved, such as
WordNet (Miller, 1995) and BabelNet (Navigli and
Ponzetto, 2012), also provide a great wealth of
relational knowledge in structured form (i.e., hy-
pernymy, meronymy, similarity, etc.), which is of-
ten neglected due to the non-trivial integration of
data of this kind into neural architectures. Even
though such information can, instead, be exploited
by knowledge-based WSD algorithms (Agirre and
Soroa, 2009; Moro et al., 2014), rivaling super-
vised pre-contextualized embedding approaches
(Maru et al., 2019), the performances still lag be-
hind (Huang et al., 2019; Vial et al., 2019).

Building on Extended WSD Integrating Sense
Embeddings (EWISE) (Kumar et al., 2019), a neu-
ral WSD system incorporating prior knowledge
through synset embeddings, we present Enhanced
WSD Integrating Synset Embeddings and Relations
(EWISER), a hybrid knowledge-based and super-
vised approach to WSD that integrates explicit re-
lational information from the WordNet LKB. Our
approach offers the following contributions:

1. We introduce the novel structured logits mech-
anism, which enables the exploitation of
concept relatedness as determined by LKB
edges. In our method, pre-softmax scores
are a weighted combination of synset-specific
scores, and can be computed via dot product
with a sparse adjacency matrix.

2. We generalise the sense vector dot product
technique from EWISE, showing that off-the-
shelf pretrained embeddings can be used.

3. We show that the structured logits mechanism
and the use of sense embeddings are orthogo-
nal and can be exploited jointly.
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Our approach is simple and extensible, does not
require fine tuning of contextualized embeddings,
and has a very modest parameter budget apart from
synset embeddings. EWISER achieves a new state
of the art in all-words English WSD. Moreover, we
obtain state-of-the-art performances on the cross-
lingual all-words WSD evaluation, without using
non-English training data.

2 Related Work

Supervised WSD Supervised systems have to
rely on expensive hand-labeled data to achieve
good results (Pasini, 2020). The best approaches
currently rely on neural networks. The model pre-
sented by Raganato et al. (2017) formulates the task
as a token classification problem, with an LSTM
with attention classifier producing a probability
distribution over both words and senses. Subse-
quent work has shown that better results can be ob-
tained by only having scores for senses or synsets
(Vial et al., 2019). Shallower, simpler networks
can achieve even better performances (Uslu et al.,
2018).

Contextualized vectors can be exploited in token
tagging architectures (Vial et al., 2019; Bevilacqua
and Navigli, 2019; Hadiwinoto et al., 2019). How-
ever, purely supervised systems are dependent on
the data they are trained on, therefore when some
sense is underrepresented in the training corpus it
is not easy for them to predict it.

LKBs in Supervised WSD More closely related
to the core of our contribution, LKB information,
such as natural language definitions of word mean-
ing, can be exploited in neural token tagging ar-
chitectures. For example, in GlossBERT (Huang
et al., 2019) a pretrained BERT encoder is fed both
the context sentence and the gloss, and is trained
to predict whether the gloss correctly describes the
use of the target word. Successful results have been
obtained by encoding glosses in dense vectors (Luo
etal., 2018).

In EWISE (Kumar et al., 2019), WSD is per-
formed in a two-step process: first, gloss embed-
dings are produced through a training procedure
that also takes into account the WordNet’s graph
structure; then, the gloss embeddings are scored
via dot product with a contextual vector computed
with an LSTM model, which is trained through
regular categorical cross-entropy. Our work builds
on top of EWISE in that it generalizes its sense
vector dot product approach, but features a novel

mechanism that injects relational knowledge into
the architecture through a simple additional sparse
dot product operation. Moreover, we show that
better performances can be obtained by training
the output embedding matrix, and that different
sense/synset vectors can be used to initialize the
output embeddings.

Note that our approach is different from that of
Vial et al. (2019), in that we do not conflate senses
together through the use of WordNet hypernymys;
rather, we mantain all the original meaning dis-
tinctions, and exploit the logit scores over the full
vocabulary in a second, distinct step.

3 EWISER: Neural WSD with More
Prior Knowledge

3.1 WSD as a classification problem

WSD can be treated as a simple token classification
problem, similar to POS tagging or Named Entity
Recognition. As such, abstracting away from all
the intricacies of any particular supervised model,
we need to produce a vector representation h € R¢
of a target word in a given context, and use it to
yield a probability distribution over all its possible
labels, i.e., its senses or synsets. The simplest way
to do this is to learn a weight matrix O € R4Vl
where ¥ is the output vocabulary', and compute a
vector of unnormalized scores z as the product of
h” and O. Having multiple instances to classify
packed into the matrix H, we can compute all the
scores at the same time by a single dot product
followed by a sum over columns with a bias vector:

Z=HO+b (D

Finally, Z is transformed into a probability distri-
bution through a standard softmax activation func-
tion. Typically, O is randomly initialized, and just
trained end-to-end with the rest of the architecture
(Raganato et al., 2017; Vial et al., 2019; Bevilac-
qua and Navigli, 2019). During training the cat-
egorical cross-entropy loss is computed for each
instance Z;. At inference time, the model predicts
the synset § with the highest probability among the
set S(w;) C V of possible synsets for word w;:

5; = argmax Z; g 2)

seS(w;)

where, for each w;, S(w;) depends on both the
lemma and its part-of-speech, and is determined by
the WordNet inventory.

"We use synsets as output vocabulary.
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3.2 Neural WSD Architecture

We now describe a simple neural WSD architecture
to be used as the core on top of which we will
integrate the EWISER additions. For each word to
disambiguate, our network takes as input the sum
of the outputs of the last 4 layers of BERT Large
(cased) and uses a 2-layer feedforward to compute
the logit scores Z:

B=B 4+B 3+B s+B
Hy = BatchNorm(B)
H, = swish(HyW + b)

Z =H,0

3)

where W, b are parameters of the models, and
B_, to B_; are BERT hidden states”>. We employ
the swish activation function (Ramachandran et al.,
2018), which has shown very promising results in
NLP (Eger et al., 2018).

Note that, while our architecture is very simple,
it would be straightforward to incorporate power-
ful additions such as a sequence encoder — like
an LSTM or a Transformer (Vaswani et al., 2017)
classifier. While this might indeed produce better
performances, improvements of this kind are not
directly pertinent to our contribution.

3.3 Structured Logits

The matrix multiplication in Equation 1 is wasteful
during both training and inference, as it produces
scores over the entire vocabulary {/, even though
the number of possible synsets is much smaller than
the cardinality of V. Since the model is equally pe-
nalized by the cross-entropy loss when it gives a
high score to a synset either related or unrelated
to the correct one, there is little incentive to learn
similar vectors for related synsets. Moreover, com-
puting logits over the whole vocabulary does not
bring any benefit in inference, as each score is com-
puted independently, without taking into account
connections between output classes.

We address this issue by devising an architec-
ture, i.e., EWISER, that can inject into the network
relatedness knowledge as encoded in an arbitrary
graph, and use it in training as well as in inference.

3.3.1 Synset Graph in EWISER

As LKBs are structured into graphs, we want to
be able to exploit, when computing the probability

2If a token consists of more than one subword, we average
its subword representations.

distribution vector over ¥ for a target word, the
explicit information of an arbitrary weighted graph
G = (V,E,w), where w : E — R, and the ver-
tices V = ¥ —i.e., the nodes are synsets. Instead
of using the vector z for prediction, we compute
another vector q where for each component, i.e..
for each synset s, the score synset g is a function
of both the “hidden” score z; for s, and the hidden
scores zg for all synsets s’ such that there is an
edge (s, s) € E. In order to do this, we calculate
Qs as z; plus the sum of the products of z, and the
weight of the edge (s, s).

qs = Zs + Z

s'eV|(s',s)EE

w((s/,s>) “Zg  (4)

As a result, q; is a weighted combination of the
scores for all the output vocabulary. In Figure 1 we
show this process visually.

3.3.2 Computing Q)

The most natural way to encode the graph G is
with the adjacency matrix A, in which A5 5, =
w((s1,s2)). If Ag s, = 0 there is no edge between
the two synsets. The new logits matrix ) can be
obtained efficiently by simply computing the dot
product between the hidden logits Z and the trans-
posed adjacency matrix AT, summing Z to the
results.
Z=HO+b

Q=27AT + 7 ©)

Finally, we apply the softmax function to () to get
the probabilities.

3.3.3 The matrix A

In our case, we build the graph and adjacency
matrix A from the relations between synsets or
senses in WordNet. As WordNet relations are not
weighted, for every synset s we set Ay s to 1/N,
where N is the number of incoming connections.
In this way we avoid imbalanced predictions to-
wards synsets with more incoming connections.
We experiment with including different relations
in A. Our base configuration includes similarity,
verb group, and derivationally related® edges. As
for hypernymy and its inverse, hyponymy, we ex-
periment with different possible ways of including
them in A: (i) including only hypernymy (hyper);
(i1) only hyponymy (hypo); (iii) both hypernymy
3We connect two synsets with a derivationally related

edge if at least one pair of senses therein is connected via a
derivationally related edge.
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Structured Logits

° Synset
4 2 (w)

The root of 4 is 2. root.n.01 (botany) Y, X< X J >. +1.22
plant_organ.n.01 3.25 0.246 A -
root.v.01 (botany) 500 @ 0250 ;

v rootlet.n.01 6.00 0.250
Y S VO RO Y
BERT (frozen) number.n.02 +9.15 . 0.844 . v -
\ 4 solution.n.04 (of eq)  +7.88 ------------ - @ +1370
set.n.02 571 @ 1020 . -
Feed-forward }

Figure 1: The structured logits mechanism in EWISER. The example input is the sentence “The root of 4 is 2.”
Scores for a selection of synsets representing possible senses of root are shown. Going from left to right, the
“hidden” logits (z) of related synsets are multiplied by the edge weights, summed together, and then added to the
“hidden” logits of the related synsets, resulting in the “final” logits (q).

and hyponymy (hyper+hypo); (iv) the transitive
closure over hypernymy (the set of relations that are
obtained by following hypernymy paths) (hyper®);
(v) the transitive closure over hypernymy and hy-
ponymy (hyper+hypo*);

Informally, hypernymy and hyponymy corre-
spond to different kinds of reasoning, which might
be characterized as, respectively, inductive (“if it
is an electronic device, then it might be a mouse”)
and deductive (“if it is a mouse, then it is an elec-
tronic device”). The closures are a way to flatten
the hierarchy, thus enabling multi-hop reasoning
by making the qs score dependent on the z scores
for synsets whose path distance to s is greater than
1 in the original graph.

Fine-tuning the adjacency matrix If weights in
A are frozen, every connected synset gives an equal
contribution to the final score q;. However, it is
also reasonable to assume that not all synsets are
equally relevant. For example, the score for inani-
mate object should be less relevant than that for de-
vice for predicting the hardware meaning of mouse.
Thus, we experiment on fine-tuning A by only up-
dating non-zero weights.

3.4 Output Layer Weights

While O can be seen as just the final linear map in
the network, it is also reasonable to think about it
as a counterpart of an embedding matrix. Whereas
in the intermediate layers of the neural network
there is no one-to-one mapping between values of
the matrix and input or output classes, in O there
is a distinct column for each of the elements in /.

As a matter of fact, the logit of synset s (zs) is
just the scalar product between h and O7, i.e., the
column in O associated with s. So, just as with
word embeddings, O can be seen as a collection for
vector representations that have one-to-one map-
pings to output classes. Thus, it is possible to use
synset embeddings to provide a better initialization
for O than random. This idea has already been
exploited by EWISE (Kumar et al., 2019), in which
logit scores over ¥V are computed by dot product be-
tween the hidden vector h and the gloss embedding
vector g(s) as follows:

z; = hTg® 4 pTgl) (6)

where b is a learned bias vector. Note that if we
pack the synset gloss vector g(®) for every s € ¥/
into the O matrix, this looks almost identical to
the canonical linear layer in Eq. 1, with the only
difference being the fact that the bias is now the
result of the dot product between b and O, rather
than being directly parametrized as a vector € RI"!.

3.4.1 Weight Training vs. Freezing vs.
Thawing

In EWISE, the sense embeddings are learned inde-
pendently from the WSD system and kept frozen
during training. It is worth exploring whether better
results can be achieved by allowing further refining
of the weights during training. We expect initializa-
tion and freezing (which we refer to as, respectively,
O-init and O-freeze) to have different effects de-
pending on whether the gold synset is found in the
training set. If weights are initialized and then up-
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dated during training, the columns in O correspond-
ing to unattested synsets will only receive a “nega-
tive” signal from the cross-entropy loss; conversely,
attested synsets can be further refined and predicted
more accurately. If weights are frozen, the archi-
tecture will have to accommodate to the pretrained
synset representations, meaning that, especially if
there is no learned bias, it will be easier to predict
unseen classes. No fine-tuning may, however, re-
sult in diminished performance, as the pre-trained
synset representations are not tailored to WSD. An
additional possibility to achieve better transfer be-
tween the information in the embeddings and the
WSD system is to use a freeze-then-thaw scheme,
similar to the chain-thaw method of Howard and
Ruder (2018). The approach entails training an
O-freeze model, restoring the best checkpoint, and
then doing further training with O “thawed”, i.e.,
with trainable weights.

4 Experiments

We assess the performance of EWISER in all-
words English WSD, against both a simple but
competitive baseline, i.e., the simple feedforward
network taking BERT hidden states as input de-
scribed in Section 3.2, and state-of-art approaches.
We first experiment separately on the integration of
explicit relational information through structured
logits (Section 4.1), and the integration of synset
embeddings through the initialization of O (Section
4.2). Then, building on the results of these experi-
ments, we evaluate the full EWISER architecture
(Section 4.3). Finally, we assess our approach on
cross-lingual WSD (Section 4.4), training on En-
glish and evaluating on French, German, Italian
and Spanish.

4.1 Structured Logits

As explained in Section 3.3.2, in EWISER, rela-
tional knowledge is integrated through a dot prod-
uct between the logits matrix Z and the transposed
adjacency matrix A”. We perform experiments
with different configurations that vary according to
which edges are included in A.

4.1.1 Setting

We experiment with the edge sets which are listed
in Section 3.3.3. For each configuration we evalu-
ate two different training runs, one in which A
is frozen (A-freeze), and the other where edge
weights are trained (A-train). We contrast the per-

Model Arch. ALL Nol5 Nol5~
baseline - 742 739 522
hyper A-freeze 756 754 59.8

A-train 759 755 59.2
hypo A-freeze 746 744 57.7
A-train 74.6 743 54.5
hyper+hypo  A-freeze 757 75.5 59.8
A-train 7577 754 57.7
hyper* A-freeze 752 75.0 58.6
A-train 754 753 577
hyper+hypo* A-freeze 754 753 59.9

A-train 747 744 56.5

Table 1: Evaluation of structured logits on English all-
words WSD. F1 is reported.

formance of the models with the above-mentioned
baseline.

4.1.2 Data & Hyperparameters

We train the baseline and the configurations un-
der comparison on SemCor (Miller et al., 1994)
for 20 epochs, with a batch size of 4000 tokens.
We do not employ sentences as context. Rather,
we split documents in chunks of at most 100 to-
kens. The hidden size of the 2-layer feedforward is
512, with a dropout value of 0.2. The optimizer is
Adam (Kingma and Ba, 2015), which we employ
with a learning rate of 10~*. Following Bevilac-
qua and Navigli (2019), we select as development
set (to select the best epoch) the SemEval-2015
dataset (Moro and Navigli, 2015). As custom-
ary, we report the results on the concatenation
(ALL) of all the evaluation datasets from Senseval-
2 (Edmonds and Cotton, 2001), Senseval-3 (Snyder
and Palmer, 2004), SemEval-2007 (Pradhan et al.,
2007), SemEval-2013 (Navigli et al., 2013), and
the aforementioned SemEval-2015. In addition,
we report performances on ALL with all instances
from the development set removed (Nol5), and
on the subset of No15 whose gold synsets do not
appear in SemCor (Nol157).

4.1.3 Results

We report in Table 1 the results of the experiments
on the addition of structured logits to the baseline
architecture.

As can be seen, the use of hypernyms brings the
biggest gain to performances, with the strongest
improvement against the baseline reported with
simple hypernymy and fine-tuning of A: 1.7 points
on ALL and 1.6 on Nol5. The closures, i.e., hy-
per* and hyper+hypo*, do not seem to be very
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beneficial, achieving slightly worse results than
the simple counterpart. Much of the improvement
seems to come from the increased performance
of the unseen split No15~ where the gold is not
in SemCor, with an absolute improvement of 7.6
points with hypernymy edges and no fine-tuning,
and of 7 points with hypernymy edges and fine-
tuning. Fine-tuning A makes for better results than
keeping the weights of the adjacency matrix fixed
on both ALL and Nol5, but results in slight-to-
moderate decreases on Nol5~, as the network is
able to adjust the weights in order to bring down
the q scores for unseen synsets.

4.2 Output Embeddings

As in EWISE, in EWISER logits are computed by
a dot product between a matrix of hidden scores
and output synset embeddings. However, we do
not train our own synset embeddings: rather, we
employ off-the-shelf vectors. In this section we
evaluate the performance of different options both
in the choice of the embeddings and in how they
are integrated into the network. We contrast the
performance with our baseline, in which the O
matrix is randomly initialized and the embeddings
are trained.

4.2.1 Setting

We experiment with different options for the initial-
ization of O:

Deconf 300d We use the 300-dimensional vec-
tors released by Pilehvar and Collier (2016), which
are built from Word2Vec Google news word em-
beddings.

LMMS 20484 We use the 2048-dimensional vec-
tors produced by Loureiro and Jorge (2019), built
as the concatenation of BERT Large cased states’
centroids for instances in SemCor with the synset
gloss vector, computed from BERT Large states
as well. We normalize the vectors to unit length.
Since LMMS vectors are quite big, we reduce the
number of dimensions to 512 with truncated SVD.

SensEmBERT+LMMS 20484 SensEmBERT
(Scarlini et al., 2020) enhances LMMS by exploit-
ing BabelNet and Wikipedia. SensEmBERT only
includes nouns, but its vectors are in the same space
as LMMS, so we use the former in combination
with verbs, adjectives and adverbs from the latter.
We employ the same preprocessing as with LMMS.

Model Arch. ALL Nol5 Nol5~
baseline - 742 739 52.2
Deconf O-init 753 752 55.2

O-freeze 664  66.0 72.2
O-thaw 753 752 60.5
O-thaw* 73.8 73.7 62.3

LMMS O-init 75.5 754 55.1
O-freeze 759 754 59.4
O-thaw 754  75.0 574
O-thaw* 758 754 57.3
LMMS + O-init 76.1  76.0 59.4
SensEmBERT  O-freeze 76.3  76.0 64.7

O-thaw 764  76.1 62.3
O-thaw*  76.7 76.6 63.4

Table 2: Evaluation of O initialization and training
strategies on English all-words WSD. F1 is reported.

For each sense embedding system, we report
results with four different training schemes: plain
initialization (O-init); initialization and freezing
(O-freeze); restore the best O-freeze, then thaw the
weights of O (O-thaw); the same as for O-thaw,
but reducing the learning rate to 10~° (O-thaw*).
In all cases, synset embeddings are computed as
the centroid of the senses contained in the synset.

4.2.2 Data & Hyperparameters

We train our baseline and O-init models for 20
epochs. The O-freeze model, which is much slower
to converge, is trained for a maximum of 80 epochs.
O-thaw and O-thaw* are trained for 10 epochs.
The data on which we train and report the perfor-
mances are the same as in Section 4.1.2.

4.2.3 Results

We report in Table 2 the results of the evaluation of
the use of synset embeddings for the initialization
of the O output embeddings matrix.

In general, the approach enables much better F1
scores compared to the baseline, but is very de-
pendent on the quality of the embeddings, and on
whether they incorporate supervision from Sem-
Cor. When using Deconf, which uses the WordNet
graph to “deconflate” word-level Word2Vec vec-
tors, with no use of training corpora, the O-freeze
strategy produces the best result on Nol57, i.e.,
72.2, with an absolute increase of 20 points over
the baseline. However, O-freeze with Deconf also
achieves the worst result on both ALL and Nol5,
indicating that some form of biasing towards the
most frequent synsets, which is an effect of corpus
supervision, is required for the global evaluation.
Fine-tuning O enables the model to obtain a decent
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S G G* E System ‘ ALL Nol5 Nol5~ | S2 S3 S7 S13 S15 | N A\ A R
v ovooo- Kumar et al. (2019) 71.8  70.9*% 738 71.1 673 694 745|740 60.2 78.0 82.1
v v Loureiro and Jorge (2019) | 754  75.2% 76.3 756 68.1 751 77.0 - - - -
v oo - - Hadiwinoto et al. (2019) 73.7%  73.2% 755 73.6 68.1 7.1 762 - - -

v v - Huang et al. (2019) 77.0% 76.2* 777 752 725 76.1 804 - - -

v v - - Scarlini et al. (2020) - Sup. - - - - - 78.7 - 80.4 - -

v - Vial et al. (2019) 75.6 - - - - - - - - - -
vioo- - - Vialetal. (2019) - ENS 76.7  76.5*% 775 774 695 760 783 | 79.6 659 79.5 85.5
v oot - - EWISERper 77.0x  76.9 60.4 715 719 710 764 778|799 664 79.0 85.5
v o vooo- - EWISERyper 715 773 68.2 784 774 71.0 774 787 | 80.7 651 80.9 86.1
v ot - - EWISERyperthypo 76.8  76.8 59.5 717 779 703 762 763 | 794 659 80.0 86.7
v o vooo- - EWISERyperthypo 783 782 69.1 789 784 71.0 789 793|817 663 812 85.8
v v v Vv Vialetal (2019) 77.1 - - - - - - - - - -
v v v v Vialetal. (2019) - ENS 79.0x 78.4% - 797 718 734 787 82.6 | 814 68.7 83.7 855
v v v v EWISERper 80.1 79.8 75.2 80.8 79.0 752 80.7 818 | 829 694 836 873
v v v Vv EWISERyperthypo 798 793 75.1 80.2 785 73.8 80.6 823|827 685 829 87.6
- - - - Scozzafava et al. (2020) 71.7  71.0* 71.6 720 593 722 758 - - -

-V - - Scarlini et al. (2020) - KB - - - - - 74.8 - 75.9 - -

Table 3: Evaluation of the joint use of structured logits and O-thaw* on English all-words WSD. F1 is reported.
The column blocks report (i) the training corpora and system compared; (ii) overall F1; (iii) single dataset F1;
(iv) POS-specific F1. 1: Incorporates gloss information through synset embeddings. *: Computed from reported
scores. x: highest F1 that is statistically different from the best one (x? with p=0.1).

F1 score, with the exception of O-thaw*, where the
training run was underfitting. With LMMS, higher
results are obtained, especially when freezing the
weights. SensEmBERT with the LMMS backoff
achieves the best results on both ALL and Nol5,
with O-thaw* reaching at least 76.6 on ALL and
Nol5. Probably due to the fact that SensEmBERT
relies less on the supervision from SemCor, very
strong results are obtained on Nol15™ as well, with
a margin of over 12 points above the baseline.

As for the training scheme adopted, the best re-
sults are obtained from the freeze-then-thaw strat-
egy with learning rate reduction (O-thaw*) and
from the simple freezing of O. Thawing consis-
tently raises the accuracy on ALL and Nol5, but
lowers it on No15™, meaning that the fine-tuning
of O shifts the balance of the trade-off between
performances on seen and unseen synsets to the
benefit of the former. O-init still improves over the
baseline, but is less effective than its alternatives.

4.3 Combining Relational Knowledge and
Sense Embeddings

Bringing everything together, we now evaluate the
joint exploitation of the O initialization and struc-
tured logits in EWISER.

4.3.1 Setting

Building on the results of the previous experi-
ments, we limit the number of model variants
by only including the configurations that sepa-
rately yielded the best results, namely: (i) the use

of hypernyms (EWISER},,c,-) or hypernyms plus
hyponyms (EWISER},yper 4 hypo) in the graph en-
coded in A, training the adjacency matrix, and (ii)
the combination of SensEmBERT and LMMS for
the output embeddings, trained according to the O-
thaw* scheme, i.e., the freeze-then-thaw approach,
with the learning rate set to 107°.

4.3.2 Data & Hyperparameters

In order to make the results of EWISER compa-
rable to those of the state-of-the-art approaches to
WSD, we report results when training not only on
SemCor (S), but also on the union of SemCor and
untagged WordNet glosses (G), and on the union
of SemCor, tagged WordNet glosses (G™), and
WordNet examples (E) as well. When training on
glosses, we prepend the lemma of the main sense
and a semicolon to the raw gloss, and treat the
added word as a tagged instance. We evaluate the
model on the datasets mentioned in Section 4.1.2.

4.3.3 Results

In Table 3 we report the results of the unified eval-
uation. In addition to our systems, we include in
the comparison the best systems from the literature,
grouping the two sets together in two internally
comparable blocks: (i) systems trained on SemCor,
possibly making use of LKB information such as
untagged glosses or the WordNet graph; (ii) sys-
tems that also make use of tagged glosses and ex-
amples; (iii) the best performing knowledge-based
systems.
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In almost every setting compared, EWISER out-
performs the previous state of the art. Among sys-
tems in the first block (S/G) EWISER,yper+hypo
trained on S+G obtains the best results on all the
datasets except for SemEval-2015, with a mar-
gin over the two best performing systems, i.e.,
GlossBERT and the ensemble of 8 models of Vial
et al. (2019), of, respectively, 1.3 and 1.6 points
on ALL, and of 2.0 and 1.7 on Nol5, which
does not include our dev set. Even if they do
not train on untagged glosses, both EWISERj, ¢,
and EWISER},yper+ hypo Show comparable perfor-
mances to GlossBERT on ALL, and better on No15
— without fine-tuning BERT, and with much less
compute power required. The results on Nol5™,
where EWISER e 4 hypo With glosses achieves
an F1 of 69.1, almost 10 points more than when
not using them, show that definitional knowledge
is beneficial for the zero-shot setting.

Adding tagged glosses and WordNet examples
further boosts performances, with the best config-
uration, EWISER,;,, breaking through the 80
points ceiling on ALL, an estimated upper bound
on human inter-annotator agreement that is often
quoted as the glass ceiling for WSD performance
(Navigli, 2009). The only model we can compare
with, i.e., the one of Vial et al. (2019), is outper-
formed on every dataset except for SemEval-2015.
On ALL and Nol5, however, we outscore the com-
petitor by a margin of 1.1 and 1.4 points, establish-
ing a new state of the art in English all-words WSD.
The bigger training set improves performances on
No157, though the gap is not quite closed.

Not surprisingly, even the best knowledge-based
systems do not offer competitive performances,
since they cannot take advantage of training corpus
supervision.

4.4 Cross-lingual WSD

To see whether the strong performances of
EWISER carry over to the multilingual setting,
we retrain the best global configuration, i.e.,
EWISER}, e trained on SemCor, WordNet’s
tagged glosses and usage examples, with BERT
multilingual cased. We compare our system against
(i) the state of the art in multilingual WSD, i.e.
SensEmBERT, which can, however, only disam-
biguate nouns; (ii) the best performing all-PoS sys-
tem, i.e. SyntagRank (Scozzafava et al., 2020),
a knowledge-based system; (iii) the feedforward
baseline. We report results on the French, German,

FR IT ‘ ES IT

Scozzafava et al. (2020) | 76.4  74.1 703 72.1 | 634 69.0
Scarlini et al. (2020) 79.2%  73.4% 77.8% 69.8% -

Ours (baseline) 81.7 766 808 772 | 673 70.6
Ours (EWISER) 809 788 83.6 77.7 | 69.5 71.8

Table 4: Evaluation of the joint use of structured logits
and O-thaw* on cross-lingual WSD. F1 is reported.
*: Recomputed by the authors.

Italian and Spanish all-words evaluation datasets
from SemEval-2013, which contain only nouns,
and the Italian and Spanish datasets from SemEval-
2015, which contain all PoS. We use the revised
version of the evaluation datasets*, which is up-
dated to be consistent with the 4.0.1 release of the
BabelNet graph. As a result, we can test on a larger
number of instances than previously possible.

‘We show the results in Table 4. As can be seen,
we outperform SensEmBERT in the four datasets
from SemEval-2013, sometimes by a large margin,
i.e., by almost 8 points on the Italian dataset. On
SemEval-2015 we outperform SyntagRank by 6.1
points on the Spanish dataset and by 2.8 points
on Italian one. We also show noticeable improve-
ments over the baseline in 5 out of 6 benchmarks.
The evaluation demonstrates that the EWISER ap-
proach is robust in the cross-lingual setting as well,
outperforming competitors across the board and
setting a new state of the art. Moreover, the results
provide the empirical grounds for believing that,
in addition to the results achieved in the languages
featured in the evaluation datasets, comparable fig-
ures could also be attained for other languages, at
least for several European ones.

5 Analysis

In this section we provide a qualitative analysis of
our approach. Specifically, we are interested in the
capability of the model to predict unseen synsets,
thanks to the prior knowledge that is encoded in
both the output embeddings O and the adjancency
matrix A. Consider the following sentences:

(1) a. Corporate debt defaults predicted to in-
crease.

b. Though people are free to change the de-
fault, they usually don’t.

In Table 5 we report the predictions for the target
default in sentences (1a) and (1b) of our best sys-

‘github.com/SapienzaNLP/mwsd-datasets.
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Synset N Gloss w | z(la) q(la) | z(1b) q(lb)

default.n.01 1 loss due to not showing up - 8.6 15.9 14.9 24.5
loss.n.03 6 the actof losing someone or something .50 6.7 - 9.3 -
absence.n.02 8 failure to be present 48 8.1 - 10.2 -

default.n.02 0 actof failing to meet a financial obligation - 10.2 17.0 8.9 14.6
default.v.01 1 fail to pay up 30| 144 - 11.2 -
failure.n.01 18 anact that fails 27 9.3 - 8.6 -

nonpayment.n.02 0 loss resulting from failure of a debt to be paid - 11.0 17.9 9.6 15.5
default.v.01 1 fail to pay up 30| 144 - 11.2 -
financial_loss.n.01 0 loss of money or decrease in financial value .29 8.7 - 8.6 -

default_option.n.01 0 anoption thatis selected automatically unless an alternative is specified - 6.7 12.5 14.6 25.5
option.n.02 19 one of a number of things from which only one can be chosen 76 7.7 - 14.3 -

Table 5: Predictions for sentences (1a) and (1b) of the best model trained on SemCor. In the first row of each block,
we report the scores of the four synsets associated in WordNet with the noun default. The following rows contain
the scores for synsets that are incident to those in the first row of the block, and contribute to their scores in q. The
columns report, from left to right, a sense (therefore synset) identifier, the number of occurrences of that lemma in
SemCor, the gloss, the weight of the edge, the hidden logits z and the output logits q.

tem trained on SemCor only, i.e., EWISER}, .
In both cases, the correct synsets, respec-
tively, default.n.02/nonpayment.n.02
and default_option.n.01, are not in the
training set. However, the model is still able
to give the correct answer. In the first case,
the embedding intialization is enough to predict
nonpayment .n.02 (with default.n.02
having the second highest score), as its score in
z is already the highest among possible predic-
tions. In the latter, it is the contribution from the
synset pointingto default_option.n.01,i.e,
option.n. 02, that enables the network to make
the correct prediction.

However, we must note that the model still over-
relies on corpus supervision. Because of this, even
though our best overall model, i.e., EWISER ¢,
trained on SemCor, tagged glosses and examples,
is able to distinguish and predict correctly the two
well-attested mathematical meanings of root as
equation solution and root as the number = such
that y = 22 in sentences (2a) and (2b) below, it is
not able to correctly detect the tooth sense of root
(2¢), which never occurs in SemCor:

(2) a. The n roots of a polynomial of degree n
depend continuously on the coefficients.

b. The root of 4 is 2.

c. There’s no need to be worried if your den-
tist prescribes a root canal procedure.

Thus, while the EWISER model is indeed very
effective, with the best configuration outdoing the
upper bound on inter-annotator agreement, we are
still far from having solved the task.

6 Conclusion

We presented EWISER, a new neural WSD ar-
chitecture that, by embedding information from
the WordNet graph within the neural architecture,
can also make use of the relational information
that is usually only exploited by knowledge-based
systems. Thanks to the joint exploitation of the
WordNet graph and to the use of pretrained synset
embeddings, EWISER is able to predict meanings
which are not found in the training set, thus miti-
gating the knowledge acquisition bottleneck.

On almost all the evaluation settings, our system
beats the previous state of the art. Most notably,
our model is the first to break through the 80 F1
ceiling on the overall evaluation, the estimated up-
per bound on the task. On the multilingual setting,
even with no training data besides the English cor-
pora, EWISER sets the new state of the art.

We leave it as future work to explore ways to
raise accuracy on unseen synsets without harming
performances on frequent synsets. We release the
code used in the experiments, as well as pretrained
models at github.com/SapienzaNLP/ewiser.
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