On The Evaluation of Machine Translation Systems
Trained With Back-Translation

Sergey Edunov Myle Ott Marc’Aurelio Ranzato Michael Auli
Facebook Al Research
Abstract can be used to adapt models to the test domain by

Back-translation is a widely used data augmen-
tation technique which leverages target mono-
lingual data. However, its effectiveness has
been challenged since automatic metrics such
as BLEU only show significant improvements
for test examples where the source itself is
a translation, or translationese. This is be-
lieved to be due to translationese inputs bet-
ter matching the back-translated training data.
In this work, we show that this conjecture
is not empirically supported and that back-
translation improves translation quality of both
naturally occurring text as well as transla-
tionese according to professional human trans-
lators. We provide empirical evidence to sup-
port the view that back-translation is preferred
by humans because it produces more fluent
outputs. BLEU cannot capture human pref-
erences because references are translationese
when source sentences are natural text. We
recommend complementing BLEU with a lan-
guage model score to measure fluency.

1 Introduction

Back-translation (BT; Bojar and Tamchyna 2011;
Sennrich et al. 2016a; Poncelas et al. 2018a) is
a data augmentation method that is a key ingre-
dient for improving translation quality of neural
machine translation systems (NMT; Sutskever et al.
2014; Bahdanau et al. 2015; Gehring et al. 2017,
Vaswani et al. 2017). NMT systems using large-
scale BT have been ranked top at recent WMT
evaluation campaigns (Bojar et al., 2018; Edunov
etal., 2018; Ng et al., 2019). The idea is to train a
target-to-source model to generate additional syn-
thetic parallel data from monolingual target data.
The resulting sentence pairs have synthetic sources
and natural targets which are then added to the
original bitext in order to train the desired source-
to-target model. BT improves generalization and

adding appropriate monolingual data.

Parallel corpora are usually comprised of two
types of sentence-pairs: sentences which originate
in the source language and have been translated
by humans into the target language, or sentences
which originate from the target language and have
been translated into the source language. We refer
to the former as the direct portion and the latter as
the reverse portion. The setup we are ultimately in-
terested in is models that translate direct sentences.

Translations produced by human translators,
or translationese tend to be simpler and more
standardized compared to naturally occurring
text (Baker, 1993; Zhang and Toral, 2019; Toury,
2012). Several recent studies found that such re-
verse test sentences are easier to translate than di-
rect sentences (Toral et al., 2018; Graham et al.,
2019), and human judges consistently assign higher
ratings to translations of target original sentences
than to source original sentences. These studies
therefore recommend to restrict test sets to source
original sentences, a methodology which has been
adopted by the 2019 edition of the WMT news
translation shared task.

Unfortunately, automatic evaluation with
BLEU (Papineni et al., 2002) only weakly corre-
lates with human judgements (Graham et al., 2019).
Furthermore, recent WMT submissions relying
heavily on back-translation mostly improved
BLEU on the reverse direction with little gains
on the direct portion (Toral et al. 2018; Barry
Haddow’s personal communication and see also
Appendix A, Table 7; Freitag et al. 2019).

This finding is concerning for two reasons. First,
back-translation may not be effective after all since
gains are limited to the reverse portion. Improve-
ments on reverse sentences may only be due to a
better match with the back-translated training sen-
tences in this case. Second, it may further reduce
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our confidence in automatic evaluation, if human
judges disagree with BLEU for systems trained
with back-translation. Indeed, human evaluations
of top performing systems at WMT’ 18 (Bojar et al.,
2018) and WMT’19 (Bojar et al., 2019) did not
agree with BLEU to the extent that correlation is
even negative for the top entries (Ma et al., 2019).

In this paper, we shed light on the following
questions. First, do BT systems only work better in
the reverse direction? Second, does BLEU reflect
human assessment for BT models? And if that is
not the case, why not and how can we alleviate the
weaknesses of BLEU?

Our contribution is an extensive empirical evalu-
ation of top-performing NMT systems to validate
or disproof some of the above conjectures. First,
we show that translationese sources are indeed
easier to translate, but this is true for both NMT
systems trained with and without back-translated
data. Second, we confirm that human assessment
of BT systems poorly correlates with BLEU. Third,
BLEU cannot capture the higher quality of back-
translation systems because the outputs of both
back-translation and non back-translation models
are equally close to the translationese references.
Fourth, we show that BT system outputs are signifi-
canlty more fluent than the output of a system only
trained on parallel data, and this may explain the
human preference towards BT generations. Finally,
we recommend to improve automatic evaluation
by complementing BLEU with a language model
score which can better assess fluency in the target
language while avoiding the artifacts of transla-
tionese references.

2 Related Work

Back-translation has been originally introduced for
phrase-based machine translation (Bojar and Tam-
chyna, 2011). For back-translation with neural
machine translation, there is a large body of liter-
ature building upon the seminal work of Sennrich
et al. (2016a), from large-scale extensions with
sampling (Edunov et al., 2018; Ott et al., 2018) or
tagging (Caswell et al., 2019) to its use for unsu-
pervised machine translation (Lample et al., 2018)
as well as analysis (Poncelas et al., 2018b) and
iterative versions (Hoang et al., 2018).

More similar to our work, Toral et al. (2018)
analyzed performance of trained state-of-the-art
NMT systems in direct and reverse mode. They
observe that translationese is simpler to translate

and claimed that gains for such systems mostly
come from improvements in the reverse direction.

Concurrent to our work, Graham et al. (2019)
find that automatic evaluation with BLEU does not
align with the hypothesis that reverse sentences
are easier to translate instead. Unfortunately, their
findings are not very conclusive because they do
not control for the change of actual content, as
sentences in one direction may be extracted from
documents which are just harder to translate. In
this work we correct for this effect by comparing
translations of source original sentences with their
double translations. Graham et al. (2019) also ob-
serve that BLEU does not reliably correlate with
human judgements. While they consider a large va-
riety of systems trained in various ways, we instead
focus on the comparison between the same NMT
system trained with and without back-translated
data.

Earlier work on statistical machine translation
models argued in favor of using source original
data only to train translation models (Kurokawa
et al., 2009), language models for translation (Lem-
bersky et al., 2011), and to tune translation mod-
els (Stymne, 2017). All these studies base most
of their conclusions on automatic evaluation with
BLEU, which is problematic since BLEU is not
reliable and this procedure may overly optimize
towards translationese references.

Freitag et al. (2019) proposed a post-editing
method to turn translationese system outputs into
more natural text. As part of their evaluation, they
also observed that human assessments poorly cor-
relate with BLEU. While we confirm some of these
observations, our goal is an in-depth analysis of
the evaluation of NMT systems trained with back-
translated data. We provide empirical evidence
corroborating the hypothesis that the discrepancy
between BLEU and human assessment is due to the
use of translationese references, and we provide a
constructive suggestion on how to better automati-
cally evaluate models trained with BT.

3 Experimental Setup

In the next sections we first discuss the datasets
and models used. Then, we report BLEU evalua-
tions showing a big discrepancy between the gains
obtained by a BT system in forward versus reverse
direction compared to a baseline trained only on
parallel data. This is followed by a series of hy-
potheses about the reasons for this discrepancy, and
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empirical studies in support or to disprove these
hypotheses. We conclude with a recommendation
for how to better evaluate NMT systems trained
with BT.

3.1 Training Datasets

We consider four language directions: English-
German (En-De), German-English (De-En),
English-Russian (En-Ru) and Russian-English
(Ru-En).

For En-De, we train a model on the WMT’18
news translation shared task data. We used all
available bitext excluding the ParaCrawl corpus.
We removed sentences longer than 250 words as
well as sentence-pairs with a source/target length
ratio exceeding 1.5. This results in 5.18M sen-
tence pairs. For back-translation, we use the same
setup as the WMT’ 18 winning entry for this lan-
guage pair which entails sampled back-translation
of 226M German newscrawl sentences (Edunov
etal., 2018).!

For De-En, En-Ru, Ru-En we use all parallel
data provided by the WMT’19 news translation
task, including Paracrawl. We remove sentences
longer than 250 words as well as sentence-pairs
with a source/target length ratio exceeding 1.5
and sentences which are not in the correct lan-
guage (Lui and Baldwin, 2012). This resulted in
27.7M sentence-pairs for En-De and 26M for En-
Ru.

For the back-translation models we use the top
ranked Facebook-FAIR systems of the WMT’ 19
news shared translation task.> The parallel data
and pre-processing of those systems is identical to
our baselines which are trained only on parallel
data (Ng et al., 2019). As monolingual data, the
WMT’ 19 newscrawl data was filtered by langid,
resulting in 424M English and 76M Russian mono-
lingual sentences. For En-De and De-En models
use a joined byte-pair encoding (BPE; Sennrich
et al. 2016b) with 32K split operations, and for
En-Ru and Ru-En separate BPE dictionaries for the
source and target with 24K split operations.

'WMT’18 models are available at
//github.com/pytorch/fairseq/tree/
master/examples/backtranslation and we
used a single model.

2WMT’19 models are available at
//github.com/pytorch/fairseq/tree/
master/examples/wmt19

https:

https:
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Figure 1: Illustration of the translations used in this
work. X represent sentences originating in the source
language. Y are sentences originating in the target lan-
guage. A single * symbol represents a translation of an
original sentence, while ** represents a double transla-
tion, i.e. a translation of a translationese sentence. The
original dataset consists of the union of (X, Y*) pairs
(direct mode) and (X *, ) (reverse mode). According
to BLEU, a system trained with BT improves only in
reverse mode. As part of this study we have collected
double translations, which are useful to assess whether
translationese inputs are easier to translate (by compar-
ing performance when the input is X** versus X and
the reference is Y*) and easier to predict (by compar-
ing performance when the reference is Y** versus Y
and the input is X*).

3.2 Sequence to Sequence Models

We train models using the big Transformer imple-
mentation of fairseq (Vaswani et al., 2017; Ott et al.,
2019). All our models are trained on 128 Volta
GPUs, following the setup described in Ott et al.
(2018). For En-De we used single Transformer Big
models without checkpoint averaging. For De-En
and En-Ru we increased model capacity by using
larger FFN size (8192) and we also used an ensem-
ble of models trained with three different seeds.

In the remainder of this paper, we will refer to
baseline NMT models trained only on parallel data
as OP, and to models trained on both parallel data
and back-translated data as BT.

3.3 Test sets and Reference Collection

In order to assess differences in model performance
when inputting translationese vs. natural language
(§4.2), we collected additional references which
will be made publicly and freely available soon.3
These are sentence-level (as opposed to document
level) translations which matches the training setup
of our models. In Appendix B we confirm that our
findings also apply to the original WMT document-
level references.

Figure 1 illustrates the composition of the test
set for each language direction which is divided
into two partitions: First, the direct portion con-
sists of sentences X originally written in the source
language which were translated into the target lan-
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guage as Y*. Additionally, we translated Y* back
into the source language to yield X™**, a trans-
lationese version of X. Second, for the reverse
portion, we have naturally occurring sentences in
the target language Y that were translated into the
source as X*. We also translated these into the
target as Y ** to obtain a translationese version of
the original target. For each language pair we use
the following data:

English <> German. We used newstest2014 that
we separated into English-original and German-
original sets. We then sampled 500 English-
original and 500 German-original sentences from
each subset and asked professional human trans-
lators to translate them into German and English
respectively. In addition, we ask professional hu-
man translators to provide X ** and Y** which are
translations of Y* and X*, respectively.

English <+ Russian. For this setup we sampled
500 English-original sentences from the En-Ru
version of newstest2019 and asked professional
human translators to translate them into Russian
at the sentence-level. Similarly, we sampled 500
Russian-original sentences from the Ru-En ver-
sion of newstest2019 and obtained English refer-
ences. We also collected double translations X **,
Y** of Y* and X*, respectively. 3 The additional
references are available at https://github.com/

facebookresearch/evaluation-of-nmt-bt.

3.4 Human and Automatic Evaluation

Human evaluations and translations were con-
ducted by certified professional translators who are
native speakers of the target language and fluent in
the source language. We rate system outputs us-
ing both source and target based direct assessment.
In the former case, raters evaluate correctness and
completeness on a scale of 1-100 for each transla-
tion given a source sentence. This method is the
most thorough assessment of translation quality. It
also has the additional benefit to be independent of
the provided human references which may affect
the evaluation. For target based direct assessment,
raters evaluate closeness to the provided reference
on a scale of 1-100 for each translation. This is
easier since it only requires people fluent in one
language, and it is the evaluation performed by re-
cent WMT campaigns (Graham et al., 2017; Bojar
etal., 2018).

To rate a translation, we collected three judge-
ments per sentence. We repeated the evaluation

scc ref sys en-de de-en en-ru ru-en
Y v+ OpP 337 403 313 438
BT 323 38.6 319 412
Xt v OP 313 430 405 3138
BT 389 487 506 403

Table 1: BLEU for four language directions measured
on source original sentences (X — Y*) as well as tar-
get original sentences (X* — Y) for a model trained
on parallel data only (OP) as well as a back-translation
model (BT). BT performs much better than OP on the
reverse portion of the test set but BLEU shows no dif-
ference on the direct portion.

scc ref sys en-de de-en en-ru ru-en
Y v+ OP 337 403 313 438
BT 323 38.6 319 412
oy OP 397 469 428 499
BT 392 456 440 476

Table 2: BLEU for source original sentences (X —
Y*) compared to the same sentence pairs with a trans-
lationese source (X** — Y™*). Translationese inputs
are simpler to translate but BT and OP systems benefit
equally from translationes inputs.

for sentences where all three raters provided judge-
ments that differed by more than 30 points. Evalu-
ation was blind and randomized: human raters did
not know the identity of the systems and all outputs
were shuffled to ensure that each rater provides a
similar number of judgements for each system.
Following the WMT shared task evaluation (Bo-
jar et al., 2018), we normalize the scores of each
rater by the mean and standard deviation of all rat-
ings provided by the rater. Next, we average the
normalized ratings for each sentence and average
all per-sentence scores to produce an aggregate
per-system z-score. As automatic metric, we re-
port case-sensitive BLEU using SacreBLEU (Post,
2018).> We also consider other metrics in Ap-
pendix C, but conclusions remain the same.

4 Results

4.1 Evaluating BT with Automatic Metrics

We first reproduce the known discrepancy between
BT and OP in the reverse direction (target original

3SacreBLEU signature: BLEU+case.mixed+numrefs. 1+
smooth.exp+tok.13a+version.1.3.1
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src  ref  sys en-de de-en en-ru ru-en
BLEU human BLEU human BLEU human BLEU human
De v (0] 33.7  -0.18 403  -0.07 31.3 -0.66 438  -0.37
BT 323 -0.05 38.6 0.03 319  -0.35 412 -0.12
Yy (0] 31.3  -0.01 43.0 0.06 40.5 0.06 31.8  -0.02
BT 389 0.10 48.7 0.13 50.6 0.16 40.3 0.07
ey (0] 39.7  -0.05 46.9 0.07 428  -0.17 499  -0.05
BT 39.2 0.03 45.6 0.16 440  -0.01 47.6 0.12
oy (0] 395  -0.01 63.6 0.06 49.5 0.06 444 -0.02
BT 41.8 0.10 61.2 0.13 50.4 0.16 38.7 0.07

Table 3: BLEU and human preference judgements on four language directions with a bitext-only model as well
as a back-translation model (BT). BLEU shows no strong preference when the source is natural text (X) but
professional human translators prefer BT regardless of whether the source is X or translationese (X*). Back-
translation also does not overproportionally benefit from inputting translationese since both OP and BT show
similar improvements when switching from X to X ** inputs. BT human scores are statistically significantly better
at p=0.05 than the respective OP as per paired bootstrap resampling (Koehn, 2004).

sentences; X* — Y) and the forward direction
(source original sentences; X — Y*).

Table 1 shows that BT does not improve over
OP on direct sentences (X — Y™) in aggregate.
However, on the reverse portion BT does im-
prove, and it does so by very large margins of
between 5.7-10.1 BLEU. Appendix C shows that
TER (Snover et al., 2006), BEER (Stanojevic and
Sima’an, 2014), METEOR (Banerjee and Lavie,
2005) and BERTScore (Zhang et al., 2019) also do
not distinguish very strongly between OP and BT
for direct sentences.

A possible explanation for this result is that BT
can better translate target-original test sentences
because those sentences mimic the training data of
BT. The BT training data (§3) consists largely of
target original sentences-pairs with back-translated
sources which could explain the discrepancy be-
tween performance of the BT system on the direct
and reverse portions.

4.2 Translationese Benefits Both BT & OP

Translationese is known to be a different dialect
with lower complexity than naturally occurring
text (Toral et al., 2018). This is corroborated by
the fact that this data is straightforward to iden-
tify by simple automatic classifiers (Koppel and
Ordan, 2011). One possible explanation for why
back-translation could be more effective for target
original sentences is that the input to the system
is translated language. This may give the BT sys-
tem two advantages: i) the input is simpler than

naturally occurring text and ii) this setup may be
easier for the back-translation system which was
trained on additional target original data that was
automatically translated.

To test this hypothesis we feed source original
sentences and translationese into our systems and
compare their performance. We created a test setup
where we have both a source original sentence (X))
and a translationese version of it (X **) which share
a reference (), see §3.3. This enables us to pre-
cisely test the effect of translationese vs natural
language.

Table 2 shows that BLEU is substantially higher
when the input is translationese (X **) compared
to natural language (X), however, both BT and OP
obtain comparable improvements. Therefore, the
BLEU discrepancy between BT and OP in direct
vs. reverse cannot be explained by BT gaining an
advantage over OP through translationese inputs.

4.3 Human Evaluation Contradicts BLEU

The aforementioned experiments were evaluated
in terms of BLEU, an automatic metric. To get a
more complete picture, we ask professional human
translators to judge translations using source-based
direct assessment (unless otherwise specified, this
is our default type of human evaluation; see §3.4).

Table 3 (first two sets of rows) shows that human
judges prefer BT over OP regardless of whether
sentences are source original (X — Y™) or target
original (X* — Y). This is in stark contrast to the
corresponding BLEU results.
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Similar observations have been made in the
two most recent WMT evaluation campaigns: at
WMT’18 (Bojar et al., 2018), the large-scale sam-
pled BT system of Facebook-FAIR (Edunov et al.,
2018) ranked 6th in terms of BLEU while being
ranked first in the human evaluation. The results
of WMT’19 show a similar picture where a system
relying on large scale back-translation ranked first
in the human evaluation but only 8th in terms of
BLEU (Bojar et al., 2019).

We conclude that professional human translators
prefer BT over OP - regardless of whether test
sentences are source or target original.

4.4 Human Evaluation is Robust

Our current observations could be explained by
some idiosyncrasy in the human evaluation. To
reject this hypothesis we performed both source-
based and target-based assessment for all English-
German systems of Table 3 using professional
translators (§3.4) and computed the correlation be-
tween the two types of assessments. The correla-
tion coefficient between source and target based
assessment is 0.90 (95% confidence interval 0.55
- 0.98), which indicates that human evaluation is
robust to the assessment type. This finding is con-
sistent with other work comparing the two types of
human evaluations (Bojar et al., 2018).

4.5 Why BLEU Fails in Direct Mode

Next, we investigate why BLEU does not agree
with human judgements in direct mode. BLEU
measures n-gram overlap between a model output
and a human reference translation. In the case of
direct sentences, the references are translationese.

We found earlier that BLEU does not distinguish
between BT and OP even though professional hu-
man translators prefer BT. Given references are
translationese, one possible explanation is that both
systems produce translations which equally resem-
ble translationese and thus BLEU fails to distin-
guish between them.

To test this hypothesis and measure the closeness
of system outputs with respect to translationese, we
train two large transformer-based language mod-
els (Baevski and Auli, 2018). The first is trained
on outputs produced by the En-De BT system, the
second one on the outputs produced by the En-De
OP system. The outputs are the translation of En-
glish Newscrawl 2018 comprising 76M sentences.
We then evaluate the language models on source
original sentences (Y*) of newstest2015-2018.

data OP BT

Y* 372 36.8
Y 822 574

Table  4: Perplexity = on  the  source-
original/translationese portion (Y*) and the target-
original portion of newstest2014-2018 (Y). We
translate the English newscrawl training data with
either OP and BT and train two language models on
the outputs. Both BT and OP are equally close to
translationese (first row), but BT is closer than OP to
naturally occurring text (second row).

The first row of Table 4 shows that both language
models achieve similar perplexity on Y* (37.2 VS
36.8), suggesting that the translations of BT and OP
are equally close to translationese. Interestingly,
both system outputs are closer to translationese
than natural text since PPL on Y* is significantly
lower than the PPL on Y (second row of Table 4).
This is also supported by BLEU being higher when
using Y** as a reference compared to Y for the
same input X* (second and last row of Table 3).

Our results support the hypothesis that the out-
puts of BT and OP are equally close to transla-
tionese. This in turn may explain why BLEU can-
not distinguish between OP and BT in direct mode
where the reference is translationese.

4.6 BT Generates More Natural Text

Back-translation augments the training corpus with
automatic translations from target original data.
Training models on large amounts of target original
data may bias BT systems to produce outputs that
are closer to naturally occurring text. In contrast,
OP systems have been trained on the original par-
allel data, a mix of direct and reverse data which
contains a much smaller amount of target original
sentences. This may explain why BLEU evaluation
with translationese references (direct portion) does
not capture the human preference for BT.

To understand this better, we conduct two ex-
periments. The first experiment is based on the
language models we trained previously (§4.5) to as-
sess how close our systems are to translationese and
naturally occurring text. The second experiment
is based on a human study where native speakers
assess the fluency of each system output.

For the first experiment we reuse the two lan-
guage models from §4.5 to measure how close the
system outputs are to natural text (Y'). The second
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BT OP

De-En 28 16 63
En-De 50 33 18
En-Ru 37 21 42

draw

Table 5: Human preference in terms of fluency for sys-
tem outputs of BT and OP. Judgements are based on a
pair-wise comparison between the two systems without
the source sentence and conducted by native speakers.
All results are based on 100 judgements and the prefer-
ence of BT over OP is statistically significant at p=0.05.

row of Table 4 shows that the BT language model
assigns much higher probability to naturally occur-
ring text, Y, compared to the OP language model
(82.2 VS 57.4 perplexity), suggesting that BT does
indeed produce outputs that are much closer to nat-
ural text than OP. We surmise that this difference,
which is captured by a language model trained on
system outputs and evaluated on Y, could be at
least partially responsible for the marked human
preference towards BT translations.

In the second experiment, native speakers of En-
glish, German and Russian rate whether the output
of OP is more fluent than the output of BT for 100
translations of the De-En, En-De and En-Ru sys-
tems. Human raters perform a pair-wise ranking
and raters can only see two translations but not the
source; the system identity is unknown to raters.

Table 5 shows that BT is judged to be signifi-
cantly more fluent by native speakers than OP in
three languages.

5 Improving BT Evaluation

In the previous sections, we gathered mounting ev-
idence that BLEU fails at capturing the improved
fluency of BT in direct mode. Next, we propose
to use a language model to assess fluency as an
additional measure to complement BLEU. Differ-
ent to the setup above (§4.5, 4.6), where we used a
separate LM for each system, we propose to use a
single LM for all systems in order to simplify the
evaluation.

The language model is trained on a large mono-
lingual dataset disjoint from the monolingual
dataset used for generating back-translated data for
BT training. This restriction is critical, otherwise
the language model is likely to assign higher proba-
bly to BT generations simply because training and
evaluation sets overlap. To train these language
models we sample 315M, 284M and 120M com-

BT PPL OP PPL

De-En 74.8 78.7
En-De 48.6 52.6
Ru-En 57.6 68.6
En-Ru 61.7 72.4

Table 6: Automatic fluency analysis with language
models trained on the Common Crawl corpus in the
respetive target language. BT receives lower perplex-
ity (PPL) throughout, despite attaining the same BLEU
score of OP, see Table 1.

moncrawl sentences for each of the three target
languages, namely English, German and Russian,
respectively.

The language model is used to score the outputs
of BT and OP on the direct portion of the test set.
If two systems have similar BLEU scores, then
a lower perplexity with the LM indicates higher
fluency in the target natural language. This fluency
assessment is complementary to BLEU which in
turn is more sensitive to adequacy.

Table 6 shows that the language model assigns
lower perplexity to BT in all four setups. This
shows that a language model can help to assess the
fluency of system output when a human evaluation
is not possible.

In future work, we intend to further investigate
how to best combine BLEU and language model
scoring in order to maximize correlation with hu-
man judgements, particularly when evaluating BT
in direct mode. Meantime, practitioners can use
this additional metric in their evaluation to break
ties in BLEU scoring.

6 Conclusions

According to our findings, back-translation im-
proves translation accuracy, for both source and
target original sentences. However, automatic met-
rics like BLEU fail to capture human preference
for source original sentences (direct mode).

We find that BT produces outputs that are closer
to natural text than the output of OP, which may
explain human preference for BT. We recommend
distinguishing between direct and reverse transla-
tions for automatic evaluation, and to make final
judgements based on human evaluation. If human
evaluation is not feasible, complementing standard
metrics like BLEU with a language model (§5) may
help assessing the overall translation quality.

In the future, we plan to investigate more thor-
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oughly the use of language models for evaluat-
ing fluency, the effect of domain mismatch in the
choice of monolingual data, and ways to generalize
this study to other applications beyond MT.
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A Forward/reverse BLEU for WMT’18 English-German systems

system fwd rev delta
online-Y 47.1 303 -16.8
MMT-production-system 51.8 36.7 -15.1
online-B.0 529 39.1 -13.8
NTT 50.7 39.7 -11.0
Microsoft-Marian 52.5 41.6 -109
KIT 50.3 395 -10.8
LMU-nmt 435 334 -10.1
uedin 47.8 378 -10.0
online-A 37.8 28.6 9.2
JHU 46.0 382 -7.8
online-F 235 164 -7.1
UCAM 489 421 -6.8
RWTH-UNSUPER 16.7 120 -4.7
online-G 259 225 -34
LMU-unsup 152 143 -09
Facebook-FAIR 45.8 46.1 0.4

Table 7: Forward/reverse BLEU for WMT’ 18 English-German systems.

Table 7 shows that a large-scale back-translation system, Facebook-FAIR, mostly improves BLEU on
the reverse portion whereas it is outperformed by many other entrants in the forward portion.

B Results with WMT references

src  ref Sys en-de de-en en-ru ru-en
BLEU human BLEU human BLEU human BLEU human

(0] 33.7  -0.18 403  -0.07 313  -0.66 438  -0.37
BT 323  -0.05 38.6 0.03 319  -0.35 412 -0.12

X v Op 287 -0.18 354 -007 318 -066 397 -037
WMT BT 299 -005 342 003 319 -035 385 -0.12

X Y

Table 8: BLEU results with respect to the original WMT references (document-level) and the sentence-level ref-
erences used throughout this study. Sentence-level references result in higher BLEU but OP and BT still achieve
very similar BLEU.

Table 8 shows that BLEU does not strongly distinguish between BT and OP, regardless of whether the
reference was obtained at the document-level (Y35,,,7) or at the sentence-level (Y™).
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C Other metrics than BLEU

src  ref  sys en-de
human BLEU TER BEER METEOR BERTScore
D Vo Op -0.18 337 0466 0.635 0.531 0.849
BT  -0.05 323 0473 0.619 0.512 0.843
Yy OP -0.01 31.3 0.504  0.609 0.530 0.841
BT 0.10 38.9 0431 0.652 0.580 0.866
ey Oop  -0.05 39.7 0403 0.677 0.590 0.878
BT 0.03 39.2 0409 0.669 0.578 0.876
oy op -0.01 39.5 0410 0.670 0.599 0.876
BT 0.10 41.8 0383 0.683 0.610 0.884

Table 9: BLEU and other metrics as well as human preference judgements for English-German translations.

Table 9 shows results for automatic metrics other than BLEU (Papineni et al., 2002). The metrics
TER (Snover et al., 2006), BEER (Stanojevic and Sima’an, 2014), METEOR (Banerjee and Lavie, 2005)
and BERTScore (Zhang et al., 2019) show similar trends as BLEU, i.e., they do not indicate human
preference of BT over bitext for the direct portion of the test set (X — Y™).
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