schuBERT: Optimizing Elements of BERT

Ashish Khetan
Amazon AWS
New York, USA
khetan@amazon.com

Abstract

Transformers (Vaswani et al., 2017) have grad-
ually become a key component for many
state-of-the-art natural language representa-
tion models. A recent Transformer based
model- BERT (Devlin et al., 2018) achieved
state-of-the-art results on various natural lan-
guage processing tasks, including GLUE,
SQuAD vl.1, and SQuAD v2.0. This model
however is computationally prohibitive and
has a huge number of parameters. In this work
we revisit the architecture choices of BERT in
efforts to obtain a lighter model. We focus
on reducing the number of parameters yet our
methods can be applied towards other objec-
tives such FLOPs or latency. We show that
much efficient light BERT models can be ob-
tained by reducing algorithmically chosen cor-
rect architecture design dimensions rather than
reducing the number of Transformer encoder
layers. In particular, our schuBERT gives
6.6% higher average accuracy on GLUE and
SQuAD datasets as compared to BERT with
three encoder layers while having the same
number of parameters.

1 Introduction

Transformer (Vaswani et al., 2017) based mod-
els have achieved state-of-the-art performance for
many natural language processing tasks (Dai and
Le, 2015; Peters et al., 2018; Radford et al., 2018;
Howard and Ruder, 2018). These include machine
translation (Vaswani et al., 2017; Ott et al., 2018),
question-answering tasks (Devlin et al., 2018), nat-
ural language inference (Bowman et al., 2015;
Williams et al., 2017) and semantic role labeling
(Strubell et al., 2018).

A recent Transformer based model BERT (De-
vlin et al., 2018) achieved state-of-the-art results on
various natural language processing tasks including
GLUE, SQuAD vl1.1 and SQuAD v2.0. BERT’s
model architecture is a multi-layer bidirectional

Zohar Karnin
Amazon AWS
New York, USA

zkarnin@amazon.com

Transformer encoder based on the original imple-
mentation described in Vaswani et al. (2017).
Following the seminal results obtained by the
BERT model, several follow up studies explored
methods for improving them further. XLNet (Yang
et al., 2019) adds autoregressive capabilities to
BERT, improving its quality, though at the cost
of additional compute requirements. RoBERTa
(Liu et al., 2019) modifies the training procedure of
BERT and provides pre-training methods that sig-
nificantly improve its performance. Two notable pa-
pers exploring the architecture design of the BERT
are following. Michel et al. (2019) examines the
importance of attention heads in BERT architec-
ture, highlighting scenarios where attention heads
may be pruned. The main objective of the paper is
to provide techniques for pruning attention head,
and as such the amount of experiments performed
on BERT is limited to a single task (MNLI). AL-
BERT (Lan et al., 2019) proposes two methods for
reducing the number of parameters in BERT. The
first is via parameter sharing across layers, and the
second is by factorizing the embedding layers. We
note (this was mentioned in the conclusion section
of the paper) that while these methods are efficient
in reducing the number of parameters used by the
model, they do not help in reducing its latency.
These studies provide some advancement to-
wards a more efficient architecture design for BERT
but leave much to be explored. In this paper we
take a broader approach examining multiple de-
sign choices. We parameterize each layer of BERT
by five different dimensions, as opposed to De-
vlin et al. (2018) that parameterizes a layer with
two dimensions and suggests a fixed value for the
remaining three. We then (pre-)train multiple vari-
ants of BERT with different values chosen for these
dimensions by applying pruning-based architecture
search technique that jointly optimizes the architec-
ture of the model with the objective of minimizing

2807

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2807-2818
July 5 - 10, 2020. (©2020 Association for Computational Linguistics



both the pre-training loss and the number of model
parameters. Our experiments result in the follow-
ing findings:

e The ratio of the architecture design dimen-
sions within a BERT encoder layer can be
modified to obtain a layer with better per-
formance. Transformer design dimensions
suggested in Vaswani et al. (2017) are sub-
optimal.

e When we aim to obtain a computationally
lighter model, using a ‘tall and narrow’ ar-
chitecture provides better performance than a
‘wide and shallow’ architecture.

e The fully-connected component applied to
each token separately plays a much more sig-
nificant role in the top layers as compared to
the bottom layers.

2 Background

Following BERT’s notations, we use ¢ to denote
the number of encoder layers (i.e. Transformer
blocks), h to denote the hidden size, and a to
denote the number of self attention heads. The
BERT paper (Devlin et al., 2018) primarily re-
ports results on two models: BERTpasg (¢ =
12,h = 768,a = 12) and BERTArge (¢ =
24,h = 1024,a = 16). BERT base has 108M
parameters and BERT large has 340M parameters.
Though BERT large achieves higher accuracy than
BERT base, due to its prohibitively large size it
finds limited use in practice. Since BERT base
achieves higher accuracy compared to previous
state-of-the-art models- Pre-OpenAl SOTA, BiL-
STM+ELMo+Attn and OpenAl GPT- on most of
the benchmark datasets, it is widely used in prac-
tice. BERT base and OpenAl GPT have the same
number of model parameters.

Given its broad adoption for NLP tasks, an im-
mediate question is: can we reduce the size of
BERT base without incurring any significant loss
in accuracy? The BERT paper (Devlin et al., 2018)
provides an ablation study, Table 1, over the num-
ber of model parameters by varying the number of
layers ¢, the hidden size h, and the number of atten-
tion heads a. It can be observed that the accuracy
decreases drastically when the number of encoder
layers / is reduced, and also when the number of
attention heads is reduced. We ask the following
question: are there any other design dimensions
that can be reduced without incurring huge loss in
accuracy?

Design dimensions Dev Set Accuracy

#L F#a #M  MNLI MRPC SST-2
3 12 45 77.9 79.8 88.4
6 3 55 80.6 82.2 90.7
6 12 66 81.9 84.8 91.3

BERT base
12 12 108 84.4 86.7 92.9

Table 1: Ablation study over BERT model size, Table
6 in Devlin et al. (2018). #M denotes number of model
parameters in millions. hidden size, h = 768.

As noted above, the three primary design di-
mensions of the BERT architecture are the num-
ber of encoder layers ¢, the hidden size h, and
the number of attention heads a. BERT’s Trans-
former encoder layers are based on the original
Transformer implementation described in Vaswani
et al. (2017). Vaswani et al. (2017) fixed dimension
of key, query, and value in multi-head attention,
and filter dimension in feed-forward networks as
a function of the hidden size and the number of
attention heads. However, these are variable de-
sign dimensions and can be optimized. Moreover,
BERT architecture uses the same number of atten-
tion heads for all the encoder layers and hence all
the layers are identical. In this work, we jointly
optimize all these design dimensions of BERT ar-
chitecture while allowing each encoder layer to
have different design dimensions.

In order to explore the parameter space effi-
ciently we chose to optimize the design dimensions
in a pruning framework rather than launching a pre-
training job for each of these choices. This allows
a speedup of several orders of magnitude that is
crucial in order to obtain meaningful conclusions.
We parameterize the different dimensions one can
modify and jointly optimize them with a mixed
target of both accuracy and parameter reduction.
We look at how the accuracy of BERT evolves on
various downstream datasets like GLUE, SQuAD
v1.1, and SQuAD v2.0 when we reduce the model
size via an optimization procedure.

3 Related works

There is a vast literature on pruning trained neural
networks. Starting with the classical works Le-
Cun et al. (1990); Hassibi and Stork (1993) in the
early 90’s to the recent works Han et al. (2015),
pruning deep neural networks has received a lot
of attention. There have been two orthogonal ap-

2808



proaches in pruning networks: structured pruning
(Li et al., 2016; Molchanov et al., 2016) and un-
structured pruning (Anwar et al., 2017). Structured
pruning gives smaller architecture whereas unstruc-
tured pruning gives sparse model parameters. In
natural language processing, Murray and Chiang
(2015) explored structured pruning in feed-forward
language models. See et al. (2016) and Kim and
Rush (2016) provided pruning approaches for ma-
chine translation. A closely related line of work
is Neural Architecture Search (NAS). It aims to
efficiently search the space of architectures (Pham
et al., 2018; Liu et al., 2018; Singh et al., 2019).
Quantization is another technique to reduce the
model size. This is done by quantizing the model
parameters to binary (Rastegari et al., 2016; Hubara
et al., 2017), ternary (Zhu et al., 2016), or 4 or 8
bits per parameter (Han et al., 2015).

Recently published DistilBERT (Sanh et al.,
2019) shows that a BERT model with fewer number
of layers can be efficiently pre-trained using knowl-
edge distillation to give much higher accuracy as
compared to the same model pre-trained in a reg-
ular way. We note that the distillation technique
is complimentary to our work and our schuBERT's
can be pre-trained using distillation to boost their
accuracy. The ablation study in Table 1, BERT (De-
vlin et al., 2018), and the above explained works
(Michel et al., 2019; Lan et al., 2019) look at the
problem of reducing the BERT model size by re-
ducing one or the other design dimensions - number
of encoder layers, hidden size, number of attention
heads, and embedding size - in isolation and in
a sub-optimal way. In this work, we address this
problem comprehensively.

4 The Elements of BERT

In this section, we present detailed architecture of
the original BERT model and explain which de-
sign dimensions of it can be optimized. Figure 1
shows BERT pre-training architecture. First, the
tokenized inputs are embedded into a vector of di-
mension h through an embedding layer £. The
embedded inputs pass through a sequence of en-
coder layers 1 to ¢. Each encoder layer is identical
in its architecture. The output of the last encoder
layer is decoded using the same embedding layer
I and softmax cross-entropy loss is computed on
the masked tokens. A special token CLS from the
last encoder layer is used to compute next-sentence-
prediction (NSP) loss. For further details of the loss

NSP Mask LM Mask LM

| Encoder layer—L |

°
°
°

t ¢t ¢ 4+ ¢ ¢ ¢

| Encoder layer —2 |

G A A

| Encoder layer — 1 |
t + t % 1t ¢t %
Embedding |
t + 1+ 1 ¢ %

Tokenizer |

Masked sentence A Masked sentence B

Pre-training

Figure 1: BERT pre-training

BERT-base
number of encoder layers l
hidden size h 768
number of self-attention heads a 12
feed forward dimension f 4h
k
v

12

key-query dimension for attention h/a
value dimension for attention h/a

Table 2: Elements of BERT

corresponding to masked tokens and the NSP loss,
we refer the readers to the BERT paper (Devlin
et al., 2018).

We follow BERT notation conventions and de-
note the number of encoder layers as ¢, the hidden
size as h, and the number of attention heads as a.
Following the original Transformer implementa-
tion described in Vaswani et al. (2017) BERT sets
key-query dimension for multi-head attention £ to
h/a. Following the same Transformer implementa-
tion it sets value dimension for multi-head attention
v equal to k, and feed-forward filter size f equal
to 4h. In total, there are three design dimensions
in BERT- /, h and a, they are listed in Table 2. For
BERT base, the number of encoder layers / is set to
12, the hidden size h is set to 768, and the number
of attention heads a is set to 12. The other three
dimensions f, k, v are function of h and a. Further,
each encoder layer of BERT is identical and uses
same value of a, f, k, v.

First of all, BERT has no architectural constraint
that requires all the encoder layers to be identi-
cal. This aspect of design can be optimized and
in full-generality it might result in highly non-
identical layers. This implies that a generalized

2809



schuBERT

14 l
h h
a a1, ag, - ,Qy
/ Jis foyoo fo
k ki,ko, -+, kg
v V1, V2, ,Up

Table 3: Elements of schuBERT

BERT will have ay,as,--- ,ap, number of heads,
f1, fo, -+, fo filter sizes in the feed forward net-
works, k1, ko, - - - , kg key sizes and vy, v9, - -+, vy
value sizes in the attention heads, in the layers
1,2, .-, £ respectively. Table 3 lists all the design
dimensions of BERT that can be optimized with-
out changing the architecture. Note that we abuse
the term architecture to refer to the entire BERT
network and the layer operations except sizes of
the parameter matrices. In this work, our goal is
to optimize (by pruning) all these dimensions to
maximize accuracy for a given size of the model.
We refer the BERT with optimized dimensions as
schuBERT- Size Constricted Hidden Unit BERT.

Now, we show which parameter matrices are tied
with each of these design dimensions. Each design
dimension is tied with more than one parameter
matrix. This is explained by providing a detail
view of an encoder cell of the BERT.

Figure 2 shows architecture of an encoder layer
of BERT. The notations in the figure have subscript
1 that represent first encoder layer. Input to an en-
coder layer is the hidden representation of a token
which is of dimension h. Input first goes through
a multi-head attention cell. Note that multi-head
attention cell processes hidden representation of all
the tokens in a combined way. For simplicity, in
Figure 2 we have shown only one hidden represen-
tation.

The multi-head attention cell consists of three
parameter tensors, namely - key K1, query ()1 and
value V1. K1 is of size k1 X a1 x h. Key vector
for each head of the attention is of dimension k;
and a; represents the number of heads. Hidden rep-
resentation of dimension h is projected on the key
tensor K to get a; key vectors each of dimension
k1. Similarly the guery tensor Q1 is used to get ay
query vectors each of dimension k; for a; heads of
the multi-head attention cell. The value tensor V;
is of dimension v; X a; x h. The hidden represen-
tation is projected on the value tensor V; to get a;

value vectors each of dimension v;. Note that k;
and v; can be different. The inner product of key
and query vectors after passing through softmax
layer give weights for combining value vectors.
For details of multi-head attention cell we refer the
readers to Vaswani et al. (2017). In nutshell, using
three parameter tensors- K1, (1, V1, a multi-head
attention cell transforms hidden representation of
size h to a vector of dimension (v; X aj). This
vector is projected back to the same dimension h
through a proj matrix P;. Which is then added
element-wise to the hidden representation that was
input to the encoder cell and layer norm is applied
on the addition. The output is passed sequentially
through two fully-connected layers namely D; and
G'1. D1 consists of a parameter matrix of dimen-
sion f; X h and G consists of a parameter matrix
of dimension h x fi. The output of G; is added
element-wise to the input of D; and layer norm is
applied to it. This is the output of the encoder cell
and is input to the next encoder cell.

Input to the cell

xa_1
)
il
xa_1
proj
A Add &
'—f’ Layer norm

T Layer norm

Output of the cell

Figure 2: An encoder layer of schuBERT

The color coding in Figure 2 shows which vec-
tors need to be of the same dimension. The hidden
representation size h needs to be same throughout
all the encoder layers. In a multi-head attention
cell, in each head key and query vectors must have
the same dimension. Therefore, key and query ten-
sors, K1, (Q1 must be of the same size k1 X a1 X h.
The value vector can be of different dimension v .
Therefore the value tensor V; should be of dimen-
sion v; X a1 X h. Further, the filter size f; in the
two fully-connected layers D1, (71 is a variable and
can take any integral value.

Keeping aligned with the BERT and the subse-

2810



quent improvements such as XLNet (Yang et al.,
2019) and RoBERTa (Liu et al., 2019), we set the
WordPiece embedding size e equal to the hidden
layer size h, i.e. e = h. However, factorization
of the embedding matrix can be incorporated as
demonstrated in ALBERT (Lan et al., 2019).

5 Optimization Method

We optimize BERT design dimensions listed in Ta-
ble 3 by pruning the original BERT base architec-
ture. All the design dimensions are upper bounded
by their original value in the BERT base as given in
the Table 2. Since we keep the architecture same,
that is we do not remove any layer, the design di-
mensions are lower bounded by one.

For each design dimension that we seek to opti-
mize, we introduce a prune-parameter vector a of
size equal to the original dimension. We take pre-
trained original BERT base network, and multiply
all the parameter tensors/matrices that are associ-
ated with the particular design dimension with the
corresponding prune-parameter vector. For exam-
ple, filter size of the feed-forward layer in the first
encoder layer is fi = 3072. To optimize fi, we
introduce a prune-parameter vector oy, € R3072
and initialize it with all ones. In the original BERT
base, the two parameter matrices D1 and (1 are as-
sociated with the design dimension f7. We replace
D, by diag(ay, ) - D1 and G by G - diag(ary, ) in
the BERT pre-trained model.

Table 4 lists all the prune parameters. Table 5
lists all the parameter tensors/matrices for which
design dimensions are optimized by multiplying
prunable parameters on all the sides. key and query
tensors K;, Q; fori € {1,2,--- , ¢} are multiplied
on all the three sides with prunable parameters
corresponding to key-vector, number of attention
heads, and hidden size. Similarly multiplications
are performed on value tensor V; with a different
value-vector prunable parameter. proj tensor has
same multiplication as value tensor. The two feed-
forward matrices D;, G; have same multiplications.
We denote the so obtained prunable tensors with
tilde on their top. Note that we do not have prune
parameters for pruning encoder layers. We find
the optimal number of encoder layers £ by running
experiments for different values of /.

Our approach is to optimally find which
individual elements of prunable parameters
{an, {aw,; o, s g, biep ) can be set to zero
while incurring minimal increase in the pre-

ap € R"

{afi S Rf}i:LQ’...
{Odai S Ra}i:LQ,.”
{aki S Rk}izl,z...
{Oévi S Rv}i:LQ,.”

Table 4: Prunable parameters.

K; — K;|diag(ay,)diag(aq, )diag(an)] = K;

Qi — Q;[diag(ay, )diag(ag, )diag(ap)] = Qi

Vi — Vi[diag(a,, )diag(ay, )diag(as)] = Vi
P, — Pj[diag(ay,)diag(ow, )diag(ag,)] = P;

D; — Dj[diag(ay, )diag(ap)] = D;
Gi — Gi[diag(ah)diag(afi)] = GZ

Table 5: Prunable BERT parameter matrices/tensors.

training loss. After we have sparse prunable pa-
rameter vectors, we remove the corresponding
rows/columns from the BERT parameter matri-
ces {K;,Q:, Vi, P;, D;, Gi}ie[@, and get a small-
er/faster BERT model. Below we explain the algo-
rithm to find the sparse prunable parameters.

We start with the pre-trained BERT base trained
on BooksCorpus (800M words) and English
Wikipedia (2500M words) following the BERT pre-
training procedure given in Devlin et al. (2018).
Particularly, we minimize the loss given in Equa-
tion (1) to learn the optimal parameter tensors
{K;, Qi, Vi, P, D;, Gi}z‘e[e] and the embedding
matrix E. Next, we introduce the prunable pa-
rameters given in Table 4 and initialize them with
all ones. We create prunable BERT parameter ma-
trices by multiplying the prunable parameters to
the learned BERT parameter matrices, as given
in Table 5. Then, we optimize the prunable pa-
rameters «’s while fixing the learned parameters
matrices as given in Equation 2. In addition to the
MLM and NSP loss, we add sparsity inducing loss
on the prunable parameters with a regularization
coefficient ~. It is well known that ¢ penalty in-
duces sparsity in the parameters. Further, since
our goal is to minimize the number of parame-
ters, to account for the fact that each element of
prune parameters o when set to zero reduces dif-
ferent number of BERT parameters, we multiply
the /1 loss terms with the cost terms 3’s. For ex-
ample, f3,, is proportional to the number of model
parameters that will be removed when an element
of the prune parameter ¢, is set to zero. It is

2811



critical to incorporate 3’s. Their values are signifi-
cantly different from each other. The S values are
1.0,0.73,0.093, 0.093, 0.0078 for a, h, k,v and f
respectively.

After training the prunable BERT model for a
fixed number of steps, we truncate the smallest
prune parameters to zero, and remove the corre-
sponding rows/columns from the BERT parame-
ter matrices { K;, Qi, Vi, Pi, Di, Gi}ic[q- Then we
fine-tune the so obtained smaller schuBERT model.

Algorithm 1 summarizes our approach. If we
want to reduce the number of parameters by a frac-
tion 1, we do so in 7" steps. In each step, we prune
n/T fraction of parameters, and at the end of the
step we fine-tune the network and repeat these steps
T times. Though we have explained the algorithm
in terms of /1 penalty on the prunable parameters,
in our experiments we tried alternative sparsity in-
ducing penalties as well- ¢y regularization, and
proximal gradient descent on prunable parameters.

Arg Min{ g 1, Q,.Vi,P,,Di,Gi}icqq }

Lyvimnse (B, {Ki, Qi Vi, Py, Diy Giticlg) -
(1

arg mln{ah 7{aai 1Qu A O f }iE [€] }

Lyviminse (B, { K, Qi, Vi, Piy Dy, Gitielg)

l
+{Bullanlly + 7Y {Baillva, | + Bugllew |

i=1

+ Brallow, | + Brillevg I} - 2)

6 Experimental Results

In this section, we present our experimental re-
sults. We apply Algorithm 1 on BERT base. For
pre-training BERT base we use MXNET based
gluon-nlp repository that uses the hyper-parameters
suggested in the original BERT paper. Besides pre-
training, our algorithm has three hyper-parameters:
regularization coefficient -y, learning rate for prun-
able parameters, and the number of steps for reg-
ularizing prune parameters- Equation (2). We run
hyper-parameter optimization on these parameters
to get the best results. For regularization loss
(2), we use the same training data that we use for
pre-training, BooksCorpus (800M words) and En-
glish Wikipedia (2,500M words). However, we run
the regularization step for 1/1000th steps as used
for pre-training. We finet-une the pruned BERT

Algorithm 1 Pruning Transformers

Input: A Transformer model, minimization objec-
tive (FLOPs/Params/Latency), target fraction 7,
number of iterations 7.

Output: A optimally pruned Transformer model.

pre-training: Train the network using loss Equa-
tion (1).

Repeat 7' times:
° Initialize

prunable
Qpy, Qg y Ak 5 Oy, i, — 1

e Multiply prunable parameters with network
parameter
K, Qi, Vi, P, Dy, Gi — K;, Qi, Vi, Py, Dy, Gy
e Train the network using loss Equation (2)

e Set the ¢ smallest prunable parameters to zero
to achieve 1/T reduction in the target objective
value

e Offset zero and non-zero prunable parameters
into model parameters

K, Qi, Vi, P, D, G; — K;,Qi, Vi, Py, D;, G
e Create smaller model parameter tensors by

parameters

o~ o~ N o~~~

Ki,Qi, Vi, P, Di, Gi — K;,Qi, Vi, P, D;, G;
o Finetune the model using loss Equation (1)

by training for 1/20th of the steps used for pre-
training.

We provide accuracy results for schuBERT on
the following downstream tasks- question answer-
ing datasets- SQuAD v1.1, SQuAD v2.0; and
GLUE datasets - MNLI, MRPC, SST-2 and RTE.
For these downstream tasks, we use the fine-tuning
hyper-parameters as suggested in the BERT paper.

We create six schuBERT's by pruning one or all
of the design dimensions. Accuracy of the down-
stream tasks on these schuBERTS are given in Ta-
bles 6-13. The BERT base has 108 million param-
eters. The schuBERT sizes 88, 66, 43 million are
chosen to match the number of parameters in BERT
with ¢ € {9, 6, 3} layers.

We use schuBERT-z notation for = € {h, f,a}
to denote a schuBERT obtained by only pruning
h-hidden size, f-filter size of feed-forward, a-
number of attention heads respectively. We use
schuBERT-all to denote the case when all the de-
sign dimensions- h, f, a, k, v, except £ are pruned.

We compare our results with original BERT base,
and by varying its number of encoder layers ¢ €
{12,9,6,3}. We denote these results by BERT-/.
Since ALBERT reduces parameters by factorizing
the embedding matrix, we denote its results by

2812



model SQuAD vl.1 SQuADv2.0 MNLI MRPC SST-2 RTE | Avg
BERT-base (108M)  90.2/83.3 80.4/77.6 84.1 87.8 921 714 | 84.3
# parameters = 99M
schuBERT-all 89.8/83.0 80.1/77.6 83.9 87.5 924 711 | 84.1
schuBERT- f 89.8/82.9 79.6/77.3 83.5 87.4 91.6 70.7 | 83.8
schuBERT-h 89.6/82.6 79.9/77.5 83.7 87.3 91.5 704 | 83.7
BERT-all uniform 89.7/82.7 79.8/77.3 83.7 87.2 92.0 69.8 | 83.7
schuBERT-a 89.3/82.3 79.1/77.4 83.3 86.8 91.1 69.1 | 83.1

Table 6: Accuracy results on SQuAD and GLUE datasets obtained by fine-tuning BERT and schuBERTSs with total

of 99 million parameters.

L 1 2 3 4 ) 6 7 8 9 10 11 12
f=12022 2222 2344 2478 2576 2530 2638 2660 2748 2792 2852 2974
a= 12 12 12 12 11 12 12 12 12 12 12 12
k=] 64 64 64 64 64 64 64 64 64 64 64 64
v=| b4 o4 46 58 52 60 64 64 64 64 64 62

number of encoder layers £ = 12, number of hidden units h = 768

Table 7: Design dimensions of schuBERT-all for 99 million parameters.

ALBERT-e. ALBERT provided results only for
88 million parameter model, not for any smaller
models. Further, we also compare with the baseline
case when all the design dimensions are pruned
uniformly. We denote these results by BERT-all
uniform.

For 99M model, Table 6, schuBERT-all beats
the baseline BERT-all uniform by 0.4% higher av-
erage accuracy and performs better than schuBERT-
f/h/a. Moreover, the loss in performance in com-
parison to BERT base with 108 million parameters
is only 0.2%. Table 7 gives exact design dimen-
sions for schuBERT-all with 99 million parameters.
We see that number of hidden units remain same
as in BERT base, h = 768. Parameter reduction
primarily comes from feed-forward layers. More-
over, filter size of feed-forward layer - f has a clear
increasing pattern across the layers.

For 88M model, Table 8, again schuBERT-
all beats all the other models. It gives 1.1%
higher average accuracy than BERT-¢ with 9 layers.
ALBERT-e performs better on SQuAD datasets,
but performs significantly worse on MNLI and SST-
2 datasets. Note ALBERT’s approach is comple-
mentary to our approach and it can be incorporated
into our schuBERTSs. schuBERT-a performs signifi-
cantly worse than schuBERT-all which implies that
pruning only number of attention heads is highly
sub-optimal, as is recently done in Michel et al.
(2019). Table 9 provides the exact design dimen-
sions for schuBERT-all with 88 million parameters.

Similar to 99M model, filter size of feed-forward
layer - f has a clear increasing pattern across the
layers.

For heavily pruned models - 77M, 66M, 55M
and 43M models - accuracy results are shown in
Table 10, Table 11, Table 12 and Table 13 respec-
tively. In all these models schuBERT-# beats all
the other models. For 66M model, schuBERT-h
gives 1.9% higher average accuracy than BERT-¢
with 6 layers. For 43M model, schuBERT-A gives
6.6% higher average accuracy than BERT-/ with
3 layers. That is reducing the hidden units is way
better than to reduce the number of layers to cre-
ate a light BERT model. Ideally, we would expect
schuBERT-all to perform better than schuBERT-#,
but marginally worse performance of schuBERT-all
can be attributed to the high complexity of pruning
all the design dimensions together.

Table 14 provides best schuBERT architectures
when the number of model parameters are re-
stricted to different values. For smaller models,
schuBERT-/ outperforms all other schuBERTS in-
cluding schuBERT-all. Note that our schuBERT
architectures are smaller in size as well as they
yield lower latency.

7 schuBERT

Based on the above described experimental results,
we provide following insights on the design dimen-
sions of schuBERT architecture.

Slanted Feed-forward Layer. The fully-

2813



model SQuAD vl.1 SQuADv2.0 MNLI MRPC SST-2 RTE | Avg
BERT-base (108M)  90.2/83.3 80.4/77.6 84.1 87.8 921 714 | 84.3
# parameters = 88M

BERT-/¢ 88.4/80.9 78.8/77.2 83.8 85.6 91.3 68.2 | 82.7
schuBERT-all 89.4/82.5 79.8/77.1 84.1 87.6 92.3 69.7 | 83.8
schuBERT- f 89.2/82.2 79.5/77.5 83.7 87.4 92.2  69.3 | 83.6
BERT-all uniform 89.1/82.0 79.6/77.6 83.7 87.5 91.7 68.9 | 83.4
schuBERT-h 89.1/82.0 79.4/77.3 83.6 87.2 91.5 69.2 | 83.3
schuBERT-a 85.1/77.1 74.1/72.4 82.2 85.2 90.9 67.0 | 80.8
ALBERT-e 89.9/82.9 80.1/77.8 82.9 - 91.5 — -

Table 8: Accuracy results on SQUAD and GLUE datasets obtained by fine-tuning BERT, ALBERT, and schuBERT's

with total of 88 million parameters.

L 1 2 3 4 ) 6 7 8 9 10 11 12
f=11382 1550 1672 1956 2052 2030 2210 2314 2474 2556 2668 2938
a=| 12 12 11 12 11 12 12 12 12 12 12 12
k= 64 64 64 64 64 64 64 64 64 64 64 64
v=| 46 48 42 52 46 o4 64 62 64 64 64 40

number of encoder layers £ = 12, number of hidden units h = 756

Table 9: Design dimensions of schuBERT-all for 88 million parameters.

connected component applied to each token sepa-
rately plays a much more significant role in the top
layers as compared to the bottom layers. Figure 3
shows pattern of filter size of feed-forward layer
across the encoder cells for various schuBERT-all
models. In each of them, filter size follows an in-
creasing pattern with min-max ratio ranging from
1.5 to 4, as opposed to same value across all the
layers.

Tall and Narrow BERT. When we aim to ob-
tain a computationally lighter model, using a ‘tall
and narrow’ architecture provides better perfor-
mance than a ‘wide and shallow’ architecture. Our
results in Tables 8, 11, 13 demonstrate that schu-
BERT with ¢ = 12 encoder layers significantly
outperforms BERT with ¢ € {9, 6,3} layers for the
same number of parameters.

Expansive Multi-head Attention. The ratio of
the design dimensions within a BERT encoder layer
can be modified to obtain a better performing layer
architecture. Transformer design dimensions sug-
gested in (Vaswani et al., 2017) are sub-optimal.

Following the original Transformer architecture
described in (Vaswani et al., 2017), BERT and
other Transformer based models set key-query &
and value v dimension for multi-head attention to
k = v = h/a, where h is the size of the hidden rep-
resentation, and a is the number of attention heads.
Also, following the same architecture (Vaswani

et al., 2017), BERT sets feed-forward filter size
f = 4h. Although there is no restriction in using
different output dimensions k, v and filter size f,
without changing the behaviour of the attention
mechanism, we are not aware of any study ques-
tioning this ‘default value’ of K = v = h/a and
f=4h.

Our schuBERT architecture for various model
sizes given in Table 14, show that for smaller mod-
els k,v should be much larger than h/a. For
43M schuBERT model h/a = 25.3 whereas k =
v = 64. Also, f should be much larger than 4h.
For the same 43M schuBERT model 4h = 936
whereas f = 3072. Table 13 shows that 43M
schuBERT (¢ = 12, h = 304,a = 12,k = v =
64, f = 3072) significantly outperforms BERT-/
(¢ =3,h="768,a =12,k =v = h/a, f = 4h).

optBERT-all: feed-forward size across the layers

3000 1

2500 4

—e— BERT base -108M
—e— 99M
—e— 88M
—— 77M
—— 66M

55M
- 44M
—e— 33M

2000

filter size

1500 4

1000 4

500 1

2 4 6 8 10 12

Figure 3: Feed-forward size across the encoder layers
in schuBERT-all for various model sizes.

2814



# parameters = 7'M

model SQuAD vl.1 SQuADv2.0 MNLI MRPC SST-2 RTE | Avg
schuBERT-h 88.8/81.6 78.6/76.3 84.0 87.2 91.5 68.9 | 83.2
BERT-all uniform  88.8/81.6 78.4/76.0 83.7 86.6 919 68.9 | 83.1
schuBERT- f 88.8/81.4 78.8/76.1 83.2 86.5 92.2 67.7 | 82.9
schuBERT-all 88.8/81.6 78.6/76.2 83.8 86.6 92.2 664 | 82.7
schuBERT-a 82.6/74.2 73.1/68.9 82.0 84.9 89.6 66.4 | 79.8

Table 10: Accuracy results on SQuAD and GLUE datasets obtained by fine-tuning BERT and schuBERTs with
total of 77 million parameters.

# parameters = 66M

model SQuAD vl.1 SQuADv2.0 MNLI MRPC SST-2 RTE | Avg
BERT-/¢ 85.3/77.1 75.3/72.5 82.3 84.4 91.1 67.6 | 81.0
schuBERT-h 88.1/80.7 78.4/74.7 83.8 86.7 91.7 68.5 | 82.9
schuBERT-all 88.0/80.7 78.2/74.5 83.2 87.2 91.3 67.8 | 82.6
BERT-all uniform  87.7/80.3 77.8/74.0 83.6 86.2 91.3 68.1 | 824
schuBERT- f 87.6/80.0 77.6/74.1 83.0 86.8 90.6 68.1 | 82.3

Table 11: Accuracy results on SQuAD and GLUE datasets obtained by fine-tuning BERT and schuBERTs with
total of 66 million parameters.

# parameters = 55M

model SQuAD vl.1 SQuADv2.0 MNLI MRPC SST-2 RTE | Avg
schuBERT-h 87.6/80.3 77.4/74.6 83.5 86.3 90.9 66.7 | 82.1
schuBERT-all 86.8/79.3 76.6/73.5 83.4 86.3 909 66.8 | 81.8
BERT-all uniform  86.2/78.5 76.9/72.2 83.2 84.0 90.5 67.1 | 81.3
schuBERT- f 85.8/77.5 75.8/71.8 81.8 84.4 90.2 673 | 80.9

Table 12: Accuracy results on SQuAD and GLUE datasets obtained by fine-tuning BERT and schuBERTSs with
total of 55 million parameters.

# parameters = 43M

model SQuAD vl.1 SQuAD v2.0 MNLI MRPC SST-2 RTE | Avg
BERT-/ 75.6/65.8 65.9/57.8 78.5 79.5 87.3 63.8 | 75.1
schuBERT-h 86.7/79.0 76.9/73.8 83.4 84.8 90.9 67.3 | 81.7
schuBERT-all 86.0/77.9 76.7/72.8 82.6 84.2 90.5 66.2 | 81.0
BERT-all uniform  85.0/77.2 75.3/72.4 82.2 83.4 90.6 67.2 | 80.6
schuBERT- f 84.2/75.5 74.7/69.8 80.3 77.1 89.7 587 | T7.5

Table 13: Accuracy results on SQuUAD and GLUE datasets obtained by fine-tuning BERT and schuBERTSs with
total of 43 million parameters.

# parameters BERT 99M 88M 7™M  66M 556M 43M  33M
= 12 12 12 12 12 12 12 12

h = 768 768 756 544 466 390 304 234

f(min —max) = | 3072 2022 — 2974 1382 —2938 3072 3072 3072 3072 3072
a(min — max) = 12 11 -12 11-12 12 12 12 12 12
kE(min —max) = | 64 64 64 64 64 64 64 64
v(min —max) = | 64 46 — 64 40 — 64 64 64 64 64 64

Table 14: Best schuBERT architectures for different number of model parameters. BERT base has 108M parame-
ters.

2815



References

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung.
2017. Structured pruning of deep convolutional neu-
ral networks. ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC), 13(3):32.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in neural informa-
tion processing systems, pages 3079-3087.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Song Han, Huizi Mao, and William J Dally. 2015.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. arXiv preprint arXiv:1510.00149.

Babak Hassibi and David G Stork. 1993. Second order
derivatives for network pruning: Optimal brain sur-
geon. In Advances in neural information processing
systems, pages 164—171.

Jeremy Howard and Sebastian Ruder. 2018. Univer-
sal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2017. Quantized
neural networks: Training neural networks with low
precision weights and activations. The Journal of
Machine Learning Research, 18(1):6869-6898.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yann LeCun, John S Denker, and Sara A Solla. 1990.
Optimal brain damage. In Advances in neural infor-
mation processing systems, pages 598—605.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. 2016. Pruning filters for effi-
cient convnets. arXiv preprint arXiv:1608.08710.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2018. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one?  arXiv
preprint arXiv:1905.10650.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2016. Pruning convolutional
neural networks for resource efficient inference.
arXiv preprint arXiv:1611.06440.

Kenton Murray and David Chiang. 2015. Auto-sizing
neural networks: With applications to n-gram lan-
guage models. arXiv preprint arXiv:1508.05051.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. arXiv preprint arXiv:1806.00187.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V
Le, and Jeff Dean. 2018. Efficient neural architec-
ture search via parameter sharing. arXiv preprint
arXiv:1802.03268.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing with unsupervised learning. Technical re-
port, Technical report, OpenAl.

Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. 2016. Xnor-net: Imagenet
classification using binary convolutional neural net-
works. In European conference on computer vision,
pages 525-542. Springer.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Abigail See, Minh-Thang Luong, and Christopher D
Manning. 2016. Compression of neural machine
translation models via pruning. arXiv preprint
arXiv:1606.09274.

Shashank Singh, Ashish Khetan, and Zohar Karnin.
2019. Darc: Differentiable architecture compres-
sion. arXiv preprint arXiv:1905.08170.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. arXiv preprint arXiv:1804.08199.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

2816



Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J
Dally. 2016. Trained ternary quantization. arXiv
preprint arXiv:1612.01064.

2817



A Appendix

Figure 4, Figure 5 and Figure 6 show the pattern of
number of heads, key-query dimension, and value
dimension across the encoder layers for various
schuBERT-all architectures respectively. There is
not much significant pattern in these design dimen-
sions across the layers. The number of attention
heads drastically reduce to 1 in the top layer for
very small models. Same is true for key-query and
value dimensions. Key-query remains almost same
as their original value 64 even when the models are
pruned heavily, except in the top layer. Whereas
value dimension does decrease significantly from
their original value when the models are pruned
heavily.

optBERT-all: number of heads across the layers

12 \

—e— BERT base -108M
6 —— 99M
—— 88M
—— 7™
—— 66M
55M
2 —— 4aM
—— 33M

filter size

2 4 6 8 10 12

Figure 4: Number of multi-attention heads across
the encoder layers in schuBERT-all for various model
sizes.

optBERT-all: dimension of key-query across the layers

—e— BERT base -108M
30 —— 99M
—— 88M
—— 7™
—— 66M
55M
—— 44M
—— 33M

filter size

2 4 6 8 10 12

Figure 5: Dimension of key-query vectors across the
encoder layers in schuBERT-all for various model
sizes.

optBERT-all: dimension of value across the layers

—e— BERT base -108M
—— 99M
—— 88M
— 7™M
—— 66M
55M

— 44M \

—— 33M 1

filter size

2 4 6 8 10 12

Figure 6: Dimension of value vectors across the en-
coder layers in schuBERT-all for various model sizes.

2818



