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Abstract

Sentence ordering is the task of arranging the
sentences of a given text in the correct order.
Recent work using deep neural networks for
this task has framed it as a sequence prediction
problem. In this paper, we propose a new fram-
ing of this task as a constraint solving problem
and introduce a new technique to solve it. Ad-
ditionally, we propose a human evaluation for
this task. The results on both automatic and
human metrics across four different datasets
show that this new technique is better at cap-
turing coherence in documents.

1 Introduction

Sentence ordering is the task of arranging sentences
into an order which maximizes the coherence of the
text (Barzilay and Lapata, 2008). This is important
in applications where we have to determine the se-
quence of pre-selected set of information to be pre-
sented. This task has been well-studied in the com-
munity due to its significance in down stream ap-
plications such as ordering of: concepts in concept-
to-text generation (Konstas and Lapata, 2012), in-
formation from each document in multi-document
summarization (Barzilay and Elhadad, 2002; Nal-
lapati et al., 2017), events in storytelling (Fan et al.,
2019; Hu et al., 2019), cooking steps in recipe gen-
eration (Chandu et al., 2019), and positioning of
new information in existing summaries for update
summarization (Prabhumoye et al., 2019). Stu-
dent essays are evaluated based on how coherent
and well structured they are. Hence, automated
essay scoring (Burstein et al., 2010; Miltsakaki and
Kukich, 2004) can use this task to improve the
efficiency of their systems.

Early work on coherence modeling and sentence
ordering task uses probabilistic transition model
based on vectors of linguistic features (Lapata,
2003), content model which represents topics as

states in an HMM (Barzilay and Lee, 2004), and
entity based approach (Barzilay and Lapata, 2008).
Recent work uses neural approaches to model co-
herence and to solve sentence ordering task. Li
and Hovy (2014) introduced a neural model based
on distributional sentence representations using re-
current or recursive neural networks and avoided
the need of feature engineering for this task. In
(Li and Jurafsky, 2017), they extend it to domain
independent neural models for coherence and they
introduce new latent variable Markovian generative
models to capture sentence dependencies. These
models used windows of sentences as context to
predict sentence pair orderings. Gong et al. (2016)
proposed end-to-end neural architecture for sen-
tence ordering task which uses pointer networks
to utilize the contextual information in the entire
piece of text.

Recently hierarchical architectures have been
proposed for this task. In (Logeswaran et al., 2018),
the model uses two levels of LSTMs to first get the
encoding of the sentence and then get the encoding
of the entire paragraph. Cui et al. (2018) use a trans-
former network for the paragraph encoder to allow
for reliable paragraph encoding. Prior work (Lo-
geswaran et al., 2018; Cui et al., 2018; Kumar et al.,
2020) has treated this task as a sequence prediction
task where the order of the sentences is predicted
as a sequence. The decoder is initialized by the
document representation and it outputs the index
of sentences in sequential order. Only in (Chen
et al., 2016), this task is framed as a ranking prob-
lem. In this work, a pairwise score is calculated
between two sentences and then the final score for
an order is obtained by summing over all the scores
between pairs of sentences. The order which has
the maximum score is given as output. Instead of
considering all possible permutations of a given
order, it uses beam-search strategy to find a sub-
optimal order.
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Most of the recent work (Gong et al., 2016; Lo-
geswaran et al., 2018; Cui et al., 2018) tries to
leverage the contextual information but has the lim-
itation of predicting the entire sequence of the order.
This has the drawback that the prediction at the cur-
rent time step is dependent on the prediction of the
previous time step. Another limitation of the prior
work is the availability of good sentence representa-
tions that can help in determining the relative order
between two sentences.

For this work we frame the task as a constraint
learning problem. We train a model which learns
to predict the correct constraint given a pair of
sentences. The constraint learnt by our model is
the relative ordering between the two sentences.
Given a set of constraints between the sentences of
a document, we find the right order of the sentences
by using sorting techniques. Since we don’t attach
a score to an order, we don’t have to consider all
the permutations of an order.

Our main contribution is a new framing for
the sentence ordering task as a constraint solving
problem. We also propose a new and simple
approach for this task in this new framework.
We show that a simple sorting technique can
outperform the previous approaches by a large
margin given that it has good sentence rep-
resentations. The bottleneck for most of the
hierarchical models is memory required by the
representations of all the sentences and the
representation of the paragraph. The new framing
also obviates these memory issues. The code
can be found at https://github.com/shrimai/
Topological-Sort-for-Sentence-Ordering.
Additionally, we introduce a human evaluation for
this task and show that our model outperforms the
state-of-the-art on all the metrics.

2 Methodology

For our task we have a set of N documents D =
{d1. . . . , dN}. Let the number of sentences in each
document di be denoted by vi, where ∀i, vi >= 1.
Our task can be formulated as - If we have a set
{so1 , . . . , sovi} of vi sentences in a random order
where the random order is o = [o1, . . . , ovi ], then
the task is to find the right order of the sentences
o∗ = [o∗1, . . . , o

∗
vi ]. Prior work (Logeswaran et al.,

2018; Cui et al., 2018) learns to predict the se-
quence of the correct order o∗. In this formula-
tion of the task, we have Ci set of constraints for
document di. These constraints Ci represent the

relative ordering between every pair of sentences
in di. Hence, we have |Ci| =

(
vi
2

)
. For example, if

a document has four sentences in the correct order
s1 < s2 < s3 < s4, then we have six set of con-
straints {s1 < s2, s1 < s3, s1 < s4, s2 < s3, s2 <
s4, s3 < s4}. Constraints Ci are learnt using a
classifier neural network described in (§2.2). We
finally find the right order o∗ using topological sort
on the relative ordering between all the Ci pairs of
sentences.

2.1 Topological Sort

Topological sort (Tarjan, 1976) is a standard algo-
rithm for linear ordering of the vertices of a di-
rected graph. The sort produces an ordering ô of
the vertices such that for every directed edge u→ v
from vertex u to vertex v, u comes before v in the
ordering ô. We use the depth-first search based
algorithm which loops through each node of the
graph, in an arbitrary order. The algorithm visits
each node n and prepends it to the output ordering
ô only after recursively calling the topological sort
on all descendants of n in the graph. The algorithm
terminates when it hits a node that has been visited
or has no outgoing edges (i.e. a leaf node). Hence,
we are guaranteed that all nodes which depend on
n are already in the output ordering ô when the
algorithm adds node n to ô.

We use topological sort to find the correct or-
dering o∗ of the sentences in a document. The
sentences can represent the nodes of a directed
graph and the directed edges are represented by the
ordering between the two sentences. The direction
of the edges are the constraints predicted by the
classifier. For example, if the classifier predicts the
constraint that sentence s1 precedes s2, then the
edge s1 → s2 would be from node of s1 to s2.

This algorithm has time complexity of O(vi +
|Ci|) for a document di. In our current formulation,
all the constraints are predicted before applying
the sort. Hence, we have to consider all the |Ci| =(
vi
2

)
edges in the graph. The time complexity of

our current formulation is O(v2i ). But the same
technique could be adopted using a Merge Sort
(Knuth, 1998) algorithm in which case the time
complexity would be O(vi log vi). In this case, the
sort algorithm is applied first and the constraint is
predicted only for the two sentences for which the
relative ordering is required during the sort time.

https://github.com/shrimai/Topological-Sort-for-Sentence-Ordering
https://github.com/shrimai/Topological-Sort-for-Sentence-Ordering
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2.2 Constraint Learning
We build a classifier to predict a constraint between
two sentences s1 and s2 (say). The constraint learnt
by the classifier is the relative ordering between the
two sentences. Specifically, the classifier is trained
to predict whether s2 follows s1 or not i.e the the
classifier predicts the constraint s1 < s2.

BERT based Representation. (B-TSort) We
use the Bidirectional Encoder Representations
from Transformers (BERT) pre-trained uncased
language model (Devlin et al., 2019) and fine-tune
it on each dataset using a fully connected percep-
tron layer. Specifically, we leverage the Next Sen-
tence Prediction objective of BERT and get a single
representation for both sentences s1 and s2. The
input to the BERT model is the sequence of tokens
of sentence s1, followed by the separator token
‘[SEP]’, followed by the sequence of tokens for
sentence s2. We use the pooled representation for
all the time steps1.

LSTM based Representation. (L-TSort) In
this model we get two separate representations h1

and h2 for s1 and s2 from a bi-directional LSTM
encoder, respectively. We pass the concatenation
of h1 and h2 as input to two layers of perceptron
for constraint prediction. This model is trained to
gain insight on the contribution of pre-trained sen-
tence representations for the constraint prediction
formulation of the task.

3 Experimental Results

This section describes the datasets, the evaluation
metric and the results of our experiments. The
hyper-paramater settings are reported in Apendix.

3.1 Datasets
NSF. NIPS, AAN abstracts. These three
datasets contain abstracts from NIPS papers,
ACL papers, and the NSF Research Award
Abstracts dataset respectively and are introduced in
(Logeswaran et al., 2018). The paper also provides
details about the statistics and processing steps for
curating these three datasets.

SIND caption. We also consider the SIND (Se-
quential Image Narrative Dataset) caption dataset
(Huang et al., 2016) used in the sentence ordering
task by (Gong et al., 2016). All the stories in this
dataset contain five sentences each and we only
consider textual stories for this task.

1This code was based on (Wolf et al., 2019).

3.2 Baselines
Attention Order Network (AON). This is the
current state-of-the-art model (Cui et al., 2018)
which formulates the sentence ordering task as a
order prediction task. It uses a LSTM based en-
coder to learn the representation of a sentence. It
then uses a transformer network based paragraph
encoder to learn a representation of the entire docu-
ment. It then decodes the sequence of the order by
using a LSTM based decoder.

BERT Attention Order Network (B-AON). To
have a fair comparison between our model and the
AON model, we replace the LSTM based sentence
representation with the pre-trained uncased BERT
model. This model plays a pivotal role of giving us
an insight into how much improvement in perfor-
mance we get only due to BERT.

3.3 Evaluation Metric
Perfect Match (PMR): calculates the percent-
age of samples for which the entire sequence was
correctly predicted (Chen et al., 2016). PMR =
1
N

∑N
i=1 1{ôi = o∗i}, where N is the number of

samples in the dataset. It is the strictest metric.

Sentence Accuracy (Acc): measures the per-
centage of sentences for which their absolute po-
sition was correctly predicted (Logeswaran et al.,
2018). Acc = 1

N

∑N
i=1

1
vi

∑vi
j=1 1{ôij = o∗ij } ,

where vi is the number of sentences in the ith doc-
ument. It is a also a stringent metric.

Kendall Tau (Tau): quantifies the distance be-
tween the predicted order and the correct order in
terms of the number of inversions (Lapata, 2006).
τ = 1 − 2I/

(
vi
2

)
, where I is the number of pairs

in the predicted order with incorrect relative order
and τ ∈ [−1, 1].
Rouge-S: calculates the percentage of skip-
bigrams for which the relative order is predicted
correctly (Chen et al., 2016). Skip-bigrams are the
total number of pairs

(
vi
2

)
in a document. Note that

it does not penalize any arbitrary gaps between two
sentences as long as their relative order is correct.
Rouge-S = 1

(vi2 )
Skip(ô) ∩ Skip(o∗) , where the

Skip(.) function returns the set of skip-bigrams of
the given order.

Longest Common Subsequence (LCS): calcu-
lates the ratio of longest common sub-sequence
(Gong et al., 2016) between the predicted order
and the given order (consecutiveness is not neces-
sary, and higher is better).
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Model PMR Acc Tau Rouge-S LCS
NIPS abstracts

AON 16.25 50.50 0.67 80.97 74.38
B-AON 19.90 55.23 0.73 83.65 76.29
L-TSort 12.19 43.08 0.64 80.08 71.11
B-TSort 32.59 61.48 0.81 87.97 83.45

SIND captions

AON 13.04 45.35 0.48 73.76 72.15
B-AON 14.30 47.73 0.52 75.77 73.48
L-TSort 10.15 42.83 0.47 73.59 71.19
B-TSort 20.32 52.23 0.60 78.44 77.21

Table 1: Results on NIPS and SIND datasets

Human Evaluation We introduce a human eval-
uation experiment to assess the orders predicted
by the models. We set up a manual pairwise com-
parison following (Bennett, 2005) and present the
human judges with two orders of the same piece of
text. The judges are asked “Pick the option which
is in the right order according to you.” They can
also pick a third option ‘No Preference’ which cor-
responds to both the options being equally good
or bad. In total we had 100 stories from the SIND
dataset2 annotated by 10 judges. We setup three
pairwise studies to compare the B-TSort vs AON
order, B-TSort vs Gold order and AON vs Gold or-
der (Gold order is the actual order of the text). Each
judge annotated a total of 30 stories, 10 in each of
the above mentioned categories. The judges were
naive annotators.

3.4 Results
Table 1 shows the results of the automated met-
rics for the NIPS and SIND datasets3. It shows
that AON4 model gains on all metrics when the
sentence embeddings are switched to BERT. The
L-TSort model which does not utilize BERT em-
beddings comes close to AON performance on
Rouge-S and Tau metrics. This demonstrates that
the simple L-TSort method is as accurate as AON
in predicting relative positions but not the absolute
positions (PMR and Acc metric). Table 1 shows
that our method B-TSort does not perform better

2We choose SIND because all the stories contain 5 sen-
tences and hence it is easy to read for the judges. The orders
of the stories are easier to judge as compared to the orders of
scientific abstracts like NSF, NIPS and AAN as they require
the judges to have an informed background.

3We fine-tune BERT which is memory intensive. Hence,
we show the results of B-AON only on these two datasets as
they need 2 transformer layers for paragraph encoder (Cui
et al., 2018)

4We use the code provided by the authors to train the AON
and B-AON model. The numbers reported in Table 1 and 2 are
our runs of the model. Hence, they differ from the numbers
reported in the paper (Cui et al., 2018).

Model PMR Acc Tau Rouge-S LCS
NSF abstracts

AON 13.18 38.28 0.53 69.24 61.37
B-TSort 10.44 35.21 0.66 69.61 68.50

AAN abstracts

AON 36.62 56.22 0.70 81.52 79.06
B-TSort 50.76 69.22 0.83 87.76 85.92

Table 2: Results on NSF and AAN datasets

B-TSort No Preference B-AON

41.00% 28.00% 31.00%

B-TSort No Preference Gold

26.00% 20.00% 54.00%

B-AON No Preference Gold

24.00% 22.00% 54.00%

Table 3: Human Evaluation Results on B-TSort vs
AON (top), B-TSort vs Gold (middle) and AON vs
Gold (bottom).

only due to BERT embeddings but also due to the
design of the experiment. Note that BERT has been
trained with the Next Sentence Prediction objective
and not the sentence ordering objective like AL-
BERT (Lan et al., 2020). We believe that framing
this task as a constraint solving task will further
benefit from pre-trained language model like AL-
BERT. Table 2 shows results for the NSF and AAN
datasets and the B-TSort model performs better
than the AON model on all metrics.

Table 3 shows results for the three human eval-
uation studies on the SIND dataset. It shows that
human judges prefer B-TSort orders 10% more
number of times than the B-AON orders5. The ref-
erence order may not be the only correct ordering
of the story. The variability in the orders produced
by B-TSort and B-AON is not very high and hence
in comparison with Gold orders, we don’t see much
difference in human preferences.

The low scores of AON could be due to the fact
that it has to decode the entire sequence of the
order. The search space for decoding is very high
(in the order of vi!). Since our framework, breaks
the problem to a pairwise constraint problem, the
search space for our model is in the order of v2i .

Discussion: We perform additional analysis to
determine the displacement of sentences in the pre-
dicted orders of the models, scalability of the mod-
els for longer documents, and an understanding of
quality of the human judgements.

5Examples of B-TSort and B-AON orders are shown in
Table 6 and 7 for SIND and NIPS dataset in Appendix.
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Model Win=1 Win=2 Win=3 % Miss Win=1 Win=2 Win=3 % Miss

NIPS SIND

B-AON 81.81 92.44 96.50 3.48 78.39 92.79 98.43 0.00
B-TSort 87.59 95.59 98.11 0.00 82.67 95.01 99.09 0.00

NSF AAN

AON 50.58 63.87 72.96 5.85 82.65 92.25 96.73 0.84
B-TSort 61.41 75.52 83.87 0.00 90.56 96.78 98.71 0.00

Table 4: Sentence Displacement Analysis for all the datasets. (Win=Window size; % Miss=% mismatch)

Displacement of sentences in predicted orders
is measured by calculating the percentage of sen-
tences whose predicted location is within 1, 2 or
3 positions (in either direction) from their original
location. A higher percentage indicates less dis-
placement of sentences. We observed that in spite
of lack of a global structure, B-TSort consistently
performs better on all datasets for all three window
sizes as shown in Table 4. Observe that as win-
dow size reduces, the difference between B-TSort
and B-AON percentages increases. This implies
that displacement of sentences is higher in B-AON
despite taking the whole document into account.

We additionally perform a comparison of models
on documents containing more than 10 sentences
and the results are shown in Table 5. B-TSort con-
sistently performs better on all the metrics. SIND
dataset is omitted in these experiments as the maxi-
mum number of sentences in the story is five for all
the stories in the dataset. For each dataset, the Tau
difference for longer documents is much higher
than the Tau difference on the overall dataset (Ta-
ble 1 and 2). This implies that B-TSort performs
much better for longer documents.

Note that the AON model generates the order
and hence need not generate positions for all the
sentences in the input. We calculate the percentage
of mismatches between the length of the input doc-
ument and the generated order. For AON model
on the NSF dataset which has longest documents,
the overall mismatch is 5.85% (Table 4), while the
mismatch for documents with more than 10 sen-
tences is 11.60%. The AON model also produces
an overall mismatch of 0.84 % on AAN documents
while producing a mismatch of 5.17% on longer
AAN documents. Similarly, the B-AON model has
an overall mismatch of 3.48% for NIPS dataset,
and 33.33% mismatch for longer documents. This
problem does not arise in our design of the task as
it does not have to stochastically generate orders.

To better understand the choices of human
judges, we observe the average length of stories

Model PMR Acc Tau Rouge-S LCS

NIPS abstracts

B-AON 0.0 29.18 0.51 74.64 63.81
B-TSort 0.0 39.43 0.74 83.26 71.68

NSF abstracts

AON 2.12 21.42 0.41 67.45 55.47
B-TSort 0.67 28.57 0.64 68.46 64.86

AAN abstracts

AON 0.0 22.70 0.40 68.90 56.19
B-TSort 0.0 36.86 0.69 78.52 72.01

Table 5: Analysis on NIPS, NSF and AAN datasets for
documents longer than 10 sentences.

calculated in number of tokens. For the B-TSort vs
B-AON study, we discover that the average length
of the stories for B-TSort, B-AON and ‘No Pref-
erence’ chosen options is 86, 65 and 47 respec-
tively. This means that B-TSort is better according
to human judges for longer stories. Similarly for
B-TSort vs Gold experiment, the human judges
were confused with longer stories, reiterating that
B-TSort performs well with long stories.

4 Conclusion and Future Work

We have shown a new way to design the task of
sentence ordering. We provide a simple yet effi-
cient method to solve the task which outperforms
the state of the art technique on all metrics. We
acknowledge that our current model has the lim-
itation of not including the entire context of the
paragraph while making the decision of the relative
order of the pairs. Our future work is to include
the paragraph representation in the constraint pre-
diction model. This will help our methodology to
have the benefit of making informed decision while
also solving constraints.
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A Appendix

Hyper-parameters. For AON model we use the
code base provided by the authors in (Cui et al.,
2018) and we maintain the hyper-parameters de-
scribed in the paper. For the paragraph encoder of
the B-AON models, we follow the same scheme
of the AON model but for its sentence encoder we
use hyper-parameters of the BERT setting. We use
the pretrained BERT uncased base model with 12
layers for the B-AON and B-TSORT models. We
fine-tune the BERT model in both cases. Hence, we
replace the Adadelta optimizer with the BertAdam
(Wolf et al., 2019) optimizer for the B-AON model.
The LSTMs in the L-TSort model uses an RNN
size of 512 and it uses the same vocabularies as the
AON model. L-TSort is trained using stochastic
gradient descent with dropout of 0.2, learning rate
of 1.0 and learning decay rate of 0.5. For B-TSort
and L-TSort we use accuracy on the validation set
to stop training. For B-TSort and B-AON we use
learning rate of 5e-5 with adam epsilon value of
1e-8. For all the experiments we use a maximum
sequence length of 105 tokens.
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the family sits together for dinner
on the first night of the annual re-
union. the restaurant we chose
had amazing food and everyone
loved the presentation. gemma re-
ally adored the restaurants deco-
rations and was always gazing at
them. aunt harriot had a little trou-
ble deciding what kind of wine she
wanted tonight. bob had the whole
family cracking up with his jokes.

the family sits together for dinner
on the first night of the annual re-
union. the restaurant we chose had
amazing food and everyone loved
the presentation. aunt harriot had a
little trouble deciding what kind of
wine she wanted tonight. gemma
really adored the restaurants deco-
rations and was always gazing at
them. bob had the whole family
cracking up with his jokes.

the family sits together for dinner
on the first night of the annual re-
union. aunt harriot had a little trou-
ble deciding what kind of wine she
wanted tonight. bob had the whole
family cracking up with his jokes.
gemma really adored the restau-
rants decorations and was always
gazing at them. the restaurant we
chose had amazing food and every-
one loved the presentation.

he wanted to take a ride on his
new bike. we went on a nice ride
out to the lake. we really enjoyed
the beautiful view from the dock.
it was very peaceful watching the
boats. we had such a busy day he
needed a nap.

we went on a nice ride out to the
lake. he wanted to take a ride on
his new bike. we really enjoyed
the beautiful view from the dock.
it was very peaceful watching the
boats. we had such a busy day he
needed a nap.

we went on a nice ride out to the
lake. he wanted to take a ride on
his new bike. it was very peaceful
watching the boats. we really en-
joyed the beautiful view from the
dock. we had such a busy day he
needed a nap.

when we finally brought our son
home from the hospital so many
people were at home with us to see
him. everyone wanted a chance to
hold him! we were all so happy to
have a new addition to the family.
my parents were so proud to be
grand parents! i am so happy and i
love my son very much!

when we finally brought our son
home from the hospital so many
people were at home with us to see
him. we were all so happy to have
a new addition to the family. every-
one wanted a chance to hold him!
my parents were so proud to be
grand parents! i am so happy and i
love my son very much!

my parents were so proud to be
grand parents! when we finally
brought our son home from the
hospital so many people were at
home with us to see him. we were
all so happy to have a new addition
to the family. everyone wanted a
chance to hold him! i am so happy
and i love my son very much!

Table 6: Examples of predicted sentence orders for B-TSort and B-AON model for SIND dataset.
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we study how well one can recover
sparse principal components of a data
matrix using a sketch formed from a
few of its elements. we show that for
a wide class of optimization problems,
if the sketch is close (in the spectral
norm) to the original data matrix, then
one can recover a near optimal solu-
tion to the optimization problem by us-
ing the sketch. in particular, we use
this approach to obtain sparse principal
components and show that for m data
points in n dimensions, o(-2k maxm,
n) elements gives an - additive approx-
imation to the sparse pca problem (k is
the stable rank of the data matrix). we
demonstrate our algorithms extensively
on image, text, biological and financial
data. the results show that not only are
we able to recover the sparse pcas from
the incomplete data, but by using our
sparse sketch, the running time drops
by a factor of five or more.

we study how well one can recover
sparse principal components of a data
matrix using a sketch formed from a
few of its elements. we show that for
a wide class of optimization problems,
if the sketch is close (in the spectral
norm) to the original data matrix, then
one can recover a near optimal solu-
tion to the optimization problem by us-
ing the sketch. in particular, we use
this approach to obtain sparse principal
components and show that for m data
points in n dimensions, o(-2k maxm,
n) elements gives an - additive approx-
imation to the sparse pca problem (k is
the stable rank of the data matrix). the
results show that not only are we able
to recover the sparse pcas from the in-
complete data, but by using our sparse
sketch, the running time drops by a fac-
tor of five or more. we demonstrate our
algorithms extensively on image, text,
biological and financial data.

we study how well one can recover
sparse principal components of a data
matrix using a sketch formed from a
few of its elements. in particular, we
use this approach to obtain sparse prin-
cipal components and show that for
m data points in n dimensions, o(-2k
maxm, n) elements gives an - additive
approximation to the sparse pca prob-
lem (k is the stable rank of the data ma-
trix). we show that for a wide class of
optimization problems, if the sketch is
close (in the spectral norm) to the orig-
inal data matrix, then one can recover
a near optimal solution to the optimiza-
tion problem by using the sketch. the
results show that not only are we able
to recover the sparse pcas from the in-
complete data, but by using our sparse
sketch, the running time drops by a fac-
tor of five or more. we demonstrate our
algorithms extensively on image, text,
biological and financial data.

we develop a latent variable model and
an efficient spectral algorithm moti-
vated by the recent emergence of very
large data sets of chromatin marks
from multiple human cell types . a nat-
ural model for chromatin data in one
cell type is a hidden markov model (
hmm ) ; we model the relationship be-
tween multiple cell types by connect-
ing their hidden states by a fixed tree
of known structure . the main chal-
lenge with learning parameters of such
models is that iterative methods such
as em are very slow , while naive spec-
tral methods result in time and space
complexity exponential in the number
of cell types . we exploit properties of
the tree structure of the hidden states
to provide spectral algorithms that are
more computationally efficient for cur-
rent biological datasets . we provide
sample complexity bounds for our algo-
rithm and evaluate it experimentally on
biological data from nine human cell
types . finally , we show that beyond
our specific model , some of our algo-
rithmic ideas can be applied to other
graphical models .

a natural model for chromatin data in
one cell type is a hidden markov model
( hmm ) ; we model the relationship
between multiple cell types by connect-
ing their hidden states by a fixed tree
of known structure . the main chal-
lenge with learning parameters of such
models is that iterative methods such
as em are very slow , while naive spec-
tral methods result in time and space
complexity exponential in the number
of cell types . we develop a latent vari-
able model and an efficient spectral al-
gorithm motivated by the recent emer-
gence of very large data sets of chro-
matin marks from multiple human cell
types . we exploit properties of the tree
structure of the hidden states to pro-
vide spectral algorithms that are more
computationally efficient for current bi-
ological datasets . we provide sample
complexity bounds for our algorithm
and evaluate it experimentally on bio-
logical data from nine human cell types
. finally , we show that beyond our spe-
cific model , some of our algorithmic
ideas can be applied to other graphical
models .

the main challenge with learning pa-
rameters of such models is that itera-
tive methods such as em are very slow
, while naive spectral methods result in
time and space complexity exponential
in the number of cell types . a natu-
ral model for chromatin data in one
cell type is a hidden markov model (
hmm ) ; we model the relationship be-
tween multiple cell types by connect-
ing their hidden states by a fixed tree
of known structure .’, ’we develop a
latent variable model and an efficient
spectral algorithm motivated by the re-
cent emergence of very large data sets
of chromatin marks from multiple hu-
man cell types . we exploit properties
of the tree structure of the hidden states
to provide spectral algorithms that are
more computationally efficient for cur-
rent biological datasets . we provide
sample complexity bounds for our algo-
rithm and evaluate it experimentally on
biological data from nine human cell
types . finally , we show that beyond
our specific model , some of our algo-
rithmic ideas can be applied to other
graphical models .

Table 7: Examples of predicted sentence orders for B-TSort and B-AON model for NIPS dataset.


