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Abstract

We study the potential for interaction in nat-
ural language classification. We add a lim-
ited form of interaction for intent classifica-
tion, where users provide an initial query us-
ing natural language, and the system asks for
additional information using binary or multi-
choice questions. At each turn, our system
decides between asking the most informative
question or making the final classification pre-
diction.The simplicity of the model allows for
bootstrapping of the system without interac-
tion data, instead relying on simple crowd-
sourcing tasks. We evaluate our approach on
two domains, showing the benefit of interac-
tion and the advantage of learning to balance
between asking additional questions and mak-
ing the final prediction.

1 Introduction

Responding to natural language queries through
simple, single-step classification has been studied
extensively in many applications, including user in-
tent prediction (Chen et al., 2019; Qu et al., 2019),
and information retrieval (Kang and Kim, 2003;
Rose and Levinson, 2004). Typical methods rely
on a single user input to produce an output, and do
not interact with the user to reduce ambiguity and
improve the final prediction. For example, users
may under-specify a request due to incomplete un-
derstanding of the domain; or the system may fail
to correctly interpret the nuances of the input query.
In both cases, a low quality decision could be miti-
gated by further interaction with the user.

In this paper we take a low-overhead approach to
add limited interaction to intent classification. Our
goal is two-fold: (a) study the effect of interaction
on the system performance, and (b) avoid the cost
and complexities of interactive data collection. We
build an interactive system that poses a sequence
of binary and multiple choice questions follow-
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Figure 1: Two examples of interactive classification
systems: providing a trouble-shooting FAQ suggestion
(left) and helping identifying bird species from a de-
scriptive text query (right). The top parts show ex-
ample classification labels: FAQ documents or bird
species.! The ground truth label of each interaction ex-
ample is shaded. The lower parts show user interac-
tions with the systems. The user starts with an initial
natural language query. At each step, the system asks
a clarification question. The interaction ends when the
system returns an output label.

ing the initial user natural language query. Fig-
ure 1 illustrates such interactions in two domains,
showcasing the opportunity for clarification while
avoiding much of the complexity involved in unre-
stricted natural language interactions. We design
our approach not to rely on user interaction during
learning, which requires users to handle low quality
systems or costly Wizard of Oz experiments.

We adopt a Bayesian decomposition of the pos-
terior distributions over intent labels and user re-
sponses through the interaction process. We use
the posteriors to compute question expected infor-
mation gain, which allows us to efficiently select
the next question at each interaction turn. We bal-

!The images are for illustration only. Our approach does
not use images.
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ance between the potential increase in accuracy
and the cost of asking additional questions with a
learned policy controller that decides whether to
ask additional questions or return the final predic-
tion. We estimate each distribution in our poste-
rior decomposition independently by crowdsourc-
ing initial queries and keywords annotation. We
use non-interactive annotation tasks that do not re-
quire Wizard-of-Oz style dialog annotations (Kel-
ley, 1984; Wen et al., 2017). During training, we
train a shared text encoder to compare natural lan-
guage queries, clarification questions, user answers
and classification targets in the same embedding
space. This enables us to bootstrap to unseen clari-
fication targets and clarification questions, further
alleviating the need of expensive annotation.

We evaluate our method on two public tasks:
FAQ suggestion (Shah et al., 2018) and bird iden-
tification using the text and attribute annotations
of the Caltech-UCSD Birds dataset (Wah et al.,
2011). The first task represents a virtual assistant
application in a trouble-shooting domain, while the
second task provides well-defined multiple-choice
question annotations and naturally noisy language
inputs. We evaluate with both a simulator and
human users. Our experiments show that adding
user interaction significantly increases the classi-
fication accuracy. Given at most five turns of in-
teraction, our approach improves the accuracy of a
no-interaction baseline by over 100% on both tasks
for simulated evaluation and over 90% for human
evaluation. Even a single clarification question pro-
vides significant accuracy improvements, 40% for
FAQ suggestion and 65% for bird identification in
our simulated analysis. Our code and data are avail-
able at https://github.com/asappresearch/

interactive-classification.

2 Technical Overview

Our goal is to classify a natural language query to
a label through an interaction.

Notation We treat the classification label y, in-
teraction question ¢ and the user response 7 as
random variables. We denote an assignment of a
random variable using subscripts, such as y = y;
and g = g;. We use superscripts for the observed
value of the random variable at a given time step,
for example, ¢* is a question asked at time step t.
When clear from the context, we write g; instead of
y = y;. For example, p(r|g;,y;) denotes the con-
ditional distribution of 7 given y = y; and ¢ = g,

and p(ry|q;, y;) further specifies the corresponding
probability when r = 7.

An interaction starts with the user providing an
initial user query x. At each turn ¢, the system se-
lects a question ¢', to which the user responds with
rt, or returns a label y to conclude the interaction.
We consider two types of questions: binary and
multiple choice questions. The predefined set of
possible answers for a question ¢* is R(q"), where
R(q") = {yes,no} for binary questions, or a pre-
defined set of question-specific values for multiple
choice questions. We denote an interaction up to
time t as X! = (z, ((¢',71),...,(¢',")), and the
set of possible class labels as YV = {y1,...,yn}-
Figure 1 shows example interactions in our two
evaluation domains.

Model We model the interactive process us-
ing a parameterized distribution over class labels
that is conditioned on the observed interaction
(Section 4.1), a question selection criterion (Sec-
tion 4.2), and a parameterized policy controller
(Section 4.5). At each time step t, we compute the
belief of each 75; € ) conditioned on X‘~!. The
trained policy controller decides between two ac-
tions: to return the current best possible label or to
obtain additional information by asking a question.
The model selects the question with the maximal
information gain. Given a user response, the model
updates the belief over the classification labels.

Learning We use crowdsourced data to bootstrap
model learning. The crowdsourcing data collection
includes two non-interactive tasks. First, we ob-
tain a set of user initial queries &} for each label
y;. For example, for an FAQ, ‘How do I sign up
for Spring Global Roaming’, an annotated poten-
tial initial query is ‘Travel out of country’. Sec-
ond, we ask annotators to assign text tags to each
yi, and heuristically convert these tags into a set
of question-answer pairs A; = {(qm,7m) 20,
where ¢, denotes a templated question and 7,
denotes the answer. For example, the question
‘What is your phone operating system?’ can pair
with one of the following answers: ‘IOS’, ‘An-
droid operating system’, “Windows operating sys-
tem’ or ‘Not applicable’. We denote this dataset as
{(yi, Xy Aj) fil. We describe the data collection
process in Section 5. We use this data to train our
text embedding model (Section 4.3), to create a
user simulator (Section 4.4), and to train the policy
controller (Section 4.5).
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Evaluation We report classification the model
accuracy, and study the trade-off between accuracy
and the number of turns that the system takes. We
evaluate with both a user simulator and real human
users. When performing human evaluation, we
additionally collect qualitative ratings.

3 Related Work

Human feedback has been leveraged to train natu-
ral language processing models, including for di-
alogue (Li et al., 2016), semantic parsing (Artzi
and Zettlemoyer, 2011; Wang et al., 2016; Iyer
et al., 2017) and text classification (Hancock et al.,
2018). These methods collect user feedback after
the model-predicting stage and treat user feedback
as additional offline training data to improve the
model. In contrast, our model leverages user inter-
action to increase prediction performance. Human
feedback has been incorporated in reinforcement
learning as well, for example to learn a reward
function from language as reflecting human prefer-
ences (Christiano et al., 2017).

Language-based interaction has been studied in
the context of visual question answering (de Vries
etal., 2017; Lee et al., 2018; Chattopadhyay et al.,
2017; Das et al., 2017; Lee et al., 2019; Shukla
etal., 2019), SQL generation (Gur et al., 2018; Yao
et al., 2019), information retrieval (Chung et al.,
2018; Aliannejadi et al., 2019) and multi-turn text-
based question answering (Rao and Daumé III,
2018; Reddy et al.,, 2019; Choi et al., 2018).
Most methods require learning from recorded dia-
logues (Wu et al., 2018; Hu et al., 2018; Lee et al.,
2018; Rao and Daumé III, 2018) or conducting
Wizard-of-Oz dialog annotations (Kelley, 1984;
Wen et al., 2017). Instead, we limit the interac-
tion to multiple-choice and binary questions. This
simplification allows us to reduce the complexity
of data annotation while still achieving effective
interaction. Our task can be viewed as an instance
of the popular 20-question game (20Q), which has
been applied to a celebrities knowledge base (Chen
et al., 2018; Hu et al., 2018). Our approach differs
in using natural language descriptions of classifica-
tion targets, questions and answers to compute our
distributions, instead of treating them as categorical
or structural data.

Our question selection method is related to sev-
eral existing methods. Kovashka and Grauman
(2013) refine image search by asking to compare
visual qualities against selected reference images,

and Lee et al. (2018) perform object identification
in an image by posing binary questions about the
object or its location. Both methods, as well as
ours use an entropy reduction criterion to select the
best next question. We use a Bayesian decomposi-
tion of the joint distribution, which can be easily
extended to other model-driven selection methods.
Rao and Daumé III (2018) propose a learning-to-
ask approach by modeling the expected utility of
asking question. Our selection method can be con-
sidered as a special case when entropy is used as
the utility. In contrast to Rao and Daumé III (2018),
we model the entire interaction history instead of
a single turn of follow-up questioning. Our model
is trained using crowdsourced annotations, while
Rao and Daumé III (2018) uses real user-user in-
teraction data. Alternatively to asking questions,
Ferecatu and Geman (2007) and Guo et al. (2018)
present to the user the most likely image in an im-
age retrieval scenario. The user compares it with
the ground-truth image and provides feedback us-
ing relevance score or natural language describing
the discrepancy between them.

4 Method

We maintain a probability distribution p(y|X?)
over the set of labels ). At each interaction step,
we first update this belief, decide if to ask a ques-
tion or return the classification output using a policy
controller and, if needed, select a question to ask
using information gain.

4.1 Belief Probability Decomposition

We decompose the conditional probability
p(y = y;| X*) using Bayes rule:

p(yi| X*) = p(yi| X1, ¢, ")

(Tt,qt,yi‘Xt_l)

(¢ i, X1 plyi | X1
p(rt|q' yi, X171

xXp
p

We make two simplifying assumptions as mod-
eling choices. First, the user response depends
only on the question ¢' and the underlying target
label y;, and is independent of past interactions.
While this independence assumption is unlikely
to reflect the course of interactions, it allows to
simplify p(rt|qt, y;, X*=1) to p(rt|qt, ;). Second,
the selection of the next question ¢ is determinis-
tic given the interaction history X*~!. Therefore,
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p(q = q'|y;, Xt=1) = 1, or zero for ¢ # ¢'. Sec-
tion 4.2 describes this process. We rewrite the
decomposition as:

plyi| XY o p(rt|gt pi) - 1 plyi | X1

t
- (1)
yz‘x H |q yz .

Predicting the classification label given the ob-
served interaction X' is reduced to modeling
p(yi|x) and p(rk|g;,y;), the label y; probability
given the initial query x only and the probabil-
ity of user response 7 conditioned on the chosen
question ¢; and class label y;. This factorization
enables leveraging separate annotations to learn the
two components directly, alleviating the need for
collecting costly recordings of user interactions.

4.2 Information Gain Question Selection

The system selects the question ¢’ to ask at turn ¢ to
maximize the efficiency of the interaction. We use a
maximum information gain criterion. Given X1,
we compute the information gain on classification
label y as the decrease on entropy by observing
possible answers to question q:

H(y| X" ") —H(y| X" '.q),

where H (-|-) denotes the conditional entropy. Intu-
itively, the information gain measures the amount
of information obtained about the variable y by ob-
serving the value of another variable q. Because the
first entropy term H (y| X'~!) is a constant regard-
less of the choice of g, the selection of ¢* is equiva-
lent to ¢* = arg ming, H(y| X', ¢;), where

H(y| X" g) = >

Te€R(q;)
H(y| X", q5,m)
> plys| X
Y €Y
log p(y:| X'

> plrg, i X

yi€Y

= plrilgj,vi)

y; €Y
p(yil X1

IG(y;q| X1 =

p(ri| X" q5)

H(y|Xt_lanvrk): 17qjark)

7Qj’rk)

p(re| X' q) = . q5)

We use the independence assumption (Section 4.1)
to calculate p(rg | X1, g;). Both p(ry | Xt1, ¢5)
and p(y;| X', g;,7) can be iteratively updated

using p(y;|z) and p(r4|q;, yi) as the interaction
progresses (Equation 1) to efficiently compute the
information gain.

4.3 Modeling the Distributions

We model p(y;|z) and p(r4|g;,y;) by encoding
the natural language descriptions of questions, an-
swers and classification labels. In our domains,
the text representation of a label is the FAQ doc-
ument or the bird name. We do not simply treat
the labels, questions and answers as categorical
variables. Instead, we leverage their natural lan-
guage content to estimate their correlation This re-
duces the need for heavy annotation and improves
our model in low-resource scenarios. We use a
shared neural encoder enc(-) parameterized by
1 to encode all texts. Both probability distribu-
tions are computed using the dot-product score:
S(u,v) = enc(u) enc(v), where u and v are
two pieces of text. The probability of predicting
the label y; given an initial query x is:

exp(S (i, )
Zyjey eXp(S(yj’ I)) .

The probability of an answer 7, given a question g;
and label y; is a linear combination of the observed
empirical distribution p(7x|g;, v;) and a parameter-
ized estimation p(ry | q;, ys):

p(yilz) =

(il a;, vi) = Ap(re|aj, yi)+(A=N)p(rklaj, vi)

where A € [0, 1] is a hyper-parameter. We use the
question-answer annotations A; for each label y; to
estimate p(ry|g;,y;) using empirical counts. For
example, in the FAQ suggestion task, we collect
multiple user responses for each question and class
label, and average across annotators to estimate p
(Section 5). The second term p(ry|q;, yi) is com-
puted using the text encoder:

p(rrl gy, vi)
_ exp(w- S(g;#rk,¥i) +b)
ZT[GR( )exp(w S(QJ#Tla yz) + b)

Y

where w, b € R are scalar parameters and g;#7y, is
a concatenation of the question ¢; and the answer
.2 Because we do not collect complete annota-
tions to cover every label-question pair, p provides

For example, for a templated question ‘What is your
phone operating system?’ and an answer ‘I0S’, ¢,, = ‘phone
operating system’ and r,, = ‘IOS’, therefore, gm#rm =
‘phone operating system I0S’.
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a smoothing of the partially observed counts using
the learned encoding S(-).

We estimate the parameters 1) of enc(-) by pre-
training using a dataset {(y;, X;, A;) }Y;, where y;
is a label, A is a set of initial queries and A; is a
set of question-answer pairs. We create from this
data a set of text pairs (u,v) to train the scoring
function S(-). For each label y;, we create pairs
(z,y;) for each initial query z € X;. We also
create (¢m#rm,y;) for each question-answer pair
(¢m,7Tm) € A;. We minimize the cross-entropy
loss using gradient descent:

L) =—-S(u,v)+ logZexp(S(u,v’)) .

,Ul

The second term requires summation over all v/,
which are all the labels in ). We approximate
this sum using negative sampling that replaces the
full set ) with a sampled subset in each training
batch. The parameters v, w and b are fine-tuned
using reinforcement learning during training of the
policy controller (Section 4.5).

4.4 User Simulator

We use a held-out dataset to build a simple sim-
ulator. We use the simulator to train the pol-
icy controller (Section 4.5) and for performance
analysis, in addition to human evaluation. The
user simulator provides initial queries to the sys-
tem and responds to the system initiated clarifica-
tion questions. The dataset includes N examples
{(ys, X/, A Y|, where y; is a goal, X7 is a set of
initial queries and A} = {(gm, rm)}%il is a set of
question-answer pairs. While this data is identical
in form to our training data, we keep it separated
from the data used to estimate S(-), p(y;|z) and
p(rklg;,yi) (Section 4.3). We estimate the sim-
ulator question response distribution p’ (74 | ¢;, v;)
using smoothed empirical counts from the data.
At the beginning of a simulated interaction, we
sample a target label ¢, and sample a query x from
the associated query set X” to start the interaction.
Given a system clarification question ¢’ at turn ¢,
the simulator responds with an answer 7 € R(q")
by sampling from p/(r|q!, ). Sampling provides
natural noise to the interaction, and our model has
no knowledge of p’. The interaction ends when the
system returns a label, which we can then evaluate,
for example to compute a reward in Section 4.5.
This setup is flexible in that the user simulator can
be easily replaced or extended by a real human, and

Algorithm 1: Training procedure

Estimate p(y|z) and p(r|q, y) with w and b
randomly initialized
Estimate p’(r|q, y) for the user simulator
for episode = /... M do
Sample (z, §) from dataset
forr=1...T do
Compute p(y| X*~') (Equation 1)
action = £(p(y| X", ¢ — 150)
if action is STOP then
| break
else if action is ASK then
¢ =
argmaxg;co 1G(y; g | X1
'~ p(rlg',9)

end

y* = argmax,, p(yi| X"

Compute the return (i.e., total reward) for every
step t using y* and ¢

Update w, b, 0 using policy gradient

end

the system can be further trained with a human-in-
the-loop setup.

4.5 Policy Controller

The policy controller decides at each turn ¢ to ei-
ther select another question to query the user or
to conclude the interaction. This provides a trade-
off between exploration by asking questions and
exploitation by returning the most probable clas-
sification label. The policy controller f(-,-;#) is
a feed-forward network parameterized by 6 that
takes the top-k probability values and current turn
t as input. It generates one of two actions: STOP
or ASK. When selecting ASK, a question is selected
to maximize the information gain. For STOP, the
label y; with highest probability is returned using
arg maxy,cy p(yi;| X'~!) and the interaction ends.

4.6 Training Procedure

Algorithm 1 describes the complete training pro-
cess. First, we estimate p(y|z) and p(r|q,y). We
use randomly initialized and fixed w and b pa-
rameters. We also estimate p/(r|q, y) for the user
simulator (Section 4.4). We then learn the policy
controller using the user simulator with a policy
gradient method. We use the REINFORCE algo-
rithm (Williams, 1992). The reward function pro-
vides a positive reward for predicting the correct
target at the end of the interaction, a negative re-
ward for predicting the wrong target, and a small
negative reward for every question asked. We learn
the policy controller f(-,-; ), and estimate w and
bin p(ry|qj, v;) by back-propagating through the
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policy gradient. We keep the enc(-) parameters
fixed during policy gradient.

5 Data Collection

We design a crowdsourcing process to collect data
for the FAQ task using Amazon Mechanical Turk.?
For the Birds domain, we re-purpose an existing
dataset. We collect initial queries and tags for
each FAQ document. Appendix A.1 describes the
worker training process.

Initial Query Collection We ask workers to con-
sider the scenario of searching for an FAQ docu-
ment using an interactive system. Given a target
FAQ, we ask for an initial query that they would
provide to such a system. The set of initial queries
that is collected for each document y; is X;. We
encourage workers to provide incomplete informa-
tion and avoid writing a simple paraphrase of the
FAQ. This process provides realistic and diverse
utterances because users have limited knowledge
of the system and the domain.

Tag Collection We collect natural language tag
annotations for the FAQ documents. First, we use
domain experts to define the set of possible free-
form tags. The tags are not restricted to a pre-
defined ontology and can be a phrase or a single
word describing the topic of the document. We re-
move duplicate tags to finalize the set. Experts com-
bine some binary tags to categorical tags. For ex-
ample, tags ‘10S’, ‘Android operating system’ and
‘Windows operating system’ are combined to the
categorical tag ‘phone operating system’. We use
a small set of deterministic, heuristically-designed
templates to convert tags into questions. For exam-
ple, the tag ‘international roaming’ is converted
into a binary question ‘Is it about international
roaming?’; the categorical tag ‘phone operating
system’ is converted into a multi-choice question
‘What is your phone operating system?’. Finally,
we use non-experts to collect user responses to the
questions by associating tags with FAQ targets. For
binary questions, we ask workers to associate their
tags to the FAQ target if they would respond ‘yes’
to the question. We show the workers a list of ten
tags for a given target as well as a ‘none of the
above’ option. Annotating all possible target-tag
combinations is still expensive and most pairings
are negative. We rank the tags based on the rel-
evance against the target using S(-) trained only

3https://www.mturk.com/

on the initial queries and show only the current
top-50 to the workers. Later, we re-train S(-) on
the complete data. For multi-choice questions, we
show the workers a list of possible answers to a
tag-generated question for a given FAQ. The work-
ers need to choose one answer that they think best
applies. They also have the option of choosing ‘not
applicable’. The workers do not engage in a multi-
round interactive process. This allows for cheap
and scalable collection.

6 Experimental Setup

Task I: FAQ Suggestion We use the FAQ dataset
from Shah et al. (2018). The dataset contains 517
troubleshooting documents from Sprint’s techni-
cal website. We collect 3,831 initial queries and
118,640 tag annotations using the setup described
in Section 5. We split the data into 310/103/104
documents as training, development, and test sets.
Only the queries and tag annotations of the 310
training documents are used for pre-training and
learning the policy controller, leaving the queries
and tag annotations in the development and test
splits for evaluation only.

Task II: Bird Identification We use the Caltech-
UCSD Birds dataset (CUB-200; Wah et al., 2011).
The dataset contains 11,788 bird images for 200
different bird species. Each bird image is anno-
tated with a subset of 27 visual attributes and 312
attribute values pertaining to the color or shape
of a particular part of the bird. We create cat-
egorical questions from attributes with less five
possible values, providing eight categorical ques-
tions in total. The remaining 279 attributes are
converted to binary questions. Each image is an-
notated with 10 image captions describing the bird
in the image (Reed et al., 2016). We use the im-
age captions as initial user queries and bird species
as labels. Since each caption contains only par-
tial information about the bird species, the data is
naturally noisy and provides challenging user inter-
actions. We do not use the images from the dataset
for model training. The images are only provided
for grounding during human evaluation.

Baselines We compare with four methods:

e No Interaction: the classification label is pre-
dicted using only the initial query. We con-
sider four implementations: (1) BM25: a
common keyword-based scoring model for
retrieval methods (Robertson and Zaragoza,
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2009); (2) RoBERTagasg: we use a fine-tuned
RoBERTagasg model (Liu et al., 2019) as text
encoder; (3) RNN: we use a recurrent neural
network (RNN) with simple recurrent unit re-
currence (SRU; Lei et al., 2018) as text en-
coder, together with a fastText word embed-
ding layer (Bojanowski et al., 2017); and (4)
RNN + self-attn: the same RNN neural model
with a multi-head self-attention layer (Lin
et al., 2017; Vaswani et al., 2017).

e Random Interaction: at each turn, the system
randomly selects a question to present the user.
After T turns, the classification label is chosen
according to the belief p(y| X 7).

e No Initial Query Interaction: the system se-
lects questions without conditioning on the
initial user query using maximum information
criterion. This is equivalent to using a static
decision tree to pick the question, always ask-
ing the same first question (Utgoff, 1989; Ling
et al., 2004).

e Variants of Our Approach: we consider sev-
eral variants of our full model. First, we re-
place the policy controller with two termina-
tion strategies: (1) end the interaction when
max p(y| X*?) passes a threshold, or (2) end
the interaction after a fixed number of turns.
Second, we disable the parameterized estima-
tor p(ry|q;, yi) by setting A = 1.

Evaluation We use human evaluation, and fur-
ther analyze performance using our simulator. For
human evaluation, users interact with our systems
and baseline models using a web-based interactive
interface. Each interaction starts with a user sce-
nario:* a bird image or a device-troubleshooting
scenario described in text. The user types an initial
query and answers follow-up questions selected by
the system. Once the system returns its prediction,
we measure its accuracy, and the user is asked to
rate the whole interaction according to rationality
and naturalness.’> The user does not know the cor-
rect target label. We use a five-points Likert score
for the followup questions. For FAQ Suggestion,
we consider two evaluation setups: (1) assuming
the model has access to tags in the development and
test set for interaction, and (2) using only tags in the

“Each scenario is related to a single groundtruth label and
serves to ground user interactions.

>We also surveyed users for perceived correctness, but

observed it is interpreted identically to rationality. Therefore,
we omit this measure.

training set annotation. The former is equivalent
to adding tags for new documents not seen dur-
ing training time. The latter zero-shot evaluation
setup allows us to investigate the model’s perfor-
mance on unseen targets with no additional tags
associated with them. Appendix A.4 provides fur-
ther details of the human evaluation setup. We do
further analysis with the user simulator . We evalu-
ate classification performance using Accuracy @k,
which is the percentage of time the correct target
appears among the top-k predictions of the model.

Implementation Details We use the same en-
coder to encode initial queries, question-answer
pairs and FAQ documents in the FAQ suggestion
task. In the bird identification task, where the struc-
ture of bird names differs from the other texts,
we use one encoder for user initial queries and
question-answer pairs and a second encoder for
bird names. The policy controller receives a re-
ward of 20 for returning the correct target label, a
negative reward of -10 for the wrong target, and a
turn penalty of -0.5 for each question asked. For
our simulated analysis, we report the averaged re-
sults as well as the standard derivation from three
independent runs for each model variant and base-
line. Appendix A.2 provides more implementation
and training details.

7 Results

Our simulated analysis shows that the SRU RNN
text encoder performs better or similar to the other
encoders. This encoder is also the most lightweight.
Therefore, we use it for the majority of our experi-
ments.

Human Evaluation Figure 2 and Table 1 show
the human evaluation results of our full model and
three baselines: our approach with a fixed num-
ber of turns (four for FAQ and five for Bird), our
approach without access to the initial query (No
Init. Query) and our approach without interaction
(No Int. (RNN)). Naturalness and rationality mea-
sure the quality of the interaction, so we show the
results of the user survey in Figure 2 only for inter-
active systems. Because we do not ask users to fill
the end-of-interaction survey for the no interaction
baseline, we simply compute its numbers following
the first query when evaluating our full approach.
Our approach balances between accuracy and the
user-centric measures, including naturalness and
rationality, achieving stronger performance across

2670
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Figure 2: Human evaluation Gantt charts showing user ratings. We show the mean rating for each measure and

system on the right of each bar.

FAQ FAQ (zero-shot)  Bird

Our Approach | 57% 52% 45%

Our Approach | 550 47% 37%
w/fixed turn

No Init. Query | 43% 41% 28%

No Int. (RNN) | 30% 26% 20%

Table 1: Human evaluation classification accuracy.

the board. All three models improve the classifica-
tion performance with the addition of interaction.
Qualitatively, the users rate our full approach bet-
ter than the two other interaction variants. This
demonstrates that our model handles effectively
real user interaction despite being trained with only
non-interactive data. We include additional details
in Appendix A.4.

Analysis with Simulated Interactions Table 2
shows performance using the the user simula-
tor. We use these results to evaluate different
choices beyond what is possible with human stud-
ies. We observe interaction is critical; remov-
ing the ability to interact decreases performance
significantly. The Random Interaction and the
No Initial Query Interaction baselines both barely
improve the performance over the No Interaction
RNN baseline, illustrating the importance of guid-
ing the interaction and considering the initial query.
Our full model achieves an Accuracy@1 of 79%
for FAQ Suggestion and 49% for Bird Identifica-
tion using less than five turns, outperforming the
No Interaction RNN baseline by 41% and 26%.
When having no access to questions and answers
in the development and test set during evaluation,
the full model performance drops only slightly to
75%, highlighting the model’s ability to generalize
to unseen tags. The two baselines with alterna-
tive termination strategies underperform the full
model, indicating the effectiveness of the policy
controller. The relatively low performance of the
A = 1 variant, which effectively has fewer proba-
bility components leveraging natural language than

our full model, and No Initial Query Interaction
confirm the importance of the learned natural lan-
guage embedding encoder. Appendix A.3 includes
further details on how different text encoders im-
pact performance.

Figure 3 shows the trade-off between classifica-
tion accuracy and the number of turns. Each point
on the plots is computed by varying the reward
turn penalty for our model, the prediction threshold
and the predefined number of turns 7". Our model
with the policy controller or the threshold strat-
egy does not explicitly bound the number of turns,
so we report the average number of turns across
multiple runs for these two models. We achieve a
relative accuracy boost of 40% for FAQ and 65%
for Birds over no-interaction baselines with only
one clarification question. This highlights the value
of leveraging human feedback to improve model
accuracy in classification tasks.

Figure 4 shows the learning curves of our model
with the policy controller trained with different
turn penalties r, € {—0.5,—1, —3}. We observe
the models explore during the first 1,000 training
episodes in the middle and the right plots. The
models achieve relatively stable accuracy after the
early exploration stage. The three runs end up using
different numbers of expected turns because of the
different r, values.

8 Conclusion

We propose an approach for interactive classifi-
cation, where the system can inquire missing in-
formation through a sequence of simple binary or
multi-choice questions when users provide under-
specified natural language queries. Our expert-
guided, incremental design of questions and an-
swers enables easy extension to add new classes,
striking the balance between simplicity and extend-
ability. Our modeling choices enable the system
to perform zero-shot generalization to unseen clas-
sification targets and questions. Our method uses
information gain to select the best question to ask
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FAQ Suggestion Bird Identification
Acc@1 Acc@3 Acc@1 Acc@3

No Interaction (BM25) 26% 31% N.A. N.A.
No Interaction (RoOBERTagasg) 30 +0.5% 45 4+ 0.6% 17+0.3% | 294+ 0.3%
No Interaction (RNN) 38 +0.5% 61 +0.3% 23+0.1% | 41 +0.2%
No Interaction (RNN + self-attn) 394+0.5% 63 +0.4% 23+0.1% | 41+0.1%
Random Interaction 39+£0.3% (38+0.1%) | 62+£0.4% (63£0.2%) | 25+£0.1% | 44£0.1%
No Initial Query Interaction 46 +0.5% (46 £0.1%) | 66 £0.6% (67 £0.3%) | 294+ 0.2% | 50 £0.3%
Our Approach 79 0.7% (75 £ 0.4%) | 86 £ 0.8% (83 £ 0.4%) | 49 £03% | 69 £ 05%
w/ threshold 73+ 0.6% (69 + 0.6%) | 82+0.7% (81 +0.6%) | 41+0.3% | 59+ 0.4%
wi fixed turn 71+ 1.0% (68 +0.4%) | 81+0.9% (81 +0.6%) | 39+0.2% | 56+ 0.4%
wiA=1 66 + 0.8% (64 +0.2%) | 714 1.0% (73 +£0.2%) | 40+ 0.1% | 56 + 0.2%

Table 2: Performance with simulated interactions. We evaluate our approach and several baselines using Accu-
racy@{1, 3}. Best performance numbers are in bold. We report the averaged results as well as the standard
deviations from three independent runs for each model variant and baseline. For FAQ Suggestion, in parentheses,
we provide zero-shot results, where the system has access to tags only for training questions.
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Figure 3: Accuracy @1 (y-axis) against turns of interactions (x-axis) for FAQ (left) and Birds (right) tasks.

Accumulative Reward Average Turns Recall@1
8 8 0.8
0.7
6 6
0.6
4 4 0.5 ry=-0.5
2 2 0.4 ra=-1
0 0 0.3 ra=-3
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000

Figure 4: Learning curves of our full model. We show accumulative reward (left), interaction turns (middle), and
Accuracy @1 (right) on the test set, where x-axis is the number of episodes (400 trials per episode). The results are

compared on different turn penalty .

at every turn, and a lightweight policy to efficiently
control the interaction. We demonstrate that the
system can be bootstrapped without any interaction
data and show effectiveness on two tasks. A poten-
tial future research direction is to bridge the gap
between this simple bootstrapping paradigm and
the incorporation of user free-form responses to
allow the system to handle free-text responses. We
hope our work will encourage more research on dif-
ferent possibilities of building interactive systems
that do not necessarily require handling full-fledged
dialogue, but still benefit from user interaction.
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A Appendices

A.1 Data collection

We collect two types of data for the FAQ task. For
the bird identification task we re-purpose existing
data (Section 6).

Initial Query Collection Qualification One
main challenge for the data collection process is
familiarizing the workers with the set of target doc-
uments. We set up a two-stage process to ensure
the quality of the initial queries. The first stage
is to write paraphrases of a given target, which is
often a question in the FAQ task. We first allow the
full pool of Amazon Mechanical Turk workers to
perform the task. After that, we manually inspect
the written queries and pick the ones that are good
paraphrases of the FAQs. We selected 50 workers
that showed good understanding of the FAQs. In
the second stage, workers are asked to provide ini-
tial queries with possibly insufficient information
to identify the target. Out of the first 50 workers,
we manually selected 25 based on the quality of the
queries such as naturalness and whether they con-
tain ambiguity or incompleteness by design. We
used this pool of workers to collect 3,831 initial
queries for our experiments.

Tag Association Qualification The goal of this
annotation task is to associate tags with classifica-
tion labels. We train a model on the collected initial
queries to rank tags for each classification target.
We pick out the highest ranked tags as positives
and the lowest ranked tags as negatives for each
target. The worker sees in total ten tags without
knowing which ones are the negatives. To pass the
qualification task, the workers need to complete
annotation on three targets without selecting any of
the negative tags.

Tag Association Task Details After the quali-
fication task, we take the top 50 possible tags for
each target and split them into five non-overlapping
lists (i.e., ten tags for each list) to show to the work-
ers. Each of the lists is assigned to four separate
workers to annotate. We observe that showing only
the top-50 tags out of 813 is sufficient. Figure A.1
illustrates this: after showing the top-50 tags, the

curve plateaus and no new tags are assigned to a
target label. Table A.1 shows annotator agreement
using Cohen’s x score.

0 10 20 30 40 50

Figure A.1: Accumulated number of tags assigned to
the targets (y-axis) by the workers against tag ranking
(x-axis). The ranking indicates the relevance of the
target-tag pairs from the pre-trained model. The curve
plateaued at rank 50 suggesting that the lower ranked
tags are less likely to be assigned to the target by the
crowdsourcing workers.

Tag Ranks
1-10  11-20 21-30 31-40 41-50
Mean # tags || 3.31 1.45 0.98 0.61 0.48
N.A. (%) 1.9 30.7 43.6 62.1 65.2
Mean 0.62 | 0.54 0.53 0.61 0.61

Table A.1: Target-tag annotation statistics. We show
five sets of tags to the annotators. The higher ranked
ones are more likely to be related to the given target.
The row mean # tags is the mean number of tags that
are annotated to a target, N.A. is the percentage of the
tasks that are annotated as “none of the above”, and
mean « is the mean pairwise Cohen’s « score.

A.2 Implementation Details

We use a single-layer bidirectional Simple Recur-
rent Unit (SRU) as the encoder for the FAQ sugges-
tion task and two layer bidirectional SRU for bird
identification task. The encoder uses pre-trained
fastText (Bojanowski et al., 2017) word embed-
dings of size 300, hidden size 150, batch size 200,
and dropout rate 0.1. The fastText embeddings
remain fixed during training. We use the Noam
learning rate scheduler (Vaswani et al., 2017) with
initial learning rate 1e-3, warm-up step 4,000 and
a scaling factor of 2.0. For the self-attention model,
we use a multi-head self-attention layer with 16
heads and a hidden size of 64 for each head. The
same dropout rate used for the text encoder is ap-
plied to the self-attention layer. For the no interac-
tion model with the RoOBERTa encoder, we use the
RoBERTagasg model implemented by Hugghing
Face (Wolf et al., 2019). The RoOBERTagasg model
is fine-tuned with learning rate of le-5, warmup
step of 1,000, weight decay of 0.1, batch size of 16
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and gradient accumulation step of 10. The policy
controller is a two layer feed-forward network with
a hidden layer of size 32 and ReL U activations. The
network takes the current turn and the top-k val-
ues of the belief probabilities as input. We choose
k = 20 and allow a maximum of 10 interaction
turns.

A.3 Additional Analysis

We use the user simulator for further analysis of our
system performance and alternative configurations.

Text Encoder Training Table A.2 shows the
breakdown analysis of different ways to train the
text encoder. We use initial queries as well as
paraphrase queries to train the encoder, which has
around 16K target-query examples. To analyze the
effectiveness of tags in addition to initial queries,
we generate pseudo-queries by combining exist-
ing queries with sampled subset of tags from the
targets. This augmentation strategy is useful to
improve the classification performance. We also
observe that using the set of tags instead of initial
queries as text inputs for a specific target label im-
proves classification performance, indicating that
the designed tags can capture the target label well.
Finally, when we concatenate user initial queries
and tags and use that as text input to the classifier,
we achieve Accuracy @1 of 76%. In our full model,
we achieve 79% with only querying about five tags.

Performances of Different Encoders Table A.3
show our system performance with different text
encoders for both tasks.

A.4 Human Evaluation

Each interaction session starts with presenting a
user scenario (e.g., a bird image or a phone issue).
The user types an initial natural language query
and answers follow-up questions selected by the
system.

FAQ Suggestion We design a user scenario for
each target to present to the worker. At the end of
each interaction, the predicted FAQ and the ground
truth are presented to the user, as shown in the top
right panel in Figure A.2. The user answers the
following questions: ‘how natural is the interac-
tion?’ and ‘do you feel understood by the system
during the interactions?’ on the scale of 1 (strongly
disagree) to 5 (strongly agree), which we record as
naturalness and rationality in Figure 2 and Table 1.

Our full model performs best on Accuracy @1, natu-
ralness and rationality. We show human evaluation
examples in Table A.4.

Bird Identification The interface for bird identi-
fication task is similar to the FAQ suggestion task.
Instead of presenting a scenario, we show a bird
image to the user. The user needs to describe the
bird to find out its category, which is analogous
to writing an initial query. When answering sys-
tem questions about attributes, we allow the user
to reply ‘not visible’ if part of the bird is hidden or
occluded. Given this reply, the system stops asking
binary questions from the same label group. For
example, if a user replies ‘not visible’ to a the ques-
tion ‘does the bird has a black tail?’, then questions
such as ‘does the bird has yellow tail?” and ‘does
the bird has red tail?” will be skipped for the rest
of the interaction. At the end of the interaction,
the predicted and ground-truth bird images along
with their categories are presented to the user as
illustrated at the bottom right panel in Figure A.2.
The user fills out a questionnaire as in FAQ domain.
The bird identification task is very challenging be-
cause of its fine-grained categories, where many
bird images look almost identical while belong-
ing to different classes. Our full system improves
classification accuracy from 20% to 45% against
non-interactive baselines after less than three turns
of interaction. To better understand the task and
the model behavior, we show the confusion matrix
of the final model prediction after interaction in
Figure A.3. Of the 200 bird classes, there are 21
different kinds of sparrows and 25 different war-
bler. Most of the model errors are due to mistakes
between these fine-grained bird classes. Figure A.4
shows how the confusion matrix changes when
adding the interaction. The model makes improve-
ment in distinct and also similar bird types.
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Text Input Init Query Init Query + Tags Init + Paraphrase Query Full Data
init query  tags | Acc@l Acc@3 Acc@1 Acc@3 Acc@1 Acc@3 Acc@] Acc@3
v X 0.28 0.47 0.32 0.51 0.35 0.60 0.38 0.61
X 4 0.31 0.50 0.57 0.79 0.56 0.74 0.70 0.87
v v 0.36 0.58 0.55 0.79 0.63 0.81 0.76 0.91

Table A.2: Comparison of text encoders trained on different textual inputs and evaluated on three different predic-
tion tasks. The model uses (a) the initial queries, (b) all attribute tags, or (c) both initial queries and tags as text
inputs to predict the target. Each model is evaluated using Accuracy @{1, 3}.

FAQ Suggestion

Bird Identification

RNN |, RNN + attention , RoBERTagase | RNN , RNN + attention , RoOBERTagase
No Interaction 38% 39% 30% 23% 23% 17%
Random Interaction 39% 38% 31% 25% 24% 17%
No Initial Query Interaction 46% 41% 37% 29% 29% 21%
Our Approach w/ threshold 72% 73% 54% 41% 38% 33%
Our Approach w/ fixed turn 1% 68% 47% 39% 37% 32%
Our Approach w/ A = 1 66% 67% 52% 40% 37% 32%

Table A.3: Accuracy@1 of our system with three different encoders. For all experiments, maximal number of

turns is set to five.

U: How can I text my friends house phone?
S:  Text message to landline?
U:  Yes.
S: Do you want to send or receive text?
U:  Yes.
S:  Please read: How do I send a text message to landline?
U: D’'min sprint’s one up and want to upgrade my phone.
S: Do you want annual upgrade option?
U:  Yes.
S: Do you want to exercise an option?
U:  Yes.
S:  Please read: I am enrolled in Sprint One Up. How do I exercise my annual upgrade option?
U: Battery ran out immediately.
S:  How can I help you with your phone device?
App or feature information; Fee and charge; Troubleshooting; Not applicable
U:  Troubleshooting.
S:  Are you using mobile wifi hotspot?
U:  Yes.
S:  Please read: Does using my phone as a mobile Wi-Fi hotspot drain my battery?

Table A.4: Three examples of user interactions from the FAQ suggestion human evaluation.
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Scenario
You would like to use your phone as hotspot for your
laptop for some urgent work, but you are worried it
gonna cost you lots of money.

Model Predicted FAQ

Groundtruth

Bird image

Help Page

Model Predicted Bird Type

an example image

Correct Bird Type

Use phone as wifi hotspot

How can | help you with your phone Scenario

device? You would like to use your phone as hotspot for your
1. app or feature information laptop for some urgent work, but you are worried it
2. fee and charge gonna cost you lots of money.

3. troubleshoot device

4. not applicable

Does you want to use phone as
mobile wifi hotspot
m Model Predicted FAQ

FAQs related to Wi-Fi hotspots on your samsung, Does it
Here is the solution: FAQs refated to cost more to use my samsung as a mobile Wi-Fi
Wi-Fi hotspots on your samsung, hotspot?
Does it cost more to use my samsung
as a mobile Wi-Fi hotspot?

Groundtruth
FAQs related to Wi-Fi hotspots on your samsung, Does it
cost more to use my samsung as a mobile Wi-Fi

a o
yellow bird with grey crown
black eyes

Does the bird have yellow throat color

Bird image

Does the bird have yellow forehead
color ?

Whatis the bird breast pattern?
1. solid

2. spotted

3. striped

4. multi-colored

Help Page

This bird is a: nashville warbler

Model Predicted Bird Type
nashville warbler

an example image

Correct Bird Type
nashville warbler

Figure A.2: The user interface for FAQ Suggestion (top) and Bird Identification (bottom) tasks. The left panel
shows the interface at the beginning of the interaction and the right panel shows the interface at the end of the
interaction.
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black footed albatross
sooty albatross

crested auklet - "8,
parakeet auklet -
brewer blackbird -
rusty blackbird -

ol
lazuli bunting -
rdinal -

gray catbird -
towhee -

yellow billed cuckoo -
purple finch -

acadian flycatcher -

least flycatcher -

scissor tailed flycatcher -
yellow bellied flycatcher -
n fuimar -

oldfinch -
grackle -
ed grebe -

western grebe -

evening grosbeak -

rose breasted grosbeak -
california gul

hert
american
boat talle:

anna hummingbird
rufous hummingbir
long tailed jaeger

ivory gull -
slaty backed gull -

green jay -
tropical kingbird -

belted kingfisher -

pied kingfisher -

white breasted kingfisher -
horned lark -

mallard -

hooded merganser -

grasshopper sparrow -
henslow sparrow -

vesper sparrow -
wihite throated sparrow -
bank swallow -

Cliff swallow -

scarlet tanager -

artic tern -
caspian tern -
legant tern -
least te;
n thrasher -
black capped vireo -
philadelphia vireo =
arbling vireo -
yellow throated vireo -
black and white warbler -
lue winged warbler -
may warbler -
chestnut sided warbler -
oded warbler -
magnolia warbler -
myrtle warbler -
orange crowned warbler -
ine warbler -

te
worm eating warbler -
northern waterthrush -
bohemian waxwing -
american three toed woodpecker
red beihed woodpecker -
red headed woodpecker
ewick wren -
carolina wren
marsh wren -
Vinter wren -
SEEZTEEEE
EBRg85%8:
SE8S85:2s
cevfs BEZ
ggzg = 2
28585 g
ER

pelagic cormorant -

harris sparrow

brewer sparrow

fox sparrow

savannah sparrow
nelson sharp tailed sparrow
field sparrow

black throated sparrow
chipping sparrow
white crowned sparrow
white throated sparrow
seaside sparrow

baird sparrow

house sparrow

le conte sparrow
henslow sparrow
vesper sparrow

tree sparrow

clay colored sparrow
song sparrow

lincoln sparrow
grasshopper sparrow

brown creeper -

SZSECBSgESS8E82%
EESeS "3E95ESE: T §
53582 SoEpEf2E ¢
587 zdzg "g°® 8
S582: 2% H

g s2

belted kingfisher -
ringed kingfisher -

hormed lark -
western meadowlark -

mockingbird -

white breasted nuthatch -

orchard oriole -

brown pelican -

2EEUE S
EEBEEE
RS2
e by
Efzil
£5°°

grasshopper sparron -

le conte sparrow -
savannah sparrow -

‘white throated sparrow -

bam swallow -
scarlet tanager -

black ter -
elegant tem -

green tailed towhee -

black capped vireo -

yellow throated vireo -
black throated blue warbler -

cape may warbler -
golden winged warbler -

‘magnolia warbler -
nashville warbler -

pine warbler -
swainson warbler -
wiorm eating warbler -
louisiana waterthrush -

american three toed woodpecker -

ed cockaded woodpecker -

bewick wren -

house wren -

winter wren -_a®

cape may warbler
golden winged warbler
yellow warbler
magnolia warbler
chestnut sided warbler
bay breasted warbler
palm warbler

myrtle warbler

cerulean warbler
orange crowned warbler
prairie warbler
prothonotary warbler
black and white warbler
black throated blue warbler
kentucky warbler
nashville warbler

worm eating warbler
canada warbler
mourning warbler
swainson warbler

pine warbler

hooded warbler

wilson warbler
tennessee warbler

blue winged warbler

Figure A.3: Confusion matrix of our final output for bird identification task.
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black footed albatross - 20
sooty albatross
rested auklet

parakeet auklet
brewer blackbird - 3

rusty blackbird -
bobolink - l"h

lazuli bunting -
cardinal -

gray catbird - 3
‘eastern towhee -
dt cormorant -
pelagic cormorant -
Shiny cowbird -
merican crow -
black billed cuckoo -
yellow billed cuckoo - (] 15
purple finch -
acadian flycatcher -
least flycatcher -
scissor tailed flycatcher - =
yellow bellied flycatcher -
ern fuimar - .
american goldfinch - "
boat tailed grackle -
- "

western grebe - "

evening grosbeak -

rose breasted grosbeal "-"H.
california gul
heermann gul

ivory gull
slaty backed gull
anna

rufous hummingbird

long tailed jaeger - .
biue jay - .

green jay - .

tropical kingbird - ' 3

pied kingfisher -
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horned lark -
mallard -
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mocki
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baltimore oriole - .'\-_-
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‘ovenbird - ",
white pelican - " -5
Sayornis -
whip poor will - 2
mon raven -
american redstart -
loggerhead shrike -
baird sparrow -
brewer sparrow -
clay colored sparrow -
field sparrow -
grasshopper sparrow -
henslow sparrovi -
lincoln sparrow -
savannah sparrow -

yellow throated vireo -
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wiorm eating warbler -

northern waterthrush -

bohemian waxwing -
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red bellied woodpecker -
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carolina wren -
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winter wren - 10
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Figure A.4: Confusion matrix difference between the initial query with and without the interactions. High values
along the diagonal and low values elsewhere are good.
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