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Abstract

Variational Autoencoder (VAE) is widely used
as a generative model to approximate a
model’s posterior on latent variables by com-
bining the amortized variational inference and
deep neural networks. However, when paired
with strong autoregressive decoders, VAE of-
ten converges to a degenerated local optimum
known as “posterior collapse”. Previous ap-
proaches consider the Kullback–Leibler diver-
gence (KL) individual for each datapoint. We
propose to let the KL follow a distribution
across the whole dataset, and analyze that it is
sufficient to prevent posterior collapse by keep-
ing the expectation of the KL’s distribution
positive. Then we propose Batch Normalized-
VAE (BN-VAE), a simple but effective ap-
proach to set a lower bound of the expectation
by regularizing the distribution of the approxi-
mate posterior’s parameters. Without introduc-
ing any new model component or modifying
the objective, our approach can avoid the pos-
terior collapse effectively and efficiently. We
further show that the proposed BN-VAE can
be extended to conditional VAE (CVAE). Em-
pirically, our approach surpasses strong autore-
gressive baselines on language modeling, text
classification and dialogue generation, and ri-
vals more complex approaches while keeping
almost the same training time as VAE.

1 Introduction

Variational Autoencoder (VAE) (Kingma and
Welling, 2014; Rezende et al., 2014)is one of the
most popular generative framework to model com-
plex distributions. Different from the Autoencoder
(AE), VAE provides a distribution-based latent rep-
resentation for the data, which encodes the input
x into a probability distribution z and reconstructs
the original input using samples from z. When

*This work was done when Qile Zhu was an intern at
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inference, VAE first samples the latent variable
from the prior distribution and then feeds it into
the decoder to generate an instance. VAE has been
successfully applied in many NLP tasks, including
topic modeling (Srivastava and Sutton, 2017; Miao
et al., 2016; Zhu et al., 2018), language modeling
(Bowman et al., 2016), text generation (Zhao et al.,
2017b) and text classification (Xu et al., 2017).

An autoregressive decoder (e.g., a recurrent neu-
ral network) is a common choice to model the
text data. However, when paired with strong au-
toregressive decoders such as LSTMs (Hochreiter
and Schmidhuber, 1997) and trained under conven-
tional training strategy, VAE suffers from a well-
known problem named the posterior collapse or
the KL vanishing problem. The decoder in VAE
learns to reconstruct the data independent of the
latent variable z, and the KL vanishes to 0.

Many convincing solutions have been proposed
to prevent posterior collapse. Among them, fixing
the KL as a positive constant is an important di-
rection (Davidson et al., 2018; Guu et al., 2018;
van den Oord et al., 2017; Xu and Durrett, 2018;
Tomczak and Welling, 2018; Kingma et al., 2016;
Razavi et al., 2019). Some change the Gaussian
prior with other distributions, e.g., a uniform prior
(van den Oord et al., 2017; Zhao et al., 2018) or
a von Mises-Fisher (vMf) distribution (Davidson
et al., 2018; Guu et al., 2018; Xu and Durrett, 2018).
However, these approaches force the same constant
KL and lose the flexibility to allow various KLs for
different data points (Razavi et al., 2019). With-
out changing the Gaussian prior, free-bits (Kingma
et al., 2016) adds a threshold (free-bits) of the KL
term in the ELBO object and stops the optimiza-
tion of the KL part when its value is smaller than
the threshold. Chen et al. (2017) point out that
the objective of free-bits is non-smooth and suffers
from the optimization challenges. δ-VAE (Razavi
et al., 2019) sets the parameters in a specific range
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to achieve a positive KL value for every latent di-
mension, which may limit the model performance.

Other work analyzes this problem form a view
of optimization (Bowman et al., 2016; Zhao et al.,
2017a; Chen et al., 2017; Alemi et al., 2018). Re-
cently, He et al. (2019) observe that the inference
network is lagging far behind the decoder during
training. They propose to add additional train-
ing loops for the inference network only. Li et al.
(2019) further propose to initialize the inference
network with an encoder pretrained from an AE
objective, then trains the VAE with the free-bits.
However, these two methods are much slower than
the original VAE.

The limitation of the constant KL and the high
cost of additional training motivate us to seek an
approach that allows flexible modeling for differ-
ent data points while keeping as fast as the orig-
inal VAE. In this paper, instead of considering
the KL individually for each data point, we let
it follow a distribution across the whole dataset.
We demonstrate that keeping a positive expecta-
tion of the KL’s distribution is sufficient to pre-
vent posterior collapse in practice. By regulariz-
ing the distribution of the approximate posterior’s
parameters, a positive lower bound of this expec-
tation could be ensured. Then we propose Batch
Normalized-VAE (BN-VAE), a simple yet effec-
tive approach to achieving this goal, and discuss
the connections between BN-VAE and previous
enhanced VAE variants. We further extend BN-
VAE to the conditional VAE (CVAE). Last, experi-
mental results demonstrate the effectiveness of our
approach on real applications, including language
modeling, text classification and dialogue genera-
tion. Empirically, our approach surpasses strong au-
toregressive baselines and is competitive with more
sophisticated approaches while keeping extremely
higher efficiency. Code and data are available at
https://github.com/valdersoul/bn-vae.

2 Background and Related Work

In this section, we first introduce the basic back-
ground of VAE, then we discuss the lagging prob-
lem (He et al., 2019). At last, we present more
related work.

2.1 VAE Background

VAE (Kingma and Welling, 2014; Rezende et al.,
2014) aims to learn a generative model p(x, z) to
maximize the marginal likelihood log p(x) on a

dataset. The marginal likelihood cannot be calcu-
lated directly due to an intractable integral over the
latent variable z. To solve this, VAE introduces a
variational distribution qφ(z|x) which is parameter-
ized by a complex neural network to approximate
the true posterior. Then it turns out to optimize the
ELBO of log p(x):

L = Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)||p(z)),
(1)

where φ represents the inference network and θ
denotes the decoder. The above first term is the
reconstruction loss, while the second one is the KL
between the approximate posterior and the prior.
The Gaussian distribution N ∼ (0, I) is a usual
choice for the prior, and the KL between the ap-
proximate posterior qφ(z|x) and the prior p(z) can
be computed as:

KL =
1

2

n∑
i=1

(µ2
i + σ2

i − log σ2
i − 1), (2)

where µi and σi is the mean and standard devi-
ation of approximate posterior for the ith latent
dimension, respectively. When the decoder is au-
toregressive, it can recover the data independent of
the latent z (Bowman et al., 2016). The optimiza-
tion will encourage the approximate posterior to
approach the prior which results to the zero value
of the KL.

2.2 The Lagging Problem

Recently, He et al. (2019) analyze posterior col-
lapse with the Gaussian prior from a view of train-
ing dynamics. The collapse is a local optimum
of VAE when qφ(z|x) = pθ(z|x) = p(z) for all
inputs. They further define two partial collapse
states: model collapse, when pθ(z|x) = p(z), and
inference collapse, when qφ(z|x) = p(z). They ob-
serve that the inference collapse always happens far
before the model collapse due to the existence of
autoregressive decoders. Different from the model
posterior, the inference network lacks of guidance
and easily collapses to the prior at the initial stage
of training, and thus posterior collapse happens.
Based on this understanding, they propose to ag-
gressively optimize the inference network. How-
ever, this approach cost too much time compared
with the original VAE. In our work, we also employ
the Gaussian prior and thus suffer from the same
lagging problem. Yet, our proposed approach does

https://github.com/valdersoul/bn-vae
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not involve additional training efforts, which can
effectively avoid the lagging problem (Section 3.3)
and keep almost the same training efficiency as the
original VAE (Section 5.1). More details can be
found in Section 3.3.

2.3 Related Work

To prevent posterior collapse, we have mentioned
many work about changing the prior in the introduc-
tion. Besides these approaches, some work mod-
ifies the original training objective directly. For
example, Bowman et al. (2016) introduce an an-
nealing strategy, where they slightly increase the
weight of KL from 0 to 1 during the warm-up pe-
riod. β-VAE (Higgins et al., 2017) treats the KL
weight as a hyperparameter to constrain the mini-
mum value of the KL. Alemi et al. (2017), on the
other hand, set a fixed KL weight to control the mu-
tual information between z and x. Tolstikhin et al.
(2018) leverage the wasserstein distance to replace
the KL. Zhao et al. (2017a) replace the KL with
maximum mean discrepancy. Fang et al. (2019) in-
troduce sample-based representations which lead to
implicit latent features with an auxiliary network.

Some change the training strategy. Kim et al.
(2018) address the amortization gap (Cremer et al.,
2018) in VAE and propose Semi-Amortized VAE
to compose the inference network with additional
mean-field updates. Fu et al. (2019) propose a cycli-
cal annealing schedule, which repeats the process
of increasing β multiple times.

There are various other approaches to solve the
posterior collapse. For example, some researchers
choose to weaken the decoder by replacing the
LSTM decoder with convolution neural networks
without autoregressive modeling (Semeniuta et al.,
2017; Yang et al., 2017). Chen et al. (2017) input
a lossy representation of data to the autoregressive
decoder and enforce z to capture the information
about the original input. Inheriting this idea, some
following work add direct connections between
z and x (Zhao et al., 2017b; Dieng et al., 2019).
Ma et al. (2019) introduce an additional regulariza-
tion to learn diverse latent representation. δ-VAE
(Razavi et al., 2019) and free-bits (Kingma et al.,
2016) set a minimum number of KL for each latent
dimension to prevent the posterior collapse.

Srivastava and Sutton (2017, 2018) find that us-
ing ADAM (Kingma and Ba, 2014) with a high
learning rate to train VAE may cause the gradients
to diverge early. Their explanation for the diverg-

ing behavior lies in the exponential curvature of
the gradient from the inference network which pro-
duces the variance part of the approximate posterior.
Then they apply batch normalization to the variance
part to solve this problem. We use the simple SGD
without momentum to train our model. Moreover,
we apply batch normalization to the mean part of
the inference network to keep the expectation of
the KL’s distribution positive, which is different
from their work. We also find that Sønderby et al.
(2016) utilize batch normalization in all fully con-
nected layers with nonlinear activation functions
to improve the model performance. Different from
it, our approach directly applies batch normaliza-
tion to the parameters of the approximate posterior,
which is the output of the inference network.

3 Batch-Normalized VAE

In this section, we first derive the expectation of
the KL’s distribution and show that it is enough to
avoid posterior collapse by keeping the expectation
of the KL’s distribution positive. Then we pro-
pose our regularization method on the parameters
of the approximate posterior to ensure a positive
lower bound of this expectation. We further discuss
the difference between our approach and previous
work.

3.1 Expectation of the KL’s Distribution

Given an x ∈ X , the inference network
parametrizes a n-dimension diagonal Gaussian dis-
tribution with its mean µ = fµ(x) and diagonal
covariance Σ = diag(fΣ(x)), where fµ and fΣ

are two neural networks. In practice, the ELBO is
computed through a Monte Carlo estimation from
b samples. The KL in Eq. 2 is then computed over
b samples from X :

KL =
1

2b

b∑
j=1

n∑
i=1

(µ2
ij + σ2

ij − log σ2
ij − 1)

=
1

2

n∑
i=1

(

∑b
j=1 µ

2
ij

b
+

∑b
j=1 σ

2
ij

b

−
∑b

j=1 log σ
2
ij

b
− 1). (3)

When b gets larger, the above empirical value will
approach the mean of the KL across the whole
dataset.

To make use of this observation, we assume that
µi and log σ2

i for each latent dimension i follow
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a certain distribution with a fixed mean and vari-
ance across the dataset respectively. The distri-
bution may vary between different latent dimen-
sions. In this way, the KL turns to a distribu-
tion of µi’s and log σ2

i ’s. From Eq. 3, we can
see that

∑b
j=1 µ

2
ij/b is the sample mean of µ2

i ,
which converges to E[µ2

i ] = Var[µi] + E2[µi].
Similarly,

∑b
j=1 σ

2
ij/b converges to E[σ2

i ], and∑b
j=1 log σ

2
ij/b to E[log σ2

i ]. Thus, we can derive
the expectation of the KL’s distribution as:

E[KL] =
1

2

n∑
i=1

(Var[µi] + E2[µi]

+ E[σ2
i ]− E[log σ2

i ]− 1)

≥ 1

2

n∑
i=1

(Var[µi] + E2[µi]), (4)

where E[σ2
i − log σ2

i ] ≥ 1 since the minimum of
ex − x is 1. If we can guarantee a positive lower
bound of E[KL], we can then effectively prevent
the posterior collapse.

Based on Eq. 4, the lower bound is only depen-
dent on the number of latent dimensions n and µi’s
mean and variance. This motivates our idea that
with proper regularization on the distributions of
µi’s to ensure a positive lower bound of E[KL].

3.2 Normalizing Parameters of the Posterior
The remaining key problem is to construct proper
distributions of µi’s that can result in a positive
lower bound of E[KL] in Eq. 4. Here, we propose
a simple and efficient approach to accomplish this
by applying a fixed batch normalization on the out-
put of the inference network (µi). Batch Normal-
ization (BN) (Ioffe and Szegedy, 2015) is a widely
used regularization technique in deep learning. It
normalizes the output of neurons and makes the op-
timization landscape significantly smoother (San-
turkar et al., 2018). Different from other tasks that
apply BN in the hidden layers and seek fast and
stable training, here we leverage BN as a tool to
transform µi into a distribution with a fixed mean
and variance. Mathematically, the regularized µi is
written by:

µ̂i = γ
µi − µBi
σBi

+ β, (5)

where µi and µ̂i are means of the approximate pos-
terior before and after BN. µBi and σBi denote the
mean and standard deviations of µi. They are bi-
ased estimated within a batch of samples for each

dimension indecently. γ and β are the scale and
shift parameter. Instead of using a learnable γ in
Eq. 5, we use a fixed BN which freezes the scale γ.
In this way, the distribution of µi has the mean of β
and the variance of γ2. β is a learnable parameter
that makes the distribution more flexible.

Now, we derive the lower bound of E[KL] by
using the fixed BN. With the fixed mean β and
variance γ2 for µi in hand, we get a new lower
bound as below:

E[KL] ≥ 1

2

n∑
i

(Var[µi] + E2[µi])

=
n · (γ2 + β2)

2
. (6)

To this end, we can easily control the lower bound
of E[KL] by setting γ. Algorithm 1 shows the
training process.

Algorithm 1 BN-VAE training.

1: Initialize φ and θ.
2: for i = 1, 2, · · · Until Convergence do
3: Sample a mini-batch x.
4: µ, log σ2 = fφ(x).
5: µ′ = BNγ,β(µ).
6: Sample z ∼ N (µ′, σ2) and reconstruct x

from fθ(z).
7: Compute gradients gφ,θ ← ∇φ,θL(x;φ, θ).

8: Update φ, θ using gφ,θ.
9: end for

3.3 Connections with Previous Approaches

Constructing a positive KL: Both free-bits
(Kingma et al., 2016) and δ-VAE (Razavi et al.,
2019) set a threshold on the KL value. Free-bits
changes the KL term in the ELBO to a hinge loss
term:

∑n
i max(λ,KL(qφ(zi|x)||p(zi))). Another

version of free-bits is to apply the threshold to the
entire sum directly instead of the individual value.
Training with the free-bits objective, the model will
stop to drive down the KL value when it is already
below λ. However, Chen et al. (2017) point out that
the objective of free-bits is non-smooth and suffers
from the optimization challenges. Our approach
does not face the optimization problem since we
use the original ELBO objective.
δ-VAE sets a target rate of δ for each latent di-

mension by constraining the mean and variance of
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the approximate posterior:

σq = σlq + (σuq − σlq)
1

1 + e−qφ(x)
, (7)

µ = 2δ + 1 + ln(σ2
q )− σ2

q +max(0, µφ(x)),

(8)

where [σl, σu] are the feasible interval for σq by
solving ln(σ2

q )−σ2
q+2δ+1 ≥ 0. Although δ-VAE

can ensure a minimum value for the KL, it limits
the model performance due to that the parameters
are constrained in the interval. Our approach only
constrains the distributions of µ, which is more
flexible than δ-VAE. Experiments further show that
our approach surpass both free-bits and δ-VAE.
Reducing inference lag: As we focus on the set-
ting of the conventional Gaussian prior, the lagging
problem mentioned in Section 2.2 is crucial. To
this point, it is beneficial to analyze an alternate
form of the ELBO:

L = log pθ(x)−KL(qφ(z|x)||pθ(z|x)). (9)

With this view, the only goal of the approximate
posterior qφ(z|x) is to match the model posterior
pθ(z|x). We examine the performance of our ap-
proach to reduce inference lag using the same syn-
thetic experiment in He et al. (2019). Details can
be found in Section 1 of the Appendix. The syn-
thetic experiment indicates that our approach with
the regularization is beneficial to rebalance the op-
timization between inference and generation, and
finally overcomes posterior collapse. We also pre-
fer a large γ due to that a small γ will push the
approximate posterior to the prior. More details
on the synthetic experiment can be found in the
Appendix.

4 Extension to CVAE

Given an observation x and its output y, CVAE
(Sohn et al., 2015; Zhao et al., 2017b) models the
conditional distribution p(y|x). The variational
lower bound of the conditional log-likelihood is:

L = Eqφ(z|x,y)[log pκ(y|x, z)]
−KL(qφ(z|x,y)||pθ(z|x))
≤ log p(y|x). (10)

Different from VAE, the prior pθ(z|x) in CVAE is
not fixed, which is also parametrized by a neural
network. It is possible to apply another BN on the

mean of the prior with a different γ so that the ex-
pectation of the KL becomes a constant. However,
this lower bound is uncontrollable due to the den-
sity of µ1 + µ2 is the convolution of their densities,
which is intractable. 1

To overcome this issue, we propose to con-
strain the prior with a fixed distribution. We
achieve it by adding another KL between the
prior and a known Gaussian distribution r(z), i.e.
KL(pθ(z|x)||r(z)). Instead of optimizing the
ELBO in Eq. 10, we optimize a lower bound of
the ELBO for CVAE:

L′ = L −KL(pθ(z|x)||r(z)) ≤ L. (11)

The KL term in the new bound is the sum of
KL(qφ(z|x,y)||pθ(z|x)) and KL(pθ(z|x)||r(z)),
which can be computed as:

KL =
1

2

n∑
i=1

(
σ2
qi + (µqi − µpi)2

σ2
pi

+ σ2
pi + µ2

pi − logσ2
qi − 1), (12)

where σq, µq and σp, µp are the parameters of qφ
and pθ respectively. n denotes the hidden size.
The KL term vanishes to 0 when and only when
qφ and pθ collapse to r(z), which is the normal
distribution. As we explained in Section 3.2, KL
won’t be 0 when we apply BN in qφ. We then prove
that when qφ collapses to pθ, the KL term is not the
minima (details in Section 2 of the Appendix) so
that KL(qφ(z|x,y)||pθ(z|x)) won’t be 0. In this
way, we can avoid the posterior collapse in CVAE.
Algorithm 2 shows the training details.

Algorithm 2 BN-CVAE training.

1: Initialize φ, θ and κ.
2: for i = 1, 2, · · · Until Convergence do
3: Sample a mini-batch x,y.
4: µq, log σ2

q = fφ(x,y) and µp, log σ2
p =

fθ(x).
5: µ′q = BNγ,β(µq).
6: Sample z ∼ N (µ′q, σ

2
q ) and reconstruct y

from fκ(z,x).
7: Compute gradients gφ,θ,κ ← ∇φ,θ,κL′.
8: Update φ, θ, κ using gφ,θ,κ.
9: end for

1We perform empirical study on this method and find that
the neural network can always find a small KL value in this
situation.
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Yahoo Yelp
Model NLL KL MI AU NLL KL MI AU

Without a pretrained AE encoder
CNN-VAE ≤332.1 10.0 - - ≤359.1 7.6 - -
LSTM-LM 328 - - - 351.1 - - -

VAE 328.6 0.0 0.0 0.0 357.9 0.0 0.0 0.0
β-VAE (0.4) 328.7 6.3 2.8 8.0 358.2 4.2 2.0 4.2

cyclic ∗ 330.6 2.1 2.0 2.3 359.5 2.0 1.9 4.1
Skip-VAE ∗ 328.5 2.3 1.3 8.1 357.6 1.9 1.0 7.4

SA-VAE 327.2 5.2 2.7 9.8 355.9 2.8 1.7 8.4
Agg-VAE 326.7 5.7 2.9 15.0 355.9 3.8 2.4 11.3

FB (4) 331.0 4.1 3.8 3.0 359.2 4.0 1.9 32.0
FB (5) 330.6 5.7 2.0 3.0 359.8 4.9 1.3 32.0

δ-VAE (0.1) ∗ 330.7 3.2 0.0 0.0 359.8 3.2 0.0 0.0
vMF-VAE (13) ∗ 327.4 2.0 - 32.0 357.5 2.0 - 32.0
BN-VAE (0.6) ∗ 326.7 6.2 5.6 32.0 356.5 6.5 5.4 32.0
BN-VAE (0.7) ∗ 327.4 8.8 7.4 32.0 355.9 9.1 7.4 32.0

With a pretrained AE encoder
cyclic ∗ 333.1 25.8 9.1 32.0 361.5 20.5 9.3 32.0
FB (4) ∗ 326.2 8.1 6.8 32.0 356.0 7.6 6.6 32.0

δ-VAE (0.15) ∗ 331.0 5.6 1.1 11.2 359.4 5.2 0.5 5.9
vMF-VAE (13) ∗ 328.4 2.0 - 32.0 357.0 2.0 - 32.0
BN-VAE (0.6) ∗ 326.7 6.4 5.8 32.0 355.5 6.6 5.9 32.0
BN-VAE (0.7) ∗ 326.5 9.1 7.6 32.0 355.7 9.1 7.5 32.0

Table 1: Results on Yahoo and Yelp datasets. We report mean values across 5 different random runs. ∗ indicates
the results are from our experiments, while others are from He et al. (2019); Li et al. (2019). We only show the best
performance of every model for each dataset. More results on various parameters can be found in the Appendix.

5 Experiments

5.1 VAE for Language Modeling
Setup: We test our approach on two benchmark
datasets: Yelp and Yahoo corpora (Yang et al.,
2017). We use a Gaussian prior N (0, I), and the
approximate posterior is a diagonal Gaussian. Fol-
lowing previous work (Burda et al., 2016; He et al.,
2019), we report the estimated negative log likeli-
hood (NLL) from 500 importance weighted sam-
ples, which can provide a tighter lower bound com-
pared to the ELBO and shares the same informa-
tion with the perplexity (PPL). Besides the NLL,
we also report the KL, the mutual information (MI)
Iq (Alemi et al., 2017) and the number of activate
units (AU) (Burda et al., 2016) in the latent space.
The Iq can be calculated as:

Iq =Epd(x)[KL(qφ(z|x)||p(z))]−
KL(qφ(z)||p(z)), (13)

where pd(x) is the empirical distribution. The ag-
gregated posterior qφ(z) = Epd(x)[qφ(z|x)] and
KL(qφ(z)||p(z)) can be approximated with Monte
Carlo estimations. The AU is measured as Az =
Cov(Ez∼q(z|x)[z]). We set the threshold of 0.01,
which means if Azi > 0.01, the unit i is active.
Configurations: We use a 512-dimension word
embedding layer for both datasets. For the encoder
and the decoder, a single layer LSTM with 1024

hidden size is used. We use z to generate the initial
state of the encoder following Kim et al. (2018);
He et al. (2019); Li et al. (2019). To optimize the
objective, we use mini-batch SGD with 32 samples
per batch. We use one NVIDIA Tesla v100 for the
experiments. For all experiments, we use the linear
annealing strategy that increases the KL weight
from 0 to 1 in the first 10 epochs if possible.
Compared methods: We compare our model with
several strong baselines and methods that hold the
previous state-of-the-art performance on text mod-
eling benchmarks.
• Baselines, including neural autoregressive mod-
els (the LSTM language model).
• Methods with weakening the decoder: CNN-
VAE (Yang et al., 2017).
• Methods with a modified model structure: Skip-
VAE (Dieng et al., 2019).
• Methods with a modified training objective:

– VAE with annealing (Bowman et al., 2016).
– β-VAE (Higgins et al., 2017).
– Cyclic annealing (Fu et al., 2019), we use the

default cyclic schedule.
• Methods with a lower bound for KL values:

– Free-bits (FB) (Kingma et al., 2016).
– δ-VAE (Razavi et al., 2019).
– vMF-VAE (Xu and Durrett, 2018)

• Methods with a modified training strategy.
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Yahoo Yelp
Model Hours Ratio Hours Ratio
VAE 3.83 1.00 4.50 1.00
SA-VAE 52.99 12.80 59.37 12.64
Agg VAE 11.76 2.84 21.44 4.56
AE+FB 7.70 2.01 9.22 2.05
BN-VAE 3.98 1.04 4.60 1.02

Table 2: Comparison of training time to convergence.
We report both the absolute hours and relative speed.

– Semi-amortized VAE (SA-VAE) (Kim et al.,
2018).

– VAE with an aggressive training (Agg-VAE)
(He et al., 2019).

– FB with a pretrained inference network
(AE+FB) (Fu et al., 2019)

Main results: Table 1 shows the results. We fur-
ther split the results into two different settings, one
for models with a pretrained inference network and
one without it. Our approach achieves the best
NLL in the setting without a pretrained inference
network on both datasets and is competitive in the
setting with a pretrained encoder. Moreover, we
can observe that:

• δ-VAE does not perform well in both settings,
which shows that constraining the parameters in
a small interval is harmful to the model. In vMF-
VAE, data points share the same KL value. Our
approach is flexible and gets better performance.
• Although Agg-VAE and SA-VAE both get good
performance, they require additional updates on the
inference network and cost more training efforts,
which are validated in the next part.
• Cyclic annealing with a pretrained inference net-
work achieves the highest KL, but it may not be a
good generative model.
• Paired with a pretrained inference network, all
methods except cyclic annealing can someway
boost the performance. This phenomenon indicates
that the lagging problem (He et al., 2019) is im-
portant in VAE training. When leveraging the pre-
trained inference network, our approach achieves
the smallest performance gap compared with other
methods. In other words, our approach can allevi-
ate the lagging problem efficiently.

Training time: Table 2 shows the training time
(until convergence) and the relative ratio of the
basic VAE, our approach and the other best three
models in Table 1. SA-VAE is about 12 times
slower than our approach due to the local update
for each data point. Agg-VAE is 2-4 times slower

#label 100 500 1k 2k 10k
AE 81.1 86.2 90.3 89.4 94.1
VAE 66.1 82.6 88.4 89.6 94.5
δ-VAE 61.8 61.9 62.6 62.9 93.8
Agg-VAE 80.9 85.9 88.8 90.6 93.7
cyclic 62.4 75.5 80.3 88.7 94.2
FB (9) 79.8 84.4 88.8 91.12 94.7
AE+FB (6) 87.6 90.2 92.0 93.4 94.9
BN-VAE (0.7) 88.8 91.6 92.5 94.1 95.4

Table 3: Accuracy on Yelp.

Model CVAE CVAE (BOW) BN-VAE
PPL 36.40 24.49 30.67
KL 0.15 9.30 5.18
BLEU-4 10.23 8.56 8.64
A-bow Prec 95.87 96.89 96.64
A-bow Recall 90.93 93.95 94.43
E-bow Prec 86.26 83.55 84.69
E-bow Recall 77.91 81.13 81.75

Table 4: Comparison on dialogue generation.

than ours because it requires additional training
for the inference network. AE+FB needs to train
an autoencoder before the VAE. However, our ap-
proach is fast since we only add one-layer batch
normalization, and thus the training cost is almost
the same as the basic VAE. More results about the
training behavior can be found in Section 3 of the
Appendix.
Performance on a downstream task - Text clas-
sification: The goal of VAE is to learn a good
representation of the data for downstream tasks.
Here, we evaluate the quality of latent representa-
tions by training a one-layer linear classifier based
on the mean of the posterior distribution. We use a
downsampled version of the Yelp sentiment dataset
(Shen et al., 2017). Li et al. (2019) further sam-
pled various labeled data to train the classifier. To
compare with them fairly, we use the same samples
in Li et al. (2019). Results are shown in Table 3.
Our approach achieves the best accuracy in all the
settings. For 10k training samples, all the methods
get a good result. However, when only using 100
training samples, different methods vary a lot in
accuracy. The text classification task shows that
our approach can learn a good latent representation
even without a pretrained inference network.

5.2 CVAE for Dialogue Generation

Setup: For dialogue generation, we test our ap-
proach in the setting of CVAE. Following previous
work (Zhao et al., 2017b), we use the Switchboard
(SW) Corpus (Godfrey and Holliman, 1997), which
contains 2400 two-sided telephone conversations.
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Fluency Relevance Informativeness
Model Avg #Accept #High Avg #Accept #High Avg #Accept #High
CVAE 2.11 (0.58) 87% 23% 1.90 (0.49) 82% 8% 1.39 (0.59) 34% 5%
CVAE (BOW) 2.08 (0.73) 84% 23% 1.86 (0.58) 75% 11% 1.54 (0.65) 46% 8%
BN-CVAE 2.16 (0.71) 88% 27% 1.92 (0.67) 80% 12% 1.54 (0.67) 43% 10%

Table 5: Human evaluation results. Numbers in parentheses is the corresponding variance on 200 test samples.

Topic: ETHICS IN GOVERNMENT
Context: have trouble drawing lines as to what’s illegal and what’s not
Target (statement): well i mean the other problem is that they’re always up for
CVAE CVAE (BOW) BN-CVAE
1. yeah 1. yeah 1. it’s not a country
2. yeah 2. oh yeah they’re not 2. it is the same thing that’s what i think is about the state is a state
3. yeah 3. no it’s not too bad 3. yeah it’s

Table 6: Sampled generated responses. Only the last sentence in the context is shown here.

We use a bidirectional GRU with hidden size 300
to encode each utterance and then a one-layer GRU
with hidden size 600 to encode previous k-1 ut-
terances as the context. The response decoder is
a one-layer GRU with hidden size 400. The la-
tent representation z has a size of 200. We use the
evaluation metrics from Zhao et al. (2017b): (1)
Smoothed Sentence-level BLEU (Chen and Cherry,
2014); (2) Cosine Distance of Bag-of-word Embed-
ding, which is a simple method to obtain sentence
embeddings. We use the pretrained Glove embed-
ding (Pennington et al., 2014) and denote the av-
erage method as A-bow and the extreme method
as E-bow. Higher values indicate more plausible
responses. We compared our approach with CVAE
and CVAE with bag-of-words (BOW) loss (Zhao
et al., 2017b), which requires the decoder in the
generation network to predict the bag-of-words in
the response y based on z.
Automatic evaluation: Table 4 shows the results
of these three approaches. From the KL values,
we find that CVAE suffers from posterior collapse
while CVAE (BOW) and our approach avoid it
effectively. For BLEU-4, we observe the same phe-
nomenon in the previous work (Fu et al., 2019;
Zhao et al., 2017b) that CVAE is slightly better
than the others. This is because CVAE tends to
generate the most likely and safe responses repeat-
edly with the collapsed posterior. As for precision,
these three models do not differ much. However,
CVAE (BOW) and our BN-VAE outperform CVAE
in recall with a large margin. This indicates that
BN-VAE can also produce diverse responses with
good quality like CVAE (BOW).
Human evaluation: We conduct the human evalu-
ation by asking five annotators from a commercial
annotation company to grade 200 sampled conver-

sations from the aspect of fluency, relevance and
informativeness on a scale of 1-3 (see Section 4 of
the Appendix for more details on the criteria). We
also report the proportion of acceptable/high scores
(≥ 2 and = 3) on each metric. Table 5 shows the
annotation results. Overall, our approach beats the
other two compared methods in relevance and flu-
ency with more informative responses. Also, our
approach has the largest proportion of responses
whose scores are High. This indicates that our
model can produce more meaningful and relevant
responses than the other two.
Case study: Table 6 shows the sampled responses
generated by the three methods (more can be found
in the Appendix). By maintaining a reasonable KL,
responses generated by our approach are more rel-
evant to the query with better diversity compared
to the other two. We test the three methods in the
simplest setting of dialogue generation. Note that
the focus of this work is to improve the CVAE itself
by avoiding its KL vanishing problem but not to
hack the state-of-the-art dialogue generation perfor-
mance. To further improve the quality of generated
responses, we can enhance our approach by incor-
porating knowledge such as dialogue acts (Zhao
et al., 2017b), external facts (Ghazvininejad et al.,
2018) and personal profiles (Zhang et al., 2018).

6 Conclusions and Future Work

In this paper, we tackle the posterior collapse prob-
lem when VAE is paired with autoregressive de-
coders. Instead of considering the KL individually,
we make it follow a distribution DKL and show
that keeping the expectation of DKL positive is
sufficient to prevent posterior collapse. We pro-
pose Batch Normalized VAE (BN-VAE), a simple
but effective approach to set a lower bound ofDKL
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by regularization the approximate posterior’s pa-
rameters. Our approach can also avoid the recently
proposed lagging problem efficiently without addi-
tional training efforts. We show that our approach
can be easily extended to CVAE. We test our ap-
proach on three real applications, language mod-
eling, text classification and dialogue generation.
Experiments show that our approach outperforms
strong baselines and is competitive with more com-
plex methods which keeping substantially faster.

We leverage the Gaussian prior as the example
to introduce our method in this work. The key to
our approach to be applicable is that we can get a
formula for the expectation of the KL. However,
it is hard to get the same formula for some more
strong or sophisticated priors, e.g., the Dirichlet
prior. For these distributions, we can approximate
them by the Gaussian distributions (such as in Sri-
vastava and Sutton (2017)). In this way, we can
batch normalize the corresponding parameters. Fur-
ther study in this direction may be interesting.
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A Appendix

A.1 Experiments on Synthetic Data

We follow the Agg-VAE and construct the synthetic
data to validate whether our approach can avoid the
lagging problem. VAE used in this synthetic task
has a LSTM encoder and a LSTM decoder. We use
a scalar latent variable because we need to compute
µx,θ which is approximated by discretization of
pθ(z|x). To visualize the training progress, we
sample 500 data points from the validation set and
show them on the mean space.

We plot the mean value of the approximate pos-
terior and the model posterior during training for
the basic VAE and BN-VAE. As shown the first
column in Fig. 1, all points have the zero mean of
the model posterior (the x-axis), which indicates
that z and x are independent at the beginning of
training. For the basic VAE, points start to spread
in the x-axis during training while sharing almost
the same y value, since the model posterior pθ(z|x)
is well learned with the help of the autoregressive
decoder. However, the inference posterior qφ(z|x)
is lagging behind pθ(z|x) and collapses to the prior
in the end. Our regularization approximated by BN,
on the other hand, pushes the inference posterior
qφ(z|x) away from the prior (p(z)) at the initial
training stage, and forces qφ(z|x) to catch up with
pθ(z|x) to minimize KL(qφ(z|x)||pθ(z|x)) in Eq.
9. As in the second row of Fig. 1, points spread in
both directions and towards the diagonal.

We also report the results on different γ’s with
different batch sizes (32 in Fig. 1). Fig. 2 shows
the training dynamics. Both settings of γ avoid
posterior collapse efficiently. A larger γ produces
more diverse µ’s which spread on the diagonal.
However, a small γ results in a small variance for
the distribution of µ, thus µ’s in the bottom row
are closer to the original (mean of the distribution).
When γ is 0, posterior collapse happens. Differ-
ent batch sizes do not diff a lot, so 32 is a decent
choice. An intuitive improvement of our method
is to automatically learn different γ for different
latent dimensions, which we leave for future work.

A.2 Proof in CVAE

The KL can be computed as:

KL =
1

2

n∑
i=1

(
σ2
qi + (µqi − µpi)2

σ2
pi

(14)

+ σ2
pi + µ2

pi − logσ2
qi − 1).

We need to prove that KL will not achieve the mini-
mum number when µpi equals to µqi and σpi equals
σqi. We take hidden size as 1 for example. The
binary function about µpi and σpi is:

fµpi,σpi = (
σ2
qi + (µqi − µpi)2

σ2
pi

(15)

+ σ2
pi + µ2

pi − logσ2
qi − 1),

the maxima and minima of fµpi,σpi must be the
stationary point of fµpi,σpi due to its continuity.
The stationary point is:

∂f

∂µpi
=

2(µpi − µqi)
σ2
pi

+ 2µpi (16)

∂f

∂σpi
=
−2(σ2

qi + (µqi − µpi)2)
σ3
pi

+ 2σpi. (17)

When µpi = µqi and σpi = σqi, both partial deriva-
tive is not 0. So it is not the stationary point of f ,
then it won’t be the minima.

A.3 Language Modeling
We investigate the training procedure for different
models. We plot the MI Iq, DKL in the ELBO and
the distance between the approximated posterior
and the prior, DKL(qφ(z)||p(z)). As in Eq. 4 in
the main paper,DKL in the ELBO is the sum of the
other two. Fig. 3 shows these three values through-
out the training. Although DKL is the upper bound
of the mutual information, we notice that the gap
is usually large. In the initial training stage, DKL

increases in the basic VAE with annealing, while
its MI remains small. With the weight decreases,
the method finally suffers from posterior collapse.
In contrast, our approach can obtain a high MI with
a small DKL value like aggressive VAE. The full
results on language modeling are in Table 8.

A.4 CVAE for dialogue generation
Human evaluation: We evaluate the generated re-
sponses from three aspects: relevance, fluency and
informativeness. Here we introduce the criteria of
the evaluation as shown in Table 7. We sample 200
conversations from the test set. For each conver-
sation, we sample three generated responses from
each model, totally 600 responses.
Case study: We report 4 examples generated from
these three models, shown in Table 9. CVAE
(BOW) and our approach both can generate diverse
responses. However, responses from ours are more
related to the context compared with the other two.
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Figure 1: Visualization of 500 sampled data from the synthetic dataset during the training. The x-axis is µx,θ, the
approximate model posterior mean. The y-axis is µx,φ, which represents the inference posterior mean. b is batch
size and γ is 1 in BN.
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Figure 2: Visualization of our BN-VAE on different γ for synthetic data.
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Figure 3: Training behavior on Yelp. Left/Middle/Right: VAE/Agg-VAE/BN-VAE (all models are with annealing).
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Table 7: Human evaluation criteria.

Fluency Relevance Informativeness

1 Point
1. Hard to understand
2. Too many syntax mistakes

Not related to the query at all
1. Generic responses.
2. Repeated query.

2 Points

1. Several syntax mistakes but
still understandable
2. short responses, e.g., Generic
responses

1. Response and query are in
the same domain/topic but
are not directly related
2. Generic responses

between 1 and 3.

3 Points
Only few syntax mistakes with
a moderate length

closely related to the query
1. Creative responses.
2. Contain new information
about the query.

Yahoo Yelp
Model NLL KL MI AU NLL KL MI AU
CNN-VAE ≤332.1 10.0 - - ≤359.1 7.6 - -
LSTM-LM 328 - - - 351.1 - - -
VAE 328.6 0.0 0.0 0.0 357.9 0.0 0.0 0.0
β-VAE (0.2) 332.2 19.1 3.3 20.4 360.7 11.7 3.0 10.0
β-VAE (0.4) 328.7 6.3 2.8 8.0 358.2 4.2 2.0 4.2
β-VAE (0.6) 328.5 0.3 0.0 1.0 357.9 0.2 0.1 3.8
β-VAE (0.8) 328.8 0.0 0.0 0.0 358.1 0.0 0.0 0.0
cyclic ∗ 330.6 2.1 2.0 2.3 359.5 2.0 1.9 4.1
Skip-VAE ∗ 328.5 2.3 1.3 8.1 357.6 1.9 1.0 7.4
SA-VAE 327.2 5.2 2.7 9.8 355.9 2.8 1.7 8.4
Agg-VAE 326.7 5.7 2.9 15.0 355.9 3.8 2.4 11.3
FB (4) 331.0 4.1 3.8 3.0 359.2 4.0 1.9 32.0
FB (5) 330.6 5.7 2.0 3.0 359.8 4.9 1.3 32.0
δ-VAE (0.1) ∗ 330.7 3.2 0.0 0.0 359.8 3.2 0.0 0.0
δ-VAE (0.15) ∗ 331.6 4.8 0.0 0.0 360.4 4.8 0.0 0.0
δ-VAE (0.2) ∗ 332.2 6.4 0.0 0.0 361.5 6.4 0.0 0.0
δ-VAE (0.25) ∗ 333.5 8.0 0.0 0.0 362.5 8.0 0.0 0.0
vMF-VAE (13) ∗ 327.4 2.0 - 32.0 357.5 2.0 - 32.0
vMF-VAE (16) ∗ 328.5 3.0 - 32.0 367.8 3.0 - 32.0
vMF-VAE (20) ∗ 329.4 4.0 – 32.0 358.0 4.0 - 32.0
vMF-VAE (23) ∗ 328.7 5.0 - 32.0 357.3 5.0 - 32.0
vMF-VAE (25) ∗ 330.1 6.0 - 32.0 357.8 6.0 - 32.0
vMF-VAE (30) ∗ 329.5 7.0 - 32.0 357.8 7.0 - 32.0
BN-VAE (0.3) ∗ 328.1 1.6 1.4 32.0 356.7 1.7 1.4 32.0
BN-VAE (0.4) ∗ 327.7 2.7 2.2 32.0 356.2 3.1 2.5 32.0
BN-VAE (0.5) ∗ 327.4 4.2 3.3 32.0 356.4 4.4 3.8 32.0
BN-VAE (0.6) ∗ 326.7 6.2 5.6 32.0 356.5 6.5 5.4 32.0
BN-VAE (0.7) ∗ 327.4 8.8 7.4 32.0 355.9 9.1 7.4 32.0
Pretrained encoder
+cyclic ∗ 333.1 25.8 9.1 32.0 361.5 20.5 9.3 32.0
+FB (2) ∗ 327.2 4.3 3.8 32.0 356.6 4.6 4.2 32.0
+FB (3) ∗ 327.1 4.5 3.9 32.0 356.3 5.8 5.2 32.0
+FB (4) ∗ 326.2 8.1 6.8 32.0 356.0 7.6 6.6 32.0
+FB (5) ∗ 326.6 8.9 7.3 32.0 356.5 9.0 7.4 32.0
+FB (6) ∗ 326.6 10.8 8.1 32.0 356.5 12.0 8.6 32.0
+FB (7) ∗ 326.6 12.1 8.5 32.0 356.8 13.4 8.9 32.0
+FB (8) ∗ 326.7 13.6 8.9 32.0 357.5 15.8 9.2 32.0
+δ-VAE (0.15) ∗ 331.0 5.6 1.1 11.2 359.4 5.2 0.5 5.9
vMF-VAE (13) ∗ 328.4 2.0 - 32.0 357.0 2.0 - 32.0
+BN-VAE (0.6) ∗ 326.7 6.4 5.8 32.0 355.5 6.6 5.9 32.0
+BN-VAE (0.7) ∗ 326.5 9.1 7.6 32.0 355.7 9.1 7.5 32.0

Table 8: Results on Yahoo and Yelp datasets. We report mean values across 5 different random runs. ∗ indicates
the results are from our experiments, while others are from previous report.



2649

Table 9: Sampled generated responses. Only the last sentence in the context is shown here.

Topic: ETHICS IN GOVERNMENT
Context: have trouble drawing lines as to what’s illegal and what’s not
Target (statement): well i mean the other problem is that they’are always up for
CVAE CVAE (BOW) BN-CVAE
1. yeah 1. yeah 1. it’s not a country

2. yeah 2. oh yeah, they’re not
2. it is the same thing that’s
what i think is about the state
is a state

3. yeah 3. no it’s not too bad 3. yeah it’s
Topic:VACATION SPOTS
Context: well i ’ ll talk to you later
Target (conventional-closing) : okay now do you push the buttons now
CVAE CVAE (BOW) BN-CVAE
1. okay bye - bye 1. okay so we’ll go ahead and start 1. okay bye - bye

2. bye
2. so i guess it depends on how much
you are you

2. nice talking to you too

3. okay bye - bye 3. it’s 3. all right take care bye - bye
Topic: RECYCLING
Context: are they doing a lot of recycling out in georgia
Target (statement-non-opinion) : well at my workplace they are we have places for
aluminum cans and we have everybody’s been unk a separate trash can for
CVAE CVAE (BOW) BN-CVAE

1. yeah
1. well that’s good for a while i’ll tell you
that you’re not doing anything at ti and
then you’re in a small town

1. well we do recycle
newspapers

2. yeah
2. oh i know i’ve got a lot of trees and
trees and stuff and

2. yes i do too

3. yeah
3. yeah it’s like you know people that
want to be unk and they’re not going
to bother you to make a mess

3. well we’re at a point where
we’re going to be a landfill
space

Topic: UNIVERSAL HEALTH INS
Context: some of the good obviously that nobody has to worry about health care
Target (statement-non-opinion) : and i guess i’ll have to help with grandchildren
one of these days i hope
CVAE CVAE (BOW) BN-CVAE

1. um - hum
1. okay well see we don’t have any
choice of any of those

1. well i hope that we should
have a balanced budget

2. uh - huh 2.um - hum 2. uh - huh
3. uh - huh 3. yeah 3. well that’s a good idea


