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Abstract

Generating multi-sentence descriptions for
videos is one of the most challenging cap-
tioning tasks due to its high requirements for
not only visual relevance but also discourse-
based coherence across the sentences in the
paragraph. Towards this goal, we propose a
new approach called Memory-Augmented Re-
current Transformer (MART), which uses a
memory module to augment the transformer
architecture. The memory module generates
a highly summarized memory state from the
video segments and the sentence history so as
to help better prediction of the next sentence
(w.r.t. coreference and repetition aspects),
thus encouraging coherent paragraph genera-
tion. Extensive experiments, human evalua-
tions, and qualitative analyses on two popular
datasets ActivityNet Captions and YouCookII
show that MART generates more coherent and
less repetitive paragraph captions than base-
line methods, while maintaining relevance to
the input video events.1

1 Introduction

In video captioning, the task is to generate a natu-
ral language description capturing the content of a
video. Recently, dense video captioning (Krishna
et al., 2017) has emerged as an important task in
this field, where systems first generate a list of tem-
poral event segments from a video, then decode
a coherent paragraph (multi-sentence) description
from the generated segments. Park et al. (2019)
simplifies this task as generating a coherent para-
graph from a provided list of segments, removing
the requirements for generating the event segments,
and focusing on decoding better paragraph cap-
tions from the segments. As noted by Xiong et al.

∗ Work done while Jie Lei was an intern and Yelong
Shen was an employee at Tencent AI Lab.

1All code is available open-source at https://github.
com/jayleicn/recurrent-transformer

(2018); Park et al. (2019), generating paragraph
descriptions for videos can be very challenging due
to the difficulties of having relevant, less redundant,
as well as coherent generated sentences.

Towards this goal, Xiong et al. (2018) proposed
a variant of the LSTM network (Hochreiter and
Schmidhuber, 1997) that generates a new sentence
conditioned on previously generated sentences by
passing the LSTM hidden states throughout the
entire decoding process. Park et al. (2019) further
augmented the above LSTM caption generator with
a set of three discriminators that score generated
sentences based on defined metrics, i.e., relevance,
linguistic diversity, and inter-sentence coherence.
Though different, both these methods use LSTMs
as the language decoder.

Recently, transformers (Vaswani et al., 2017)
have proven to be more effective than RNNs
(e.g., LSTM (Hochreiter and Schmidhuber, 1997),
GRU (Chung et al., 2014), etc.), demonstrating su-
perior performance in many sequential modeling
tasks (Vaswani et al., 2017; Zhou et al., 2018; De-
vlin et al., 2019; Dai et al., 2019; Yang et al., 2019).
Zhou et al. (2018) first introduced the transformer
model to the video paragraph captioning task, with
a transformer captioning module decoding natu-
ral language sentences from encoded video seg-
ment representations. This transformer captioning
model is essentially the same as the original trans-
former (Vaswani et al., 2017) for machine trans-
lation, except that it takes a video representation
rather than a source sentence representation as its
encoder input. However, in such design, each video
segment caption is decoded individually without
knowing the context (i.e., previous video segments
and the captions that have already been generated),
thus often leading to inconsistent and redundant
sentences w.r.t. previously generated sentences
(see Figure 3 for examples). Dai et al. (2019) rec-
ognize this problem as context fragmentation in

https://github.com/jayleicn/recurrent-transformer
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the task of language modeling, where the trans-
formers are operating on separated fixed-length
segments, without any information flow across seg-
ments. Therefore, to generate more coherent video
paragraphs, it is imperative to build a model that
can span over multiple video segments and capture
longer range dependencies.

Hence, in this work, we propose the Memory-
Augmented Recurrent Transformer (MART) model
(see Section 3 for details), a transformer-based
model that uses a shared encoder-decoder archi-
tecture augmented with an external memory mod-
ule to enable the modeling of the previous history
of video segments and sentences. Compared to
the vanilla transformer video paragraph captioning
model (Zhou et al., 2018), our first architecture
change is the unified encoder-decoder design, i.e.,
the encoder and decoder in MART use shared trans-
former layers rather than separated as in Zhou et al.
(2018); Vaswani et al. (2017). This unified encoder-
decoder design is inspired by recent transformer
language models (Devlin et al., 2019; Dai et al.,
2019; Sun et al., 2019) to prevent overfitting and
reduce memory usage. Additionally, the memory
module works as a memory updater that updates
its memory state using both the current inputs and
previous memory state. The memory state can be
interpreted as a container of the highly summarized
video segments and caption history information. At
the encoding stage, the current video segment repre-
sentation is enhanced with the memory state from
the previous step using cross-attention (Vaswani
et al., 2017). Hence, when generating a new sen-
tence, MART is aware of the previous contextual
information and can generate paragraph captions
with higher coherence and lower repetition.

Transformer-XL (Dai et al., 2019) is a re-
cently proposed transformer language model that
also uses recurrence, and is able to resolve con-
text fragmentation for language modeling (Dai
et al., 2019). Different from MART that uses
a highly-summarized memory to remember his-
tory information, Transformer-XL directly uses
hidden states from previous segments. We mod-
ify the Transformer-XL framework for video para-
graph captioning and present it as an additional
comparison. We benchmark MART on two stan-
dard datasets: ActivityNet Captions (Krishna et al.,
2017) and YouCookII (Zhou et al., 2017). Both
automatic evaluation and human evaluation show
that MART generates more satisfying results than

previous LSTM-based approaches (Xiong et al.,
2018; Zhou et al., 2019; Zhang et al., 2018) and
transformer-based approaches (Zhou et al., 2018;
Dai et al., 2019). In particular, MART can gen-
erate more coherent (e.g., coreference and order),
less redundant paragraphs without losing paragraph
accuracy (visual relevance).

2 Related Work

Video Captioning Recently, video captioning
has attracted much attention from both the com-
puter vision and the natural language process-
ing community. Methods for the task share the
same intrinsic nature of taking a video as the in-
put and outputting a language description that can
best describe the content, though they differ from
each other on whether a single sentence (Wang
et al., 2019; Xu et al., 2016; Chen and Dolan,
2011; Pasunuru and Bansal, 2017a) or multiple
sentences (Rohrbach et al., 2014; Krishna et al.,
2017; Xiong et al., 2018; Zhou et al., 2018; Gella
et al., 2018; Park et al., 2019) are generated for the
given video. In this paper, our goal falls into the
category of generating a paragraph (multiple sen-
tences) conditioned on an input video with several
pre-defined event segments.

One line of work (Zhou et al., 2018, 2019) ad-
dresses the video paragraph captioning task by de-
coding each video event segment separately into
a sentence. The final paragraph description is ob-
tained by concatenating the generated single sen-
tence descriptions. Though individual sentences
may precisely describe the corresponding event
segments, when put together the sentences often
become inconsistent and redundant. Another line
of works (Xiong et al., 2018; Gella et al., 2018) use
the LSTM decoder’s last (word) hidden state from
the previous sentence as the initial hidden state for
the next sentence decoding, thus enabling informa-
tion flow from previous sentences to subsequent
sentences. While these methods have shown better
performance than their single sentence counterpart,
they are still undesirable as the sentence-level recur-
rence is achieved at word-level, and the context his-
tory information quickly decays due to vanishing
gradients (Pascanu et al., 2013) problem. Addition-
ally, these designs also have difficulty modeling
long-term dependencies (Hochreiter et al., 2001).
In comparison, the recurrence in MART resides in
the sentence or segment level and is thus more ro-
bust to the aforementioned problems. AdvInf (Park
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et al., 2019) augments the above LSTM word-level
recurrence methods with adversarial inference, us-
ing a set of separately trained discriminators to
re-rank the generated sentences. The techniques
in AdvInf can be viewed as an orthogonal way of
generating captions with better quality.

Transformers Transformer (Vaswani et al.,
2017) is used as the basis of our approach. Dif-
ferent from RNNs (e.g., LSTM (Hochreiter and
Schmidhuber, 1997), GRU (Chung et al., 2014),
etc) that use recurrent structure to model long-term
dependencies, transformer relies on self-attention
to learn the dependencies between input words.
Transformers have proven to be more efficient and
powerful than RNNs, with superior performance
in many sequential modeling tasks, including ma-
chine translation (Vaswani et al., 2017), language
modeling/pre-training (Devlin et al., 2019; Dai
et al., 2019; Yang et al., 2019) and multi-modal rep-
resentation learning (Tan and Bansal, 2019; Chen
et al., 2019; Sun et al., 2019). Additionally, Zhou
et al. (2018) have shown that a transformer model
can generate better captions than the LSTM model.

However, transformer architectures are still un-
able to model history information well. This prob-
lem is identified in the task of language modeling as
context fragmentation (Dai et al., 2019), i.e., each
language segment is modeled individually without
knowing its surrounding context, leading to ineffi-
cient optimization and inferior performance. To re-
solve this issue, Transformer-XL (Dai et al., 2019)
introduces the idea of recurrence to the transformer
language model. Specifically, the modeling of a
new language segment in Transformer-XL is con-
ditioned on hidden states from previous language
segments. Experimental results show Transformer-
XL has stronger language modeling capability than
the non-recurrent transformer. Transformer-XL di-
rectly uses all the hidden states from the previous
segment to enable recurrence. In comparison, our
MART uses highly summarized memory states,
making it more efficient in passing useful semantic
or linguistic cues to future sentences.

3 Methods

Though our method provides a general tempo-
ral multi-modal learning framework, we focus on
the video paragraph captioning task in this paper.
Given a video V , with several temporally ordered
event segments [e1, e2, ..., eT ], the task is to gener-
ate a coherent paragraph consisting of multiple sen-
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Figure 1: Vanilla transformer video captioning
model (Zhou et al., 2018). PE denotes Positional En-
coding, TE denotes token Type Embedding.

tences [s1, s2, ..., sT ] to describe the whole video,
where sentence st should describe the content in
the segment et. In the following, we first describe
the baseline transformer that generates sentences
without recurrent architecture, then introduce our
approach – Memory-Augmented Recurrent Trans-
former (MART). Besides, we also compare MART
with the recently proposed Transformer-XL (Dai
et al., 2019) in detail.

3.1 Background: Vanilla Transformer
We start by introducing the vanilla transformer
video paragraph captioning model proposed
by Zhou et al. (2018), which is an application of the
original transformer (Vaswani et al., 2017) model
for video paragraph captioning. An overview of
the model is shown in Figure 1. The core of
the architecture is the scaled dot-product atten-
tion. Given query matrix Q ∈ RTq×dk , key matrix
K ∈ RTv×dk and value matrix V ∈ RTv×dv , the
attentional output is computed as:

A(Q,K, V ) = softmax
(
QK>√
dk

, dim=1

)
V,

where softmax(·, dim=1) denotes performing soft-
max at the second dimension of the the input. Com-
bining h paralleled scaled dot-product attention,
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Figure 2: Left: Our proposed Memory-Augmented Recurrent Transformer (MART) for video paragraph captioning.
Right: Transformer-XL (Dai et al., 2019) model for video paragraph captioning. Relative PE denotes Relative
Positional Encoding (Dai et al., 2019). SG(·) denotes stop-gradient, � denotes Hadamard product.

we obtain the multi-head attention (Vaswani et al.,
2017), we denote it as MultiHeadAtt(Q, K, V). The
attention formulation discussed above is quite gen-
eral. It can be used for various purposes, such as
self-attention (Vaswani et al., 2017) where query,
key, and value matrix are all the same, and cross-
attention (Vaswani et al., 2017) where the query
matrix is different from the key and value matrix.
In this paper, we also use multi-head attention for
memory aggregation and update, as discussed later.

The vanilla transformer video paragraph caption-
ing model has N encoder layers and N decoder
layers. At the l-th encoder layer, the multi-head
attention module takes the last layer’s hidden states
H l−1 as inputs and performs self-attention. The
attentional outputs are then projected by a feed-
forward layer. At the l-th decoder layer, the model
first encodes the last decoder layer’s hidden states
using masked multi-head attention.2 It then uses
multi-head attention, with the masked outputs as
query matrix, and the hidden states H l from l-th
encoder layer as key and value matrix to gather

2masked multi-head attention is used to prevent the model
from seeing future words (Vaswani et al., 2017).

information from the encoder side. Similarly, a
feed-forward layer is used to encode the sentences
further. Residual connection (He et al., 2016) and
layer-normalization (Ba et al., 2016) are applied
for each layer, for both encoder and decoder.

3.2 Memory-Augmented Recurrent
Transformer

The vanilla transformer captioning model follows
the classical encoder-decoder architecture, where
the encoder and decoder network are separated. In
comparison, the encoder and decoder are shared
in MART, as shown in Figure 2 (left). The
video and text inputs are firstly separately encoded
and normalized. We denote the encoded video
and text embeddings as H0

video ∈ RTvideo×d and
H0

text ∈ RTtext×d, where Tvideo and Ttext are the
lengths of video and text, respectively. d denotes
the hidden size. We then concatenate these two
embeddings as input to the transformer layers:
H0=[H0

video;H
0
text] ∈ RTc×d, where [; ] denotes

concatenation, Tc=Tvideo + Ttext. This unified
encoder-decoder design is inspired by recent works
on multi-modal representation learning (Chen et al.,
2019; Sun et al., 2019). We also use two trainable
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token type embedding vectors to indicate whether
an input token is from video or text, similar to De-
vlin et al. (2019) where the token type embeddings
are added to indicate different input sequences. We
ignore the video token positions and only consider
the text token positions when calculating loss and
generating words.

While the aforementioned vanilla transformer is
a powerful method, it is less suitable for video
paragraph captioning due to its inability to uti-
lize video segments and sentences history infor-
mation. Thus, given the unified encoder-decoder
transformer, we augment it with an external mem-
ory module, which helps it to utilize video seg-
ments and the corresponding caption history to
generate the next sentence. An overview of the
memory module is shown in Figure 2 (left). At
step t, i.e., decoding the t-th video segment, the
l-th layer aggregates the information from both
its intermediate hidden states H̄ l

t ∈ RTc×d and
the memory states M l

t−1 ∈ RTm×d (Tm denotes
memory state length or equivalently #slots in the
memory) from the last step, using a multi-head
attention. The input query matrix of the multi-
head attention Q=H̄ l

t , key and value matrices are
K,V =[M l

t−1; H̄
l
t ] ∈ R(Tm+Tc)×d. The memory

augmented hidden states are further encoded using
a feed forward layer and then merged with the inter-
mediate hidden states H̄ l

t using a residual connec-
tion and layer norm to form the hidden states output
H l

t ∈ RTc×d. The memory state M l
t−1 is updated

as M l
t , using the intermediate hidden states H̄ l

t .
This process is conducted in the Memory Updater
module, illustrated in Figure 2. We summarize the
procedure below:

Sl
t = MultiHeadAtt(M l

t−1, H̄
l
t , H̄

l
t),

C l
t = tanh(W l

mcM
l
t−1 +W l

scS
l
t + blc),

Z l
t = sigmoid(W l

mzM
l
t−1 +W l

szS
l
t + blz),

M l
t = (1− Z l

t)� C l
t + Z l

t �M l
t−1,

where � denotes Hadamard product, W l
mc, W

l
sc,

W l
mz , and W l

sz are trainable weights, blc and blz are
trainable bias. C l

t ∈ RTm×d is the internal cell
state. Z l

t ∈ RTm×d is the update gate that con-
trols which information to retain from the previous
memory state, and thus reducing redundancy and
maintaining coherence in the generated paragraphs.

This update strategy is conceptually similar to
LSTM (Hochreiter and Schmidhuber, 1997) and
GRU (Chung et al., 2014). It differs in that multi-

head attention is used to encode the memory state
and thus multiple memory slots are supported in-
stead of a single one in LSTM and GRU, which
gives it a higher capacity of modeling complex
relations. Recent works (Sukhbaatar et al., 2015;
Graves et al., 2014; Xiong et al., 2016a) introduce
a memory component into neural networks, where
the memory is mainly designed to memorize facts
in the input context to support downstream tasks,
e.g., copy (Graves et al., 2014) or question answer-
ing (Sukhbaatar et al., 2015; Xiong et al., 2016a).
In comparison, the memory in MART is designed
to memorize the sequence generation history to sup-
port the coherent generation of the next sequence.

3.3 Comparison with Transformer-XL

Transformer-XL (Dai et al., 2019) is a recently pro-
posed transformer-based language model that uses
a segment-level recurrence mechanism to capture
the long-term dependency in context. In Figure 2
(right) we show a modified version of Transformer-
XL for video paragraph captioning. At step t, at
its l-th layer, Transformer-XL takes as inputs the
last layer’s hidden states from both the current step
and the last step, which we denote as H l−1

t and
SG(H l−1

t−1), where SG(·) stands for stop-gradient,
and is used to save GPU memory and computa-
tion (Dai et al., 2019). The input query matrix of
the multi-head attention Q = H l−1

t , key and value
matrices are K,V = [SG(H l−1

t−1);H l−1
t ]. Note the

multi-head attention here is integrated with relative
positional encoding (Dai et al., 2019).

Both designed to leverage the long-term depen-
dency in context, the recurrence in Transformer-XL
is between H l

t and H l−1
t−1 , which shifts one layer

downwards per step. This mismatch in represen-
tation granularity may potentially be harmful to
the learning process and affect the model perfor-
mance. In contrast, the recurrence in MART is
between H̄ l

t and M l
t−1 (updated using H̄ l

t−1) of the
same layer. Besides, Transformer-XL directly uses
all the hidden states from the last step to enable
recurrence, which might be less effective as less
relevant and repetitive information is also passed
along. In comparison, MART achieves recurrence
by using memory states that are highly summarized
from previous steps, which may help the model to
reduce redundancy and only keep important infor-
mation from previous steps.
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4 Experiments

We conducted experiments on two popular bench-
mark datasets, ActivityNet Captions (Krishna et al.,
2017) and YouCookII (Zhou et al., 2017). We eval-
uate our proposed MART and compare it with vari-
ous baseline approaches.

4.1 Data and Evaluation Metrics

Datasets ActivityNet Captions (Krishna et al.,
2017) contains 10,009 videos in train set, 4,917
videos in val set. Each video in train has a single
reference paragraph while each video in val has
two reference paragraphs. Park et al. (2019) uses
the same set of videos (though different segments)
in val for both validation and test. To allow better
evaluation of the models, we use splits provided
by Zhou et al. (2019), where the original val set
is split into two subsets: ae-val with 2,460 videos
for validation and ae-test with 2,457 videos for test.
This setup makes sure the videos used for test will
not be seen in validation. YouCookII (Zhou et al.,
2017) contains 1,333 training videos and 457 val-
idation videos. Each video has a single reference
paragraph. Both datasets come with temporal event
segments annotated with human written natural lan-
guage sentences. On average, there are 3.65 event
segments for each video in ActivityNet Captions,
7.7 segments for each video in YouCookII.

Data Preprocessing We use aligned appearance
and optical flow features extracted at 2FPS to
represent videos, provided by Zhou et al. (2018).
Specifically, for appearance, 2048D feature vectors
from the ‘Flatten-673’ layer in ResNet-200 (He
et al., 2016) are used; for optical flow, 1024D fea-
ture vectors from the ‘global pool’ layer of BN-
Inception (Ioffe and Szegedy, 2015) are used. Both
networks are pre-trained on ActivityNet (Caba Heil-
bron et al., 2015) for action recognition, provided
by (Xiong et al., 2016b). We truncate sequences
longer than 100 for video and 20 for text and set
the maximum number of video segments to 6 for
ActivityNet Captions and 12 for YouCookII. Fi-
nally, we build vocabularies based on words that
occur at least 5 times for ActivityNet Captions and
3 times for YouCookII. The resulting vocabulary
contains 3,544 words for ActivityNet Captions and
992 words for YouCookII.

Evaluation Metrics (Automatic and Human)
We evaluate the captioning performance at
paragraph-level, following (Park et al., 2019; Xiong

et al., 2018), reporting numbers on standard met-
rics, including BLEU@4 (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014), CIDEr-
D (Vedantam et al., 2015). Since these metrics
mainly focus on whether the generated paragraph
matches the ground-truth paragraph, they fail to
evaluate the redundancy of these multi-sentence
paragraphs. Thus, we follow previous works (Park
et al., 2019; Xiong et al., 2018) to evaluate repeti-
tion using R@4. It measures the degree of N-gram
(N=4) repetition in the descriptions. Besides the
automated metrics, we also conduct human evalu-
ations to provide additional comparisons between
the methods. We consider two aspects in human
evaluation, relevance (i.e., how related is a gener-
ated paragraph caption to the content of the given
video) and coherence (i.e., whether a generated
paragraph caption reads fluently and is linguisti-
cally coherent over its multiple sentences).

4.2 Implementation Details

MART is implemented in PyTorch (Paszke et al.,
2017). We set the hidden size to 768, the number
of transformer layers to 2, and the number of atten-
tion heads to 12. For positional encoding, we fol-
low Vaswani et al. (2017) to use the fixed scheme.
For memory module, we set the length of recur-
rent memory state to 1, i.e., Tm=1. We optimize
the model following the strategy used by Devlin
et al. (2019). Specifically, we use Adam (Kingma
and Ba, 2014) with an initial learning rate of 1e-4,
β1=0.9, β2=0.999, L2 weight decay of 0.01, and
learning rate warmup over the first 5 epochs. We
train the model for at most 50 epochs with early
stopping using CIDEr-D and batch size 16. We
use greedy decoding as we did not observe better
performance using beam search.

4.3 Baselines

Vanilla Transformer This model originates
from the transformer (Vaswani et al., 2017), pro-
posed by Zhou et al. (2018) (more details in Sec-
tion 3.1). It takes a single video segment as input
and independently generates a single sentence de-
scribing the given segment. Note that Zhou et al.
(2018) also have a separate proposal generation
module, but here we only focus on its captioning
module. To obtain paragraph-level captions, the
independently generated single sentence captions
are concatenated as the output paragraph.
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Model Re. ActivityNet Captions (ae-test) YouCookII (val)

B@4 M C R@4 ↓ B@4 M C R@4 ↓

VTransformer (2018) 7 9.31 15.54 21.33 7.45 7.62 15.65 32.26 7.83
Transformer-XL (2019) 3 10.25 14.91 21.71 8.79 6.56 14.76 26.35 6.30
Transformer-XLRG 3 10.07 14.58 20.34 9.37 6.63 14.74 25.93 6.03
MART 3 9.78 15.57 22.16 5.44 8.00 15.9 35.74 4.39

Human - - - - 0.98 - - - 1.27

Table 1: Comparison with transformer baselines on ActivityNet Captions ae-test split and YouCookII val split. Re.
indicates whether sentence-level recurrence is used. We report BLEU@4 (B@4), METEOR (M), CIDEr-D (C)
and Repetition (R@4). VTransformer denotes vanilla transformer.

Det. Re. B@4 M C R@4 ↓

LSTM based methods
MFT (2018) 7 3 10.29 14.73 19.12 17.71
HSE (2018) 7 3 9.84 13.78 18.78 13.22

LSTM based methods with detection feature
GVD (2019) 3 7 11.04 15.71 21.95 8.76
GVDsup (2019) 3 7 11.30 16.41 22.94 7.04
AdvInf (2019) 3 3 10.04 16.60 20.97 5.76

Transformer based methods
VTransformer (2018) 7 7 9.75 15.64 22.16 7.79
Transformer-XL (2019) 7 3 10.39 15.09 21.67 8.54
Transformer-XLRG 7 3 10.17 14.77 20.40 8.85
(Ours) MART 7 3 10.33 15.68 23.42 5.18

Human - - - - - 0.98

Table 2: Comparison with baselines on ActivityNet
Captions ae-val split. Det. indicates whether the model
uses detection feature. Models that use detection fea-
tures are shown in gray background to indicate they are
not in fair comparison with the others. Re. indicates
whether sentence-level recurrence is used. VTrans-
former denotes vanilla transformer.

Transformer-XL Transformer-XL is proposed
by Dai et al. (2019) for modeling long-term de-
pendency in natural language. Here we adapt it
for video paragraph captioning (more details in
Section 3.3). The original design of Transformer-
XL stops gradients from passing between differ-
ent recurrent steps to save GPU memory and com-
putation. To enable a more fair comparison with
our model, we implemented a version that allows
gradient flow through different steps, calling this
Transformer-XLRG (Transformer-XL with Recur-
rent Gradient).

AdvInf AdvInf (Park et al., 2019) uses a set of
three discriminators to do adversarial inference on a
strong LSTM captioning model. The input features
of the LSTM model are the concatenation of image
recognition, action recognition, and object detec-
tion features. To encourage temporal coherence be-
tween consecutive sentences, the last hidden state
from the previous sentence is used as input to the

decoder (Xiong et al., 2018; Gella et al., 2018). The
three discriminators are trained adversarially and
are specifically designed to reduce repetition and
encourage fluency and relevance in the generated
paragraph.

GVD An LSTM based model for grounded video
description (Zhou et al., 2019). It uses densely
detected object regions as inputs, with a ground-
ing module that grounds generated words to the
regions. Additionally, we also consider a GVD
variant (GVDsup) that uses grounding supervision
from Zhou et al. (2019).

MFT MFT (Xiong et al., 2018) uses an LSTM
model with a similar sentence-level recurrence as
in AdvInf (Park et al., 2019).

HSE HSE (Zhang et al., 2018) is a hierarchi-
cal model designed to learn both clip-sentence
and paragraph-video correspondences. Given the
learned contextualized video embedding, HSE uses
a 2-layer LSTM to generate captions.

For AdvInf, MFT, HSE, GVD, and GVDsup,
we obtain generated sentences from the authors.
We only report their performance on ActivityNet
Captions ae-val split to enable a fair comparison,
as (i) AdvInf, MFT and HSE have different set-
tings as ours, where ae-test videos are included
as part of their validation set; (ii) we do not have
access to the ae-test predictions of GVD and GVD-
sup. For vanilla transformer, Transformer-XL and
Transformer-XLRG, we borrow/modify the model
implementations from the original authors and train
them under the same settings as MART.

4.4 Results

Automatic Evaluation Table 1 shows the results
of MART and several transformer baseline meth-
ods. We observe stronger or comparable perfor-
mance for the language metrics (B@4, M, C) for
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MART wins (%) VTransformer wins (%) Delta

relevance 37 29.5 +7.5
coherence 42.8 26.3 +16.5

MART wins (%) Transformer-XL wins (%) Delta

relevance 40.0 39.5 +0.5
coherence 39.2 36.2 +3.0

Table 3: Human evaluation on ActivityNet Captions ae-
test set w.r.t. relevance and coherence. Top: MART vs.
vanilla transformer (VTransformer). Bottom: MART
vs. Transformer-XL.

both ActivityNet Captions and YouCookII datasets.
For R@4, MART produces significantly better re-
sults compared to the three transformer baselines,
showing its effectiveness in reducing redundancy
in the generated paragraphs. Table 2 shows the
comparison of MART with state-of-the-art models
on ActivityNet Captions. MART achieves the best
scores for both CIDEr-D and R@4 and has a com-
parable performance for B@4 and METEOR. Note
that the best B@4 model, GVDsup (Zhou et al.,
2019), and the best METEOR model, AdvInf (Park
et al., 2019), both use strong detection features, and
GVDsup has also used grounding supervision. Re-
garding the repetition score R@4, MART has the
highest score. It outperforms the strong adversarial
model AvdInf (Park et al., 2019) even in an unfair
comparison where AdvInf uses extra detection fea-
tures. Additionally, AdvInf has a time-consuming
adversarial training and decoding process where a
set of discriminator models are trained and used to
re-rank candidate sentences, while MART can do
much faster inference with only greedy decoding
and no further post-processing. The comparisons
in Table 1 and Table 2 show that MART is able to
generate less redundant (thus more coherent) para-
graphs while maintaining relevance to the videos.

Human Evaluation In addition to the automatic
metrics, we also run human evaluation on Ama-
zon Mechanical Turk (AMT) with 200 randomly
sampled videos from ActivityNet Captions ae-test
split, where each video was judged by three dif-
ferent AMT workers. We design a set of pairwise
experiments (Pasunuru and Bansal, 2017b; Park
et al., 2019), where we compare two models at
a time. AMT workers are instructed to choose
which caption is better or the two captions are not
distinguishable based on relevance and coherence,
respectively. The models are anonymized, and the
predictions are shuffled. In total, we have 54 work-

#hidden
layers

mem.
len. Re. B@4 M C R@4 ↓

#hidden layers
MART 1 1 3 10.42 16.01 22.87 6.70
MART 5 1 3 10.48 16.03 24.33 6.74

mem. len.
MART 2 2 3 10.30 15.66 22.93 5.94
MART 2 5 3 10.12 15.48 22.89 6.83

recurrence
MART w/o re. 2 - 7 9.91 15.83 22.78 7.56

MART 2 1 3 10.33 15.68 23.42 5.18

Table 4: Model ablation on ActivityNet Captions ae-
val split. Re. indicates whether sentence-level recur-
rence is used. mem. len. indicates the length of the
memory state. MART w/o re. denotes a MART variant
without recurrence. Top two scores are highlighted.

ers participated the MART vs. vanilla transformer
experiments, 47 workers participated the MART vs.
Transformer-XL experiments. In Table 3 we show
human evaluation results, where the scores are cal-
culated as the percentage of workers that have voted
a certain option. With its sentence-level recurrence
mechanism, MART is substantially better than the
vanilla transformer model for both relevance and
coherence. Compared to the strong baseline ap-
proach Transformer-XL, MART has similar perfor-
mance in terms of relevance, but still reasonably
better performance in terms of coherence.

Model Ablation We show model ablation in Ta-
ble 4. MART models with recurrence have better
overall performance than the variant without, sug-
gesting the effectiveness of our recurrent memory
design. We choose to use the model with 2 hidden
layers and memory state length 1 as it shows a good
balance between performance and computation.

Qualitative Examples In Figure 3, we show
paragraph captions generated by vanilla trans-
former, Transformer-XL, and our method MART.
Compared to the two baselines, MART produces
more coherent and less redundant paragraphs. In
particular, we noticed that vanilla transformer often
uses incoherent pronouns/person mentions, while
MART and Transformer-XL is able to use suitable
pronouns/person mentions across the sentences and
thus improve the coherence of the paragraph. Com-
pare with Transformer-XL, we found that the para-
graphs generated by MART have much less cross-
sentence repetitions. We attribute MART’s suc-
cess to its recurrence design - the previous memory
states are highly summarized, in which redundant
information is removed. While there is less redun-
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Vanilla Transformer
He is sitting down in a chair. He continues playing the harmonica and ends by 
looking off into the distance. He continues playing the harmonica and looking off 
into the distance. He stops playing and looks at the camera.

Transformer-XL
A man is seen speaking to the camera while holding a harmonica. He continues 
playing the harmonica while looking at the camera. He continues playing the 
instrument and looking off into the distance. He continues playing and stops playing.

MART (ours)
A man is sitting down talking to the camera while holding a camera. He takes a 
harmonica and begins playing his harmonica. He continues playing the harmonica as 
he continues playing. He stops and looks at the camera.

Ground-Truth
A young man wearing a Cuervo black shirt stares and speaks to the camera as he sits 
on his chair. He puts a harmonica to his mouth and begins playing. He plays on for 
about a minute and is very into his song. He then puts the harmonica down and 
looks into the camera as the video comes to an end.

Vanilla Transformer
A girl is seen climbing across a set of monkey bars and leads into her climbing 
across a set of. He jumps off the monkey bars and lands on a bridge.

Transformer-XL
A young child is seen climbing across a set of monkey bars and climbing across a set 
of monkey bars. The boy jumps down and jumps down and jumps down.

MART (ours)
A girl is seen speaking to the camera and leads into her climbing across a set of 
monkey bars. She jumps off the bar and walks back to the camera.

Ground-Truth
A little girl climbs the monkey bars of a play ground. Then, the little girl jumps to 
the ground and extend her arms.

Figure 3: Qualitative examples. Red/bold indicates pronoun errors (inappropriate use of pronouns), blue/italic
indicates repetitive patterns, underline indicates content errors. Compared to baselines, our model generates more
coherent, less repeated paragraphs while maintaining relevance.

A girl is giving a small dog a bath. She has an orange bottle in 
her hand…

A man on a diving board walks to the end. The man bounces 
on the board two times then dives into the water…

A young girl is seen walking to the end of a diving board with 
several other people around her…

A little girl stands on a diving board. Then the little girl 
jumps, flip and dives in the swimming pool…

Figure 4: Nearest neighbors retrieved using memory
states. Top row shows the query, the 3 rows below it
are the top-3 nearest neighbors.

dancy between sentences generated by MART, in
Figure 3 (left), we noticed that repetition still ex-
ists within a single sentence, suggesting further
efforts on reducing the repetition in single sentence
generation. More examples are in the appendix.

Memory Ablation To explore whether the
learned memory state could store useful informa-
tion about the videos and captions, we conducted a
video retrieval experiment on ActivityNet Captions
train split with 10K videos, where we extract the

last step memory state in the first layer of a trained
MART model for each video as its representation to
perform nearest neighbor search with cosine simi-
larity. Though not explicitly trained for the retrieval
task, we observe some positive examples in the ex-
periments. We show an example in Figure 4, the
neighbors mostly show related activities.

5 Conclusion

In this work, we present a new approach – Memory-
Augmented Recurrent Transformer (MART) for
video paragraph captioning, where we designed an
auxiliary memory module to enable recurrence in
transformers. Experimental results on two standard
datasets show that MART has better overall per-
formance than the baseline methods. In particular,
MART can generate more coherent, less redundant
paragraphs without any degradation in relevance.
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A Appendices

A.1 Additional Qualitative Examples
We show more caption examples in Figure 5.
Overall, we see captions generated by models
with sentence-level recurrence, i.e., MART and
Transformer-XL, tend to be more coherent. Com-
paring with Transformer-XL, captions generated
by MART are usually less repetitive. However,
as shown in the two examples at the last row of
Figure 5, all three models suffer from the content
error, where the models are not able to recognize
and describe the fine-grained details in the videos,
e.g., gender and fine-grained objects/actions.



2614

Vanilla Transformer
He continues speaking while holding the violin and showing how to play his 
hands. He continues playing the instrument while looking down at the camera. He 
continues playing the violin and then stops to speak to the camera.

Transformer-XL
A man is seen speaking to the camera while holding a violin. The man continues 
playing the instrument while moving his hands up and down. The man continues 
playing the instrument and ends by looking back to the camera.

MART (ours)
A man is seen speaking to the camera while holding a violin and begins playing the 
instrument. The man continues to play the instrument while moving his hands up 
and down. He continues to play and ends by moving his hands up and down.

Ground-Truth
A man is seen looking to the camera while holding a violin. The man then begins 
playing the instrument while the camera zooms in on his fingers. The man continues 
to play and stops to speak to the camera.

Vanilla Transformer
He is skateboarding down a road. He goes through the streets and goes. He is 
skateboarding down a road.

Transformer-XL
A man is riding a skateboard down a road. He is skateboarding down a road. He is 
skateboarding down a road.

MART (ours)
A man is seen riding down a road with a person walking into frame and speaking to 
the camera. The man continues riding down the road while looking around to the 
camera and showing off his movements. The man continues to ride around while 
looking to the camera.

Ground-Truth
A camera pans all around an area and leads into a man speaking to the camera.
Several shots of the area are shown as well as dogs and leads into a man riding down 
a hill. The man rides a skateboard continuously around the area and ends by meeting 
up with the first man.

Vanilla Transformer
She continues moving around the room and leads into her speaking to the 
camera. She continues moving around on the step and ends by speaking to the 
camera.

Transformer-XL
A woman is standing in a gym. She begins to do a step.

MART (ours)
A woman is standing in a room talking. She starts working out on the equipment.

Ground-Truth
A woman is seen speaking to the camera and leads into her walking up and down 
the board. She then stands on top of the beam while speaking to the camera 
continuously.

Vanilla Transformer
Several shots are shown of people riding on the surf board and the people riding 
along the water. Several shots are shown of people riding around on a surf board
and leads into several clips of people riding.

Transformer-XL
A large wave is seen followed by several shots of people riding on a surf board and 
riding along the. The people continue riding along the water while the camera pans 
around the area and leads into several more shots.

MART (ours)
A man is seen riding on a surfboard and surfing on the waves. The man continues 
surfing while the camera captures him from several angles.

Ground-Truth
A man is seen moving along the water on a surf board while another person watches 
on the side. The person continues riding around and slowing down to demonstrate 
how to play.

Vanilla Transformer
A young girl is seen climbing across a set of monkey bars. A young child is seen 
climbing across a set of monkey bars. A little girl is standing on a platform in a 
playground.

Transformer-XL
A young child is seen standing before a set of monkey bars and begins climbing 
across monkey bars. The girl then climbs back and fourth on the bars.

MART (ours)
A young child is seen climbing across a set of monkey bars while speaking to the 
camera. She then climbs down across the bars and begins swinging herself around. 
She continues to swing down and ends by jumping down.

Ground-Truth
A boy goes across the monkey bars as a lady watches and cheers him on. At the end 
he begins to struggle bit, but finally finished. When he is done another little boy 
comes and stands by him.

Vanilla Transformer
The man then holds up a bottle of mouthwash and talks to the camera. The man 
then puts lotion on her face and begins rubbing it down. The man then begins to 
blow dry her face and shows off the camera.

Transformer-XL
A man is seen speaking to the camera while holding up a brush. He then rubs lotion 
all over his face and begins brushing his face. He then puts the lotion on the face and 
rubs it on the wall.

MART (ours)
A man is seen speaking to the camera and leads into him holding up a bottle of 
water. The man then holds up a can and begins to shave his face. He finishes putting 
the paper into the mirror and smiles to the camera.

Ground-Truth
A girl's face is shown in front of the camera. She showed an orange bottle, read the 
label and squirt the orange content on her palm, showed the cream on the camera, 
then rub the cream all over her face. She bend down and rinse her face, when her 
face is visible on the camera her face is clear.

Figure 5: Additional qualitative examples. Red/bold indicates pronoun errors (inappropriate use of pronouns or per-
son mentions), blue/italic indicates repetitive patterns, underline indicates content errors. Compared to baselines,
our model generates more coherent, less repeated paragraphs while maintaining relevance.


