
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2589–2602
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

2589

Learning to execute instructions in a Minecraft dialogue

Prashant Jayannavar Anjali Narayan-Chen
University of Illinois at Urbana-Champaign

{paj3, nrynchn2, juliahmr}@illinois.edu

Julia Hockenmaier

Abstract

The Minecraft Collaborative Building Task is
a two-player game in which an Architect A in-
structs a Builder B to construct a target struc-
ture out of 3D blocks. We consider the task of
predicting B’s action sequences (block place-
ments and removals) in a given game context,
and show that capturing B’s past actions as
well as B’s perspective leads to a significant
improvement in performance on this challeng-
ing language understanding problem.

1 Introduction

There is a long-standing interest in building in-
teractive agents that can communicate with hu-
mans about and operate within the physical world
(e.g. Winograd (1971)). The goal for agents in this
scenario is to not only be able to engage in rich
natural language discourse with their human con-
versation partners, but also to ground that discourse
to physical objects, and execute instructions in the
real world. Traditional dialogue scenarios are ei-
ther completely ungrounded (Ritter et al., 2010;
Schrading et al., 2015), focus on slot-value filling
tasks (Kim et al., 2016b,a; Budzianowski et al.,
2018) which instead require grounding to entities
in a knowledge base, or operate within static en-
vironments, such as images (Das et al., 2017) or
videos (Pasunuru and Bansal, 2018). Relevant ef-
forts in robotics have largely focused on single-shot
instruction following, and are mostly constrained
to simple language (Roy and Reiter, 2005; Tellex
et al., 2011) with limited resources (Thomason
et al., 2015; Misra et al., 2016; Chai et al., 2018).

The recently introduced Minecraft Collaborative
Building Task and the corresponding Minecraft
Dialogue Corpus (Narayan-Chen et al., 2019) is
one attempt to bridge this gap within the simulated
game world of Minecraft. In this task, two players,
an Architect (A) instructs a Builder (B) to con-

struct a target structure out of multi-colored build-
ing blocks. The corpus consists of 509 game logs
between humans that perform this task. Narayan-
Chen et al. (2019) focus on generating Architect
utterances. In this paper, we explore models for
building an automated Builder agent.1 We focus
on the subtask of predicting the Builder’s block
placements, and leave the back-and-forth dialogue
aspect of the overall task required of a fully inter-
active Builder agent to future work. We define the
Builder Action Prediction (BAP) task in Section 2,
describe our models in Section 3, an approach to
augment the training data in Section 4, and our
experiments in Section 5. We analyze results and
highlight challenges of the BAP task in Section 6.

2 Dataset and Task

2.1 The Minecraft Dialogue Corpus

The Minecraft Dialogue Corpus (Narayan-Chen
et al., 2019) consists of 509 human-human dia-
logues and game logs for the Minecraft Collabora-
tive Building Task, a two-player game in a simu-
lated Blocks World environment between an Archi-
tect (A) and a Builder (B). A is given a target struc-
ture (Target) and has to instruct B via a text chat in-
terface to build a copy of Target on a given build re-
gion. A and B communicate back and forth via chat
throughout the game (e.g. to resolve confusions
or to correct B’s mistakes), but only B can move
blocks, while A observes B operating in the world.
B is given access to an inventory of 120 blocks of
six given colors that it can place and remove. The
resulting dialogues consist mainly of A providing
instructions, often involving multiple actions to be
taken, and grounded in the Builder’s perspective,
while B executes those instructions and resolves

1For models and code see http://juliahmr.cs.
illinois.edu/Minecraft

http://juliahmr.cs.illinois.edu/Minecraft
http://juliahmr.cs.illinois.edu/Minecraft


2590

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: A sample sequence of human-human game states. The game starts with an empty grid and an initial
A instruction (a), which B executes in the first action sequence (b) by placing a single block. In (c), B begins
to execute the next A instruction given in (b). However, A interrupts B in (c), leading to two distinct B action
sequences: (b)–(c) (single block placement), and (c)–(h) (multiple placements and removals).

any confusion through further dialogue. The task
is complete when the structure built by B (Built)
matches Target (allowing for translations within
the horizontal plane and rotations about the vertical
axis) and lies completely within the boundaries of
the predefined build region. Games in this corpus
are based on 150 distinct target structures, split into
disjoint test, training, and development sets such
that training targets do not appear during test or
development. Game logs record all utterances and
B’s actions (placements and removals), as well as
the state of the world (i.e. the (x,y,z)-coordinates
and colors of all blocks in the build region), and B’s
(x,y,z) position, vertical rotation (pitch) and hori-
zontal orientation (yaw) at the points in time when
an utterance was recorded or an action performed.
Since there are six block colors to be placed,
we distinguish seven possible types of actions
A ∈ {BLUE, GREEN, ..., YELLOW, REMOVE}. B
actions are 4-tuples 〈A, x, y, z〉 consisting of an ac-
tion type and cell coordinates. A block placement
is feasible as long as an adjacent grid location is
occupied, while REMOVE is feasible as long as that
location is currently occupied by a block. These ac-

tions do not include B’s movement. B can assume
any (continuous) 3D position and orientation, and
the dataset records B’s position and orientation for
each individual action. But since there are many po-
sitions and orientations from which blocks in a cell
can be placed, B’s movement is secondary to the
main task of constructing the target configuration.

2.2 The Builder Action Prediction Task

Narayan-Chen et al. (2019) focused on creating
models that can generate A utterances, whereas we
aim to develop models that can perform B’s role.
Although back-and-forth dialogue between the two
players is a clear hallmark of this task, we leave
the question of how to develop B agents that can
decide when to speak and what to contribute to the
conversation (either by way of chit-chat, verifica-
tions or clarification questions to A) to future work,
and focus here on the subtask of predicting correct
sequences of block placements and removals. Ex-
ecuting A instructions is B’s primary role, and a
crucial component to overall task completion.

Figure 1 shows an example from the Minecraft
Dialogue Corpus that highlights some challenges



2591

of performing this task. A can move around freely,
but remains invisible to B and views the structure
from behind B when giving instructions. As a re-
sult, A instructions frequently include spatial rela-
tions, both between pairs of blocks or substructures
(“put ... on top of..,”), and relative to B’s current
position and perspective (“left”, “right”). A also
often uses higher-level descriptions involving com-
plex shapes (e.g. “staircase”, “v”). Due to the
asynchronous nature of the dialogue, A often in-
terrupts during B action sequences. A may also
provide corrections and clarifications to fix B mis-
takes. Producing feasible sequences of B actions
requires a certain amount of planning, since blocks
can only be placed in grid cells that are adjacent to
other blocks or the ground, and floating structures
(a common occurrence among the target structures
in this corpus) can only be built if supporting blocks
that are not part of the target structure are present
when the floating blocks are being placed. De-
spite these challenges, we show below that training
models that use a rich representation of the world
(Section 3) on sufficient amounts of diversified data
(Section 4) produces promising initial results.

To generate items for this task, we follow a simi-
lar strategy to Narayan-Chen et al. (2019), who, as
a first step towards designing a fully interactive Ar-
chitect, define an Architect Utterance Generation
Task, where models are presented with a particu-
lar human-human game context in which a human
Architect produced an utterance and are evaluated
based on how well they can generate an appropri-
ate utterance. Conversely, we define the Builder
Action Prediction (BAP) Task as the task of pre-
dicting the sequence of actions (block placements
and/or removals) that a human Builder performed
at a particular point in a human-human game.

2.3 Evaluating Builder Action Predictions

To evaluate models for the BAP task, we com-
pare each model’s predicted action sequence Am

against the corresponding action sequence Ah that
the human builder performed at that point in the
game. Specifically, for each pair of model and
human action sequences (Am, Ah), where Ah =

〈a(1)h , ...a
(k)
h 〉 led from a world state Wbefore to a

world state Wh and Am = 〈a(1)m , ...a
(l)
m 〉 led from

the same Wbefore to Wm, we compute an F1 score
over the net actions in Ah and Am, and report a
micro-average over all sequences in the test (or
development) data.

Net actions ignore actions that were undone
within the same sequence, e.g. if a block was
placed and then removed. We consider any am ac-
tion correct if the same action (involving the same
grid cell and block color) occurs among the net ac-
tions inAh. There are two reasons why we evaluate
net rather than all actions: first, many structures
contain floating blocks which require the placement
of temporary “placeholder” blocks that are later
removed. Placeholders’ colors are arbitrary, and
there are often multiple possible locations where
placeholders can be put; placeholder predictions
should not be penalized, as long as they enable the
correct target to be built. Human Builders are also
prone to making small mistakes that are immedi-
ately resolved (e.g. by removing blocks that were
accidentally placed). Evaluation should be robust
to this noise in the ground truth sequences.

The F1 metric ignores sequence information be-
cause it is either implicit in cases where it matters
(e.g. building a vertical stack of blocks from the
ground up), or irrelevant (e.g. building a line of
blocks on the ground). Other metrics may also
be suited for this task, but obvious choices such
as an edit distance between Wm and Wh suffer
from the problem that they favor models that place
fewer blocks, since incorrect placements would in-
cur twice the cost of no placements. However, our
current definition of when an action is correct is
relatively harsh, and could be relaxed in a number
of ways. First, since it only considers an action cor-
rect if it matches a human action at the same grid
cell, it penalizes cases where there are rotational
equivalences between the built and the target struc-
tures (as may arise when the target has rotational
symmetry). It also ignores any translational equiva-
lences (which are very common at the beginning of
a dialogue when the initial structure is empty, and
may also need to be taken into account when the ac-
tion sequence passes through an intermediate state
in which all blocks have been removed). Second,
looser F1 scores that evaluate actions only with
regard to block locations (ignoring color) or colors
(ignoring locations) might yield insight into how
well models understand spatial relations, colors, or
the number of blocks to be placed or removed. We
leave exploring such variants to future work.

While our evaluation allows us compare models
directly and automatically against a common gold
standard, it is important to keep in mind that such
direct comparisons to human action sequences pro-



2592

vide only a lower bound on performance because
they are based on the assumption that a) the human
executed the instructions completely and correctly,
and that b) there is only one way to execute the
instructions correctly. But instructions are often
vague or ambiguous: “Place a red block on the
ground next to the blue block” may be resolved
to any of four equally correct cells adjoining that
block, and ideally, the evaluation metric should
score them the same. And human action sequences
do not always correspond to a complete execution
of the previous instruction, e.g. when B is inter-
rupted by A or stops to ask a question:

A: now it will be a diagonal staircase with 4 steps angling
towards the middle

A: if that makes sense
B puts down a red block

B: diagonal staircase with this orientation?
B puts down a red block

A: towards where the yellow blocks are pointing
B picks up 2 red blocks, puts down a red block

2.4 Related Work

There is growing interest in situated collaborative
scenarios involving instruction givers/followers
with one-way (Hu et al., 2019; Suhr et al., 2019)
and two-way (Kim et al., 2019; Ilinykh et al., 2019)
communication. Here, we compare our task to re-
lated work on instruction following, both generally
and within Blocks World and Minecraft.

Instruction following: Prior approaches to in-
struction comprehension typically take a semantic
parsing approach (Chen and Mooney, 2011; Artzi
and Zettlemoyer, 2013; Andreas and Klein, 2015).
Semantic parsing components enable human-robot
understanding (Tellex et al., 2011; Matuszek et al.,
2013); some approaches to interactive robot de-
sign combine these architectures with physical
robot exploration to enable online learning (Thoma-
son et al., 2015, 2016, 2017). The SCONE cor-
pus (Long et al., 2016) features tasks in three
domains requiring context-dependent sequential
instruction understanding, in which a system is
given a world containing several predefined ob-
jects and properties and has to predict the final
world state by parsing instructions to intermedi-
ate logical forms. Some papers have also applied
neural action prediction models (Suhr and Artzi,
2018; Huang et al., 2019) to SCONE. More re-
cently, Vision-and-Language Navigation (VLN),
(Anderson et al., 2018), and its dialog counter-
part, Cooperative Vision-and-Dialog Navigation

(CVDN) (Thomason et al., 2019), focus on instruc-
tion following and cooperative interactions in pho-
torealistic navigation settings.

Since our dataset does not contain any logical
forms, we also cannot use semantic parsing ap-
proaches, and have to resort to neural action pre-
diction models. However, Minecraft instructions
are more challenging than the SCONE tasks be-
cause our action space is significantly larger and
our utterances are more complex. Minecraft dia-
logues are also more complex than the sequences
of instructions in SCONE because we cannot as-
sume that actions to be executed are described in
the last utterance. Minecraft dialogues are also
more complex than those in CVDN, because they
contain more turns, and because communication
is asynchronous. Moreover, construction differs
fundamentally from navigation in that construc-
tion dynamically changes the environment. While
referring expressions in navigation can be safely
assumed to refer to objects that exist in the world,
construction instructions frequently refer to objects
that need to be built by the agent. And although
more recent navigation tasks require real vision,
their underlying world state space (as defined by
fixed viewpoints and the underlying navigation
graph) is just as highly discretized. Our task does
not require vision, but poses an arguably more chal-
lenging planning problem, since its action space is
much larger (7623 possible actions vs. six actions
in the vision-language navigation work).

Blocks World: There is a renewed interest in in-
struction comprehension in Blocks World scenar-
ios. Voxelurn (Wang et al., 2017) interfaces with
human users and learns to understand descriptions
of voxel structures of increasing complexity, but
does so by mapping them down to a core program-
matic language. Bisk et al. (2016a,b, 2018) build
models for understanding single-shot instructions
that transform one world state to another using
simulated 3D blocks. Blocks are viewed from a
fixed bird’s-eye perspective, initialized randomly
in the initial world state, and uniquely identifiable.
The varying Builder perspective and lack of eas-
ily identifiable referents, along with the need to
understand utterances in a dialogue context, make
our task a much more challenging problem. Unlike
traditional Blocks World, Minecraft allows blocks
to float (requiring nonmonotonic action sequences
where placement is followed by removal), or attach
to any side of an existing block.



2593

Minecraft: Combining semantic parsing with
simulated human-robot interaction, Facebook
CraftAssist is a dialogue-enabled framework with
an associated dataset for semantic parsing of in-
structions in Minecraft (Gray et al., 2019; Jernite
et al., 2019; Szlam et al., 2019). Their setup enables
two-way human-bot interactions in which a human
architect can direct an automated builder using nat-
ural language to build complex structures. To boot-
strap a semantic parser, they synthetically generate
(using a hand-defined grammar) and crowdsource
natural language instructions paired with logical
tree structures consisting of action primitives. In
addition to lacking such annotations, our work dif-
fers fundamentally in that our data is sourced from
human-human dialogues; instructions are more am-
biguous, dialogues have larger variety and Builder
action sequences are noisier.

Game	History

Action	Sequence	DecoderWorld	State

Action	
Predictor

STOP	Token
Predictor

+
softmax 𝐚(#) 𝑾(#)

+

…
1×1×1 conv

ReLU

1×1×1 conv

ReLU

1×1×1 conv

𝑛
−
1

FF

FF

…

maxpool

ReLU

𝑙−
1

𝑚
−
1

𝑘×𝑘×𝑘 conv

1×1×1 conv

ReLU

ReLU

𝑘×𝑘×𝑘 conv

𝑾(-)

ReLU

…

GRU GRU

make a column

GRU

𝑊/ 𝑊/ 𝑊/

START 𝐚(#)

GRUGRU GRU

𝐚(0)

…

FF

ReLU

FF

ReLU

FF

ReLU

… … …

𝑗

Figure 2: The Builder Action Prediction model.

3 Builder Action Prediction Models

3.1 Overall architecture

Similar to e.g. the models of Suhr and Artzi (2018)
for the SCONE tasks, models for the Builder Ac-
tion Prediction task need to predict an appropriate,
variable-length, sequence of actions (block place-
ments and removals) in a given discourse and game
context and world state. All our models (Figure 2)
are based on a recurrent encoder-decoder archi-
tecture (Sutskever et al., 2014; Cho et al., 2014)
in which a GRU-based encoder (bottom left box)

captures the game context (dialogue and action his-
tory), and a CNN-based encoder (top left box) cap-
tures the world state at each time step. The decoder
(right box) predicts one action per time step, based
on the game history, the world state at that time, and
the last action taken. It consists of another GRU
backbone over action sequences (bottom right), and
a multi-class classifier that reads in the output of
the GRU backbone as well as the world state encod-
ing produced by the CNN to predict either the next
action (block placement or removal) to be taken,
or a special STOP token that terminates the action
sequence. The world state representation gets up-
dated and re-encoded after each predicted action.
We now describe these components in more detail.

3.2 Game history encoder

Since B only knows what blocks to place after re-
ceiving an instruction from A, we can view the
game history as a non-empty sequence of previous
utterances (by both players), possibly interleaved
with sequences of actions that were taken by B in
earlier turns of the game. Our experiments examine
the question of how much of this history should
be given to our model, but all models examined
in this paper treat the game history as a single se-
quence of tokens. Similar to Narayan-Chen et al.
(2019), we encode the dialogue history as a se-
quence of tokens in which each player’s utterances
are contained within speaker-specific start and end
tokens (〈A〉 . . . 〈\A〉 or (〈B〉 . . . 〈\B〉.). We also
represent B’s prior actions naively as tokens that
capture the action type (placement or removal) and
block color (e.g. as “builder putdown red”). The
2 × 6 = 12 action tokens as well as the speaker
tokens are encoded using 300-dimensional ran-
dom vectors, while all other tokens are encoded
as 300-dimensional pre-trained GloVe word em-
beddings (Pennington et al., 2014). The token em-
beddings are passed through a GRU to produce a
H-dim embedding (H ∈ {200, 300}) of the dia-
logue history in the GRU’s final hidden state.

3.3 World state encoder

The world state is the current grid configuration that
is fed into the action prediction model at each time
step. We first describe how we represent the raw
world state, before we explain how this representa-
tion is then encoded via a CNN-based architecture.

Input: the raw world state Minecraft blocks
are unit cubes that can be placed at integer-valued



2594

〈x, y, z〉 locations in a 3D grid; the Collaborative
Building Task restricts these to a build region of
size 11×9×11. Since we found it beneficial to
explicitly capture empty grid cells, our baseline
model represents each cell state as a 7-dim one-hot
vector, yielding a 11×9×11×7 minimal world state
representation encoding the presence (or absence)
of blocks at any grid cell. We also found it useful
to capture the relative position of each cell with
respect to B’s current position and orientation, as
well as which cells were affected by B’s most recent
actions, and augment this model in two ways:

Action history weights: Each action affects a
single grid cell. Actions that follow each other of-
ten affect adjacent grid cells. We encode informa-
tion about the most recent actions in our world state
representation as follows: Given the chronological
sequence of all actions A = a(1), a(2)...a(t−1) that
took place before the t-th action to be predicted, we
assign a real-valued weight α(i) to each action a(i)

(where α(i) ≤ α(i+1)), and include these action
weights in the world state representation of the cor-
responding cells. We truncate the action history to
the last five elements, assign integer weights 1...5
to a(t−5), ..., a(t−1) (and 0 to all a(i<t−5)), and then
include these weights as a separate input feature
in each cell. If a cell was affected more than once
by the last five actions, we only use the weight of
the most recent action. Our action weights do not
distinguish between actions taken in the preceding
action sequence and those in the current sequence.

Perspective coordinates: B needs to under-
stand the spatial relations in A’s instructions. Many
of these relations (e.g. “left” in Figure 1) depend
on B’s current position 〈xB, yB, zB〉 and orienta-
tion (pitch φB ∈ [−90, ...,+90], or vertical rota-
tion, and yaw γB ∈ [−180, ...,+180], horizontal
orientation). Our models assume that spatial rela-
tions in an instruction are relative to B’s position at
that time, and use that information to compute per-
spective coordinates. We calculate the relative per-
spective coordinates 〈x′c, y′c, z′c〉 of a cell c with ab-
solute coordinates 〈xc, yc, zc〉 by moving the frame
of reference from 〈0, 0, 0〉 to 〈xB, yB, zB〉, and ro-
tating it to account for B’s yaw and pitch:2

〈x′c, y′c, z′c〉 = P · Y · 〈xc − xB , yc − yB , zc − zB〉

We scale these perspective coordinates by a factor
of .1 to keep their range closer to that of the cell

2P =

(
1 0 0
0 cosφB sinφB
0 − sinφB cosφB

)
and Y =

(
cos γB 0 − sin γB

0 1 0
sin γB 0 cos γB

)

state and action history weights.
Our full model represents each cell as an 11-

dim vector (consisting of the 7-dim cell state, 1-
dim action history weight and 3-dim perspective
coordinates), and the entire grid (which serves as
input to a CNN-based encoder) as a 11×11×9×11
tensor. We refer to the grid at time step t as W (t)

raw.

Output: a CNN-based encoding To obtain a
representation of each grid cell, we feed the raw
world state tensor W (t)

raw of Section 3.3 through
a multi-layer CNN that embeds each grid cell
conditioned on its neighborhood and recent ac-
tions (if using action history weights). The model
consists of m 3d-conv layers with kernel size 3
(CNN3), stride 1 and padding 1, followed by a
ReLU activation function. Between every succes-
sive pair of these layers is a 1× 1× 1 3d-conv
layer (CNN1) with stride 1 and no padding, for
dimensionality reduction purposes, again followed
by ReLU. With W

(t)
0 = W

(t)
raw, the first m − 1

blocks of this model can be expressed as W (t)
i =

relu(CNNi
1(relu(CNNi

3(W
(t)
i−1)))). Them’th 3×3×

3 3d-conv layer CNNm
3 computes the final world

state representation W (t)
m = relu(CNNm

3 (W
(t)
m−1))

that is used to predict the next action.

3.4 Action Sequence Decoder
The GRU backbone The GRU backbone of the
decoder captures information about the current ac-
tion sequence and the game history. We initialize
its hidden state with the final hidden state of the
game history encoder RNN of Section 3.2. Since
the tensor representation of the grid is too unwieldy
to be used as input to a recurrent net, we instead
compute an explicit 11-dim representation a(t−1)

of the action taken at the last time step, consist-
ing of three components: a 2-dim one-hot vector
for the action type (placement or removal), a 6-
dim one-hot vector for the block color (all zero
for removals), and a 3-dim block location vector
containing the absolute 〈x, y, z〉 coordinates of the
cell where the action took place. At the start of de-
coding, we use a zero vector as a start token. These
action vectors get passed through j dense linear
layers with ReLU before being fed to the GRU.

Output: Next action prediction With seven
possible actions per cell, there are 7623 possible
actions (although only a small subset of these will
be feasible at any point in time, a point that we
will return to below). Since our models need to



2595

predict a variable length sequence of actions, we
also need a special STOP action that is not associ-
ated with a single cell, but terminates the sequence.
Our action prediction classifier has therefore two
sub-components: a block action prediction model,
and a stop prediction model. The stop prediction
model returns a single element, which we append
to the vector returned by the block action prediction
model before feeding it through a softmax layer to
return the most likely next action.

Block actions scores: We use a CNN-based ar-
chitecture with parameter sharing across cells to
score each of the seven possible actions for every
grid cell. The input to this model consists of the
CNN-based world state representation W (t)

m (Sec-
tion 3.3), as well as the decoder GRU’s hidden
state h(t), concatenated to each cell’s representa-
tion in W (t)

m as additional channels. This model
consists of n−1 1×1×1 3d-conv layers followed by
ReLU (W ′(t)i = relu(CNNi

1(W
′(t)
i−1)) and with the

nth such 3d-conv layer with 7 output channels (and
no ReLU): W ′(t)n = relu(CNNn

1 (W
′(t)
n−1)), which is

flattened into a 7623-dim vector of action scores.
STOP score: We also need to predict when an

action sequence is complete. While this decision
needs access to the same information as the block
action scorer, it also needs access to a (compact)
global representation of the grid, since the STOP
action is not cell-specific. It also needs to know
the uncertainty in the block action scorer, since
STOP is more likely when it is less clear which
block action should be performed, and vice versa.
We take the output of the penultimate layer in the
block action scorer and apply max-pooling to every
cell’s vector representation, thus obtaining a single
number for each of the 1089 cells. We concatenate
these numbers into a single vector and use that as
input to the STOP prediction model, which consists
of l dense linear layers (with ReLU after each layer
except the last), where the lth layer has a single
output W ′′(t)l , the score for STOP.

Final action prediction scores: Finally, we
concatenate the block action and STOP scores and
apply a softmax to obtain the final prediction a(t):

at = argmax(softmax(vec(W ′(t)n )⊕W ′′(t)l ))

4 Data Augmentation

The small size of the training set (3,709 examples)
is a major limiting factor for training complex mod-
els. Here, we explore ways of generating synthetic

data to augment the size and variety of our data.
For each game log in the original training data, we
generate twenty new game logs by combining the
following data augmentation techniques:

Utterance paraphrases: We generate para-
phrases of the utterances in the dialogue by ran-
domly substituting tokens with any of their syn-
onyms in the hand-engineered synonym lexicon
of Narayan-Chen et al. (2019).

Color substitutions: We permute block colors
by applying one of the 6! possible permutations,
chosen at random, to the entire game log. These
substitutions also change the language in the syn-
thetic dialogues to reflect the updated colors.

Spatial transformations: Since the world con-
tains no landmarks besides the built region, abso-
lute coordinates are somewhat arbitrary. We sample
one (0, 90, -90, 180) rotation in the ground plane
(affecting all 〈x, z〉 coordinates, plus B’s yaw and
position) per synthetic log (subject to the constraint
that the target still fit in the built region).

5 Experiments

We evaluate our world state encoders, game history
and data augmentation schemes.

Experimental Setup Our training, test and de-
velopment splits contain 3709, 1616, and 1331
Builder action sequences respectively. We increase
the training data to 7418 (2x), 14836 (4x) and
22254 (6x) items by sampling items from the syn-
thetic data of Section 4. The average sequence
length (in the development set) is 4.3 (with a std.
deviation of 4.5). Target structures in the test data
do not appear in the training or development data.
We train models with AdamW (Loshchilov and
Hutter, 2019) and weight decay regularization with
a weight decay factor of 0.1. We use a learning rate
of 0.001 for the original data and a slightly lower
learning rate of 0.0001 in the case of augmented
data. We use a batch size of 1. During training,
we use teacher forcing and minimize the sum of
the cross entropy losses between each predicted
and ground truth action sequence (the action se-
quence performed by the human). We stop training
early when loss on the held-out development set
has increased monotonically for ten epochs. We
use greedy decoding (max. sequence length of 10)
to generate action sequences, which seems to work
better than beam search decoding (for fixed beam
sizes between 5 and 20). We report net action F1
(Section 2.3) on the test set.



2596

H1 H2 H3

BAP-base 11.8 12.4 14.6
+ action history 14.6 18.2 19.7
+ perspective 15.7 18.7 18.8

Table 1: The effect of varying game history and world
state representations on test set performance.

2x 4x 6x
BAP-baseH3 15.6 16.1 17.0
+ action historyH3 16.9 20.0 18.4
+ perspectiveH3 19.5 21.2 20.8

Table 2: The effect of data augmentation at 2x, 4x and
6x training data on test set performance.

Model Variants The world state representation
of the baseline model (BAP-base) consists of block
colors at absolute 〈x, y, z〉 coordinates. We exam-
ine the effect of augmenting BAP-base first with ac-
tion history weights, and then also with relative per-
spective coordinates (both described in Section 3.3).
For model hyperparameters, see Appendix A.

Game History We experiment with three
schemes for how much game history to provide
to the models: H1 includes A’s last utterance and
any following B utterances. H2 includes all utter-
ances after B’s penultimate action sequence. H3

includes all utterances after B’s penultimate action
sequence interleaved with a token representation
of B’s last action sequence. If A’s last utterance
was a standalone instruction, H1 should be suf-
ficient. But prior discourse is often required: A
instructions may span multiple utterances and can
be interrupted by back-and-forth clarification dia-
logues. At the same time, B’s next action sequence
is often directly related to (or a continuation of)
their previous actions. This motivates H2 and H3:
by including utterances that sandwich B’s previous
action sequence, we include additional A history
and B context. Finally, to investigate the degree
to which previous B actions should be represented,
H3 augments H2 with explicit representations of
B’s actions (as described in Section 3.2).

6 Experimental Results

6.1 Quantitative Evaluation

For each cell in Tables 1 and 2, we first perform a
grid search over model hyperparameters and select
the best performing model on the development set,
then report its performance on the test set.

Table 1 shows how the different game history
and world state representations affect model per-

formance. We see that performance increases as
action weights are added and as the amount of his-
tory is increased. H3 consistently performs well
across all model variants.

Table 2 shows how different amounts of data
augmentation affect performance. We train each
model variant withH3 history on 2x, 4x and 6x aug-
mented training data. This increases BAP-baseH3’s
performance from 14.6 to 17.0 (with 6x data). With
action history, performance increases from 19.7 to
20.0. With perspective coordinates, performance
increases from 18.8 to 21.2 (both with 4x data).
Perspective coordinates, thus, help with more train-
ing data (although it is unclear why performance
drops again for the more complex models at 6x).

Our best model is the full BAP model with action
weights, perspective coordinates, history H3 and
4x augmented data (BAPH3,4x) with an F1 of 21.2.
This is significantly better than the 11.8 F1 of our
baseline BAP model with history H1 and without
action history weights, perspective coordinates, or
data augmentation (BAP-baseH1). We also see an
improvement in mean sequence length from 2.23
to 2.66, even if the latter is still much smaller than
the mean gold sequence length of 4.3.

Infeasible Actions and Constrained Decoding
In any given world state, only a small fraction of
the 7623 actions are feasible: blocks can only be
placed in locations that are currently empty and
adjacent to existing blocks or on the ground, and
blocks can only be removed from locations that are
currently occupied. Surprisingly, less than 1% of
action sequences generated by any of our models
contain one or more infeasible actions. We can
force our models to predict only feasible actions
by multiplying the output of the block action pre-
diction model (post softmax) with a bit mask over
block actions that identifies which of the possible
actions are feasible in the current world state, but
this does not affect the F1 scores of either the base-
line model or our best model.

6.2 Qualitative Evaluation

We return to the development set to illustrate dif-
ferent aspects of BAPH3,4x’s generated action se-
quences. Figures 3 and 4 provide a few examples;
more examples can be found in Appendix B.

Colors: Our model is generally able to correctly
identify colors of blocks to be placed. While in
many cases continuing the color from the previous



2597

Initial Generated Ground Truth

A: same on the other side
B: (places purple at (-2, 3, 1))
A: add one red block on top 

of that

Figure 3: Example 1: After B places the rightmost purple block, A directs B to place another red block on top of it.
This occurs after a long back-and-forth clarification dialogue in which B struggles to understand A’s instructions;
but the human B now completes the intended substructure by placing two red blocks and removing the purple. The
model does not have access to the preceding dialogue, but interprets the most recent instruction correctly.

Generated Ground TruthInitial

A: now place two blue blocks on top
of the edges of the line

B: (places blue at (0, 2, -3), (0, 2, -1))
A: do it one more time

Figure 4: Example 2: Here, B had just placed the two blocks atop the ends of the row of 3 blocks to create a U.
Now, the model can interpret “do it one more time” and extends the U upwards by placing two more blocks.

action sequence is sufficient, the model is also able
to switch colors as needed based on A instructions.

Numbers: Our model can sometimes identify the
number of blocks to be placed when instructions
mention them. But with vague instructions, the
model struggles, stopping early or erroneously con-
tinuing long sequences of the same color.

Spatial relations: Our model usually predicts a
reasonable ballpark of locations for the next action
sequence. While predicting correct locations ex-
actly is still difficult, the model is usually able to
distinguish “below” from “on top of”, and places
blocks in the neighborhood of the true sequence.

Placements vs. removals: Finally, our model is
able to both place and remove blocks somewhat ap-
propriately based on dialogue context. For instance,
corrective utterances in the history (“sorry, my mis-
take”) usually trigger the model to undo previous
actions. However, the model sometimes goes over-
board: not knowing how much of the penultimate
action sequence to remove, an entire sequence of
correct blocks can be erroneously erased.

7 Conclusion and Future Work

In the Minecraft Collaborative Building Task,
Builders must be able to comprehend complex in-
structions in order to achieve their primary goal
of building 3D structures. To this end, we define
the challenging subtask of Builder Action Predic-
tion, tasking models with generating appropriate

action sequences learned from the actions of hu-
man Builders. Our models process the game his-
tory along with a 3D representation of the evolving
world to predict actions in a sequence-to-sequence
fashion. We show that these models, especially
when conditioned on a suitable amount of game
history and trained on larger amounts of syntheti-
cally generated data, improve over naive baselines.
In the future, richer representations of the dialogue
history (e.g. by using BERT (Devlin et al., 2019) or
of past Builder actions) combined with de-noising
of the human data and perhaps more exhaustive
data augmentation should produce better output se-
quences. For true interactivity, the Builder must be
augmented with the capability to determine when
and how to respond when it is too uncertain to
act. And, finally, an approach like the Speaker-
Follower Models of Fried et al. (2018) could be
used to train our Builder model and the Architect
model of Narayan-Chen et al. (2019) jointly.

Acknowledgements

We would like to thank the reviewers for their valu-
able comments. This work was supported by Con-
tract W911NF-15-1-0461 with the US Defense Ad-
vanced Research Projects Agency (DARPA) Com-
municating with Computers Program and the Army
Research Office (ARO). Approved for Public Re-
lease, Distribution Unlimited. The views expressed
are those of the authors and do not reflect the of-
ficial policy or position of the Department of De-
fense or the U.S. Government.



2598

References
Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,

Mark Johnson, Niko Sünderhauf, Ian D. Reid,
Stephen Gould, and Anton van den Hengel.
2018. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real en-
vironments. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018, pages 3674–
3683. IEEE Computer Society.

Jacob Andreas and Dan Klein. 2015. Alignment-based
compositional semantics for instruction following.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1165–1174, Lisbon, Portugal. Association for Com-
putational Linguistics.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Yonatan Bisk, Daniel Marcu, and William Wong.
2016a. Towards a dataset for human computer com-
munication via grounded language acquisition. In
AAAI Workshop: Symbiotic Cognitive Systems.

Yonatan Bisk, Kevin Shih, Yejin Choi, and Daniel
Marcu. 2018. Learning interpretable spatial opera-
tions in a rich 3D Blocks World. In Proceedings of
the Thirty-Second AAAI Conference on Artificial In-
telligence, pages 5028–5036.

Yonatan Bisk, Deniz Yuret, and Daniel Marcu. 2016b.
Natural language communication with robots. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 751–761, San Diego, California. Association
for Computational Linguistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a
large-scale multi-domain wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5016–5026, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Joyce Y. Chai, Qiaozi Gao, Lanbo She, Shaohua Yang,
Sari Saba-Sadiya, and Guangyue Xu. 2018. Lan-
guage to action: Towards interactive task learn-
ing with physical agents. In Proceedings of the
Twenty-Seventh International Joint Conference on
Artificial Intelligence (IJCAI-18), pages 2–9. Inter-
national Joint Conferences on Artificial Intelligence
Organization.

David Chen and Raymond Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the

Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, pages 859–865.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence mod-
eling. In NIPS 2014 Workshop on Deep Learning,
December 2014.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José M.F. Moura, Devi
Parikh, and Dhruv Batra. 2017. Visual Dialog. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 326–
335.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,
and Trevor Darrell. 2018. Speaker-follower mod-
els for vision-and-language navigation. In Advances
in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada, pages 3318–3329.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 249–256, Chia Laguna
Resort, Sardinia, Italy. PMLR.

Jonathan Gray, Kavya Srinet, Yacine Jernite, Haonan
Yu, Zhuoyuan Chen, Demi Guo, Siddharth Goyal,
C. Lawrence Zitnick, and Arthur Szlam. 2019.
CraftAssist: A framework for dialogue-enabled in-
teractive agents. arXiv preprint arXiv:1907.08584.

Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuan-
dong Tian, and Mike Lewis. 2019. Hierarchical
decision making by generating and following natu-
ral language instructions. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems

https://doi.org/10.1109/CVPR.2018.00387
https://doi.org/10.1109/CVPR.2018.00387
https://doi.org/10.1109/CVPR.2018.00387
https://doi.org/10.18653/v1/D15-1138
https://doi.org/10.18653/v1/D15-1138
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12652
https://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12652
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17410
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17410
https://doi.org/10.18653/v1/N16-1089
https://www.aclweb.org/anthology/D18-1547
https://www.aclweb.org/anthology/D18-1547
https://www.aclweb.org/anthology/D18-1547
https://doi.org/10.24963/ijcai.2018/1
https://doi.org/10.24963/ijcai.2018/1
https://doi.org/10.24963/ijcai.2018/1
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3701
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3701
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3701
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://openaccess.thecvf.com/content_cvpr_2017/papers/Das_Visual_Dialog_CVPR_2017_paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://papers.nips.cc/paper/7592-speaker-follower-models-for-vision-and-language-navigation
http://papers.nips.cc/paper/7592-speaker-follower-models-for-vision-and-language-navigation
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1907.08584
http://arxiv.org/abs/1907.08584
http://papers.nips.cc/paper/9193-hierarchical-decision-making-by-generating-and-following-natural-language-instructions
http://papers.nips.cc/paper/9193-hierarchical-decision-making-by-generating-and-following-natural-language-instructions
http://papers.nips.cc/paper/9193-hierarchical-decision-making-by-generating-and-following-natural-language-instructions


2599

2019, NeurIPS 2019, 8-14 December 2019, Vancou-
ver, BC, Canada, pages 10025–10034.

Hsin-Yuan Huang, Eunsol Choi, and Wen-tau Yih.
2019. FlowQA: Grasping flow in history for con-
versational machine comprehension. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Nikolai Ilinykh, Sina Zarrieß, and David Schlangen.
2019. Meet Up! A corpus of joint activity dia-
logues in a visual environment. In Proceedings of
the 23rd Workshop on the Semantics and Pragmatics
of Dialogue - Full Papers, London, United Kingdom.
SEMDIAL.

Yacine Jernite, Kavya Srinet, Jonathan Gray, and
Arthur Szlam. 2019. CraftAssist instruction parsing:
Semantic parsing for a Minecraft assistant. arXiv
preprint arXiv:1905.01978.

Jin-Hwa Kim, Nikita Kitaev, Xinlei Chen, Marcus
Rohrbach, Byoung-Tak Zhang, Yuandong Tian,
Dhruv Batra, and Devi Parikh. 2019. CoDraw: Col-
laborative drawing as a testbed for grounded goal-
driven communication. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 6495–6513, Florence, Italy.
Association for Computational Linguistics.

Seokhwan Kim, Luis Fernando D’Haro, Rafael E.
Banchs, Jason D. Williams, and Matthew Hender-
son. 2016a. The fourth dialog state tracking chal-
lenge. In Dialogues with Social Robots - En-
ablements, Analyses, and Evaluation, Seventh In-
ternational Workshop on Spoken Dialogue Systems,
IWSDS 2016, Saariselkä, Finland, January 13-16,
2016, volume 427 of Lecture Notes in Electrical En-
gineering, pages 435–449. Springer.

Seokhwan Kim, Luis Fernando D’Haro, Rafael E.
Banchs, Jason D. Williams, Matthew Henderson,
and Koichiro Yoshino. 2016b. The fifth dialog state
tracking challenge. In 2016 IEEE Spoken Language
Technology Workshop, SLT 2016, San Diego, CA,
USA, December 13-16, 2016, pages 511–517. IEEE.

Reginald Long, Panupong Pasupat, and Percy Liang.
2016. Simpler context-dependent logical forms via
model projections. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1456–
1465, Berlin, Germany. Association for Computa-
tional Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer,
and Dieter Fox. 2013. Learning to parse natural
language commands to a robot control system. In

Proc. of the 13th Int’l Symposium on Experimental
Robotics (ISER).

Dipendra K. Misra, Jaeyong Sung, Kevin Lee, and
Ashutosh Saxena. 2016. Tell me Dave: Context-
sensitive grounding of natural language to manip-
ulation instructions. The International Journal of
Robotics Research, 35(1-3):281–300.

Anjali Narayan-Chen, Prashant Jayannavar, and Ju-
lia Hockenmaier. 2019. Collaborative dialogue in
Minecraft. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5405–5415, Florence, Italy. Association for
Computational Linguistics.

Ramakanth Pasunuru and Mohit Bansal. 2018. Game-
based video-context dialogue. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 125–136, Brussels, Bel-
gium. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1532–1543, Doha, Qatar. Association for
Computational Linguistics.

Alan Ritter, Colin Cherry, and Bill Dolan. 2010. Unsu-
pervised modeling of Twitter conversations. In Hu-
man Language Technologies: The 2010 Annual Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics, pages 172–180,
Los Angeles, California. Association for Computa-
tional Linguistics.

Deb Roy and Ehud Reiter. 2005. Connecting language
to the world. Artificial Intelligence, 167(1-2):1–12.

Nicolas Schrading, Cecilia Ovesdotter Alm, Ray
Ptucha, and Christopher Homan. 2015. An analy-
sis of domestic abuse discourse on Reddit. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2577–
2583, Lisbon, Portugal. Association for Computa-
tional Linguistics.

Alane Suhr and Yoav Artzi. 2018. Situated mapping
of sequential instructions to actions with single-step
reward observation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2072–
2082, Melbourne, Australia. Association for Com-
putational Linguistics.

Alane Suhr, Claudia Yan, Jack Schluger, Stanley Yu,
Hadi Khader, Marwa Mouallem, Iris Zhang, and
Yoav Artzi. 2019. Executing instructions in situ-
ated collaborative interactions. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2119–2130, Hong Kong,
China. Association for Computational Linguistics.

https://openreview.net/forum?id=ByftGnR9KX
https://openreview.net/forum?id=ByftGnR9KX
http://semdial.org/anthology/Z19-Ilinykh_semdial_0006.pdf
http://semdial.org/anthology/Z19-Ilinykh_semdial_0006.pdf
http://arxiv.org/abs/1905.01978
http://arxiv.org/abs/1905.01978
https://doi.org/10.18653/v1/P19-1651
https://doi.org/10.18653/v1/P19-1651
https://doi.org/10.18653/v1/P19-1651
https://doi.org/10.1007/978-981-10-2585-3_36
https://doi.org/10.1007/978-981-10-2585-3_36
https://doi.org/10.1109/SLT.2016.7846311
https://doi.org/10.1109/SLT.2016.7846311
https://doi.org/10.18653/v1/P16-1138
https://doi.org/10.18653/v1/P16-1138
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1007/978-3-319-00065-7_28
https://doi.org/10.1007/978-3-319-00065-7_28
https://doi.org/10.1177/0278364915602060
https://doi.org/10.1177/0278364915602060
https://doi.org/10.1177/0278364915602060
https://doi.org/10.18653/v1/P19-1537
https://doi.org/10.18653/v1/P19-1537
https://www.aclweb.org/anthology/D18-1012
https://www.aclweb.org/anthology/D18-1012
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/N10-1020
https://www.aclweb.org/anthology/N10-1020
https://doi.org/10.1016/j.artint.2005.06.002
https://doi.org/10.1016/j.artint.2005.06.002
https://doi.org/10.18653/v1/D15-1309
https://doi.org/10.18653/v1/D15-1309
https://doi.org/10.18653/v1/P18-1193
https://doi.org/10.18653/v1/P18-1193
https://doi.org/10.18653/v1/P18-1193
https://doi.org/10.18653/v1/D19-1218
https://doi.org/10.18653/v1/D19-1218


2600

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Arthur Szlam, Jonathan Gray, Kavya Srinet, Yacine
Jernite, Armand Joulin, Gabriel Synnaeve, Douwe
Kiela, Haonan Yu, Zhuoyuan Chen, Siddharth
Goyal, Demi Guo, Danielle Rothermel, C. Lawrence
Zitnick, and Jason Weston. 2019. Why build
an assistant in Minecraft? arXiv preprint
arXiv:1907.09273.

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew Walter, Ashis Banerjee, Seth Teller, and
Nicholas Roy. 2011. Understanding natural lan-
guage commands for robotic navigation and mobile
manipulation. In Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence, pages
1507–1514.

Jesse Thomason, Michael Murray, Maya Cakmak, and
Luke Zettlemoyer. 2019. Vision-and-dialog naviga-
tion. arXiv preprint arXiv:1907.04957.

Jesse Thomason, Aishwarya Padmakumar, Jivko
Sinapov, Justin Hart, Peter Stone, and Raymond J.
Mooney. 2017. Opportunistic active learning for
grounding natural language descriptions. In Pro-
ceedings of the 1st Annual Conference on Robot
Learning (CoRL-17), pages 67–76, Mountain View,
California. PMLR.

Jesse Thomason, Jivko Sinapov, Maxwell Svetlik, Pe-
ter Stone, and Raymond J. Mooney. 2016. Learn-
ing multi-modal grounded linguistic semantics by
playing “I Spy”. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence
(IJCAI-16), pages 3477–3483, New York City.

Jesse Thomason, Shiqi Zhang, Raymond J Mooney,
and Peter Stone. 2015. Learning to interpret nat-
ural language commands through human-robot dia-
log. In Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI 2015), pages 1923–1929.

Sida I. Wang, Samuel Ginn, Percy Liang, and Christo-
pher D. Manning. 2017. Naturalizing a program-
ming language via interactive learning. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 929–938, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Terry Winograd. 1971. Procedures as a representa-
tion for data in a computer program for understand-
ing natural language. Technical report, MIT. Cent.
Space Res.

H cnntype l j

BAP-baseH1 300 cnnsmall 3 1
BAPH3,4x 300 cnnsmall 4 1

Table 3: Hyperparameter values for the baseline and
full BAP models.

A Model Hyperparameters

We use Gated Recurrent Units (GRUs) (Chung
et al., 2014) for all RNN modules and use
300-dimensional pretrained GloVe word embed-
dings (Pennington et al., 2014). All linear layers
were initialized using Xavier initialization (Glorot
and Bengio, 2010). All non-linearities in the model
are ReLU. All 3×3×3 3d-conv layers have stride
1 and padding 1. All 1×1×1 3d-conv layers have
stride 1 and no padding.

For each model, we perform a grid search over
the following hyperparameters:

• The size of the GRU hidden state
H ∈ {200, 300}

• The number of 3d-conv layers and channels in
the world state encoder and action sequence
decoder CNNs. We define a 3-tuple (echannels,
m, n) where echannels defines the number of
output channels for the first encoder-CNN 3d-
conv layer (which then determines the number
of output channels for subsequent encoder-
CNN 3d-conv layers); m is the number of
3×3×3 3d-conv layers in the world state en-
coder; and n is the number of 1×1×1 3d-conv
layers in the action sequence decoder.
We choose between 2 hyperparameter con-
figurations: cnntype ∈ {cnnsmall =
(200, 2, 3), cnnbig = (300, 3, 2)}.

• The number of dense linear layers in the STOP
prediction model l ∈ {3, 4}

• The number of dense linear layers used to
embed the action vectors before being fed to
the decoder’s GRU j ∈ {1, 2}

Table 3 shows values of these hyperparameters
for our baseline and best models.

B Qualitative Examples

Here, we provide more examples of action se-
quences generated by our model, along with the
initial game state context and the human B’s ac-
tions as ground truth, in order to better highlight

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://arxiv.org/abs/1907.09273
http://arxiv.org/abs/1907.09273
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3623
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3623
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3623
http://arxiv.org/abs/1907.04957
http://arxiv.org/abs/1907.04957
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127657
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127657
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127564
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127564
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127564
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/10957/10931
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/10957/10931
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/10957/10931
https://doi.org/10.18653/v1/P17-1086
https://doi.org/10.18653/v1/P17-1086
https://apps.dtic.mil/dtic/tr/fulltext/u2/721399.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/721399.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/721399.pdf


2601

Generated Ground TruthInitial

A: the next two blocks will be off the 
corners of each of those, in the 
direction of the last yellow block.

B: (places yellow at (-4, 2, 1))
B: like that, or somewhere else?
A: add one more block to the end of that on 

your side
B: (places yellow at (-4, 2, 2))
A: and do the same on the other side

Figure 5: Example 3.

Generated Ground TruthInitial

B: is this a 2d structure?
A: yes … can you make a ring 

using the pillar we just made?
… 

B: (builds a ring of blue blocks, 
while standing on the back 
side of the structure)

A: yup, on the middle block of the 
ring’s right side, can you 
put a blue block?

Figure 6: Example 4.

Generated Ground TruthInitial

A: so we are going to need blue placeholders 
to the left and right of the base block

B: (places two blue blocks on the ground, 
then 2 red blocks atop them)

…
A: do that twice more
B: (places blue and red blocks)
A: ok now you can get rid of the blue blocks

Figure 7: Example 5.

Generated Ground TruthInitial

A: lets start with green
A: place two blocks flat on the 

floor towards the middle

Figure 8: Example 6.

Generated Ground TruthInitial

A: now towards the 
middle of the board 
place 2 more green 
blocks overhanging 
the top so that the 
top has a row of 3

Final Target

Figure 9: Example 7.



2602

the strengths and shortcomings of the full BAP
model. Examples 5, 6 and 7 also examine the net
actions F1 evaluation metric in context.

Example 3 can be found in Figure 5. Over the
course of some back-and-forth dialogue with A, B
has just built the leftmost 2 yellow blocks of the
left yellow row. From here, our model interprets

“do the same on the other side” as placing another
2 yellow blocks, but places them in the wrong lo-
cation. The human B is able to understand that A
means to place the blocks on the other end of the
row-in-progress.

Example 4 can be found in Figure 6. This ex-
ample occurs near the end of a game. B has just
finished building a 3× 3 ring of blue blocks, while
facing the structure from the back side (i.e., facing
the camera in the figure). Following the description

“the middle block of the ring’s right side”, our model
incorrectly predicts placing a blue block adjacent
to one of the middle blocks of the ring, while the
human B grounds this easily. Clearly, higher-level
information needed to help ground the instruction
is lost in context: earlier in the dialogue history
(yet still within the window of utterances in the
H3 history scheme), B has clarified with A that
the structure is entirely 2D, which contradicts the
model’s prediction.

Example 5 can be found in Figure 7. B has built
a V using blue blocks as placeholders to support
the red blocks. Our model interprets “get rid of
the blue blocks” partially correctly, and removes
one blue block, but does not go all the way as
the human B does, who removes all existing blue
blocks. While both the model’s and human B’s
action sequences are correct, the model’s actions
are incomplete, and it is penalized according to net
actions F1.

Example 6 can be found in Figure 8. This exam-
ple occurs at the beginning of a game. Here, A does
not specify a specific location for the green blocks
to be placed, just that they should be “towards the
middle.” In this instance, both our model’s predic-
tion and the human B’s actions are valid interpreta-
tions. However, our model’s output is penalized for
not predicting the exact positions of the human B’s
blocks. This highlights the net actions F1 metric’s
inflexibility to ambiguous scenarios.

Example 7 can be found in Figure 9. This ex-
ample is similar to Example 8 in that the model

predicts a sequence of actions that results in a struc-
ture that is rotationally equivalent to the human
B’s resulting structure. However, in this case, A’s
instruction to place the green blocks “towards the
middle of the board” (a suggestion our model does
not follow) is extremely important in the larger con-
text of task completion: the model’s actions would
result in a final structure that cannot fit within the
grid boundaries. Here, the strictness of net action
F1’s exact match requirement works as intended,
to our benefit.


