
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 253–262
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

253

Pre-train and Plug-in: Flexible Conditional Text Generation with
Variational Auto-Encoders

Yu Duan1∗, Canwen Xu2∗, Jiaxin Pei3∗, Jialong Han4†, Chenliang Li2‡
1 Alibaba Group, China 2 Wuhan University, China

3 University of Michigan, United States 4 Amazon, United States
1 derrick.dy@alibaba-inc.com, 2 {xucanwen,cllee}@whu.edu.cn

3 pedropei@umich.edu, 4 jialonghan@gmail.com

Abstract

Conditional Text Generation has drawn much
attention as a topic of Natural Language Gener-
ation (NLG) which provides the possibility for
humans to control the properties of generated
contents. Current conditional generation mod-
els cannot handle emerging conditions due to
their joint end-to-end learning fashion. When
a new condition added, these techniques re-
quire full retraining. In this paper, we present
a new framework named Pre-train and Plug-in
Variational Auto-Encoder (PPVAE) towards
flexible conditional text generation. PPVAE
decouples the text generation module from
the condition representation module to allow
“one-to-many” conditional generation. When
a fresh condition emerges, only a lightweight
network needs to be trained and works as a
plug-in for PPVAE, which is efficient and
desirable for real-world applications. Exten-
sive experiments demonstrate the superiority
of PPVAE against the existing alternatives
with better conditionality and diversity but less
training effort.1

1 Introduction

Currently, neural generation techniques have pow-
ered many inspiring applications, e.g., poem gener-
ation (Yang et al., 2018), neural machine translation
(NMT) (Bahdanau et al., 2015) and chatbot (Zhao
et al., 2017). Conditional (also known as control-
lable) text generation is an important task of text
generation, aiming to generate realistic text that
carries a specific attribute (e.g., positive or negative
sentiment). A common solution is to encode the
condition into a vector representation and then in-
tegrate it with the text generation process (Kingma

∗ The first three authors contribute equally to this paper.
† Work done when Jialong Han was with Tencent AI Lab.
‡ Chenliang Li is the corresponding author.

1The code is available at https://github.com/
WHUIR/PPVAE.

et al., 2014; Hu et al., 2017; Mirza and Osindero,
2014). These existing neural models have achieved
encouraging results. However, when a new con-
dition is added (e.g., a new topic for categorical
generation), they require a full retraining or fine-
tuning. This process is both time-consuming and
computationally inefficient (Houlsby et al., 2019).
Both fine-tuning and retraining are not desirable
in real-world applications since the delivery (e.g.,
transmitting updated weights through the Internet)
and client-side re-deployment (e.g., distribute up-
dated weights to users) of large-scale weights are
often difficult.

Inspired by the recent success of Variational
Auto-Encoder (VAE) (Kingma and Welling, 2014)
based post-hoc conditional image generation strat-
egy (Engel et al., 2018), we provide a new perspec-
tive for flexible conditional text generation. We
propose Pre-train and Plug-in Variational Auto-
Encoder (PPVAE), which decouples the text gen-
eration module from the condition representation
module. PPVAE is a hierarchical framework com-
posed of two VAEs: (1) PRETRAINVAE, which
derives the global latent space of text with its en-
coder (pre-trained global encoder) and learns to
generate text based on an easily-accessible large un-
labeled dataset with its decoder (pre-trained global
decoder); (2) PLUGINVAE, which is a lightweight
neural network that learns to transform vectors
from the conditional latent space to the global la-
tent space, and vice versa. This mapping function
can be easily learned with only a few conditional
training samples. In this sense, once we transform
a latent variable (also known as latent code) ran-
domly sampled from the conditional space distri-
bution to the global space, the pre-trained global
decoder is directly adopted for generation. In other
words, whenever a new condition emerges, we only
need to train a PLUGINVAE and directly plug it
into the framework.

https://github.com/WHUIR/PPVAE
https://github.com/WHUIR/PPVAE

254

Different from the existing end-to-end neural
models (Mirza and Osindero, 2014; Sohn et al.,
2015; Kingma et al., 2014), PPVAE focuses on the
learning of pure transformation between the con-
tinuous latent spaces, instead of the tricky discrete
text generation. Once trained, PRETRAINVAE is
fixed for text representation and generation under
all conditions. Our proposed framework decouples
the conditional space learning from the text genera-
tion, endowing PPVAE with more flexibility when
handling emerging conditions. Also, training only
a small conditional network for latent space trans-
formation is much more efficient than co-training
with the text generation. Additionally, we can eas-
ily increase the capability of generation using a
larger corpus or deeper neural networks for text
encoding and decoding. Our main contributions
can be summarized as follows: (1) We propose
a novel framework, PPVAE, for conditional text
generation, which allows a separate training for
a new condition without retraining the whole net-
work. (2) We conduct extensive experiments and
analysis to verify the effectiveness of our proposed
PPVAE. Our framework achieves state-of-the-art
performance on conditionality in both automatic
and human evaluations.

2 Related work

Boosted by the recent success of deep learning tech-
nology, Natural Language Generation (NLG) has
recently become popular in the NLP community.
Many great works have attempted to solve various
subtasks like dialogue generation (Li et al., 2016),
poetry generation (Yi et al., 2018) and story gen-
eration (Fan et al., 2018) and new techniques keep
emerging (Bowman et al., 2016; Yu et al., 2017;
Zhou et al., 2020). However, due to the black-
box nature of neural networks, the recent proposed
generic models suffer the problem of lacking inter-
pretability and controllability.

To handle this problem and support generating
plausible text with a specified condition, condi-
tional text generation (Kikuchi et al., 2016; Ficler
and Goldberg, 2017; Hu et al., 2017) has recently at-
tracted extensive attention. Current research in this
direction mainly falls into two fashions: the super-
vised methods and semi-supervised methods. For
supervised methods, Mirza and Osindero (2014);
Sohn et al. (2015) first converted the condition in-
formation to one-hot vectors, then integrated them
into a generator and a discriminator. To enhance

the correlation between structured conditional code
and generated samples, Chen et al. (2016) adopted
an extra adversarial classifier to infer the struc-
tured code from generated samples. Wang and
Wan (2018) used multiple generators for multiple
conditions and a multi-class classifier to provide
training signals for the learning of generators.

However, given only a limited number of condi-
tional samples, semi-supervised methods are com-
pulsory. To utilize the implicit conditional distribu-
tion behind the unlabeled text, Kingma et al. (2014)
introduced a classifier into the VAE architecture.
Hu et al. (2017) further involved two additional
independent regularization terms in enhancing the
disentanglement between structured code and un-
structured code. Very recently, Keskar et al. (2019)
used human-defined “control code” to pre-trained
Language Model in an unsupervised manner.

Our work falls in the category of semi-
supervised learning yet differs from the existing
works in the following ways: (1) Our model decou-
ples the text generation module from the condition
representation module which two are tightly fused
as a single one in previous studies, enabling pos-
sible exploitation for pre-trained Language Mod-
els (e.g., GPT-2 (Radford et al., 2019)). (2) Our
model allows single-condition generation, which
could inspire new applications like polite speech
generator (Niu and Bansal, 2018) and data augmen-
tation (Guo et al., 2018). (3) Our model can handle
emerging conditions while achieving state-of-the-
art performance with fewer parameters and less
training time.

3 Preliminaries

Variational Auto-Encoder (VAE). VAE (Kingma
and Ba, 2015) is widely used in continuous genera-
tion (e.g., image generation). Bowman et al. (2016)
introduced VAE to NLG to solve the “one-to-many”
generation problem (i.e., generating multiple feasi-
ble samples for the same input). Given a latent vari-
able z randomly sampled from a prior distribution,
VAE comprises an encoder enc(x) = qφ(z|x) and
a decoder dec(z) = pθ(x|z). The encoder aims to
encode input data x into latent space Z ∈ Rd. The
decoder is used to reconstruct the original input x,
given the corresponding z. Thus, the loss function
of VAE is formulated as:

LVAE (x) =− Eqφ(z|x)[log pθ(x|z)]
+ KL(qφ(z|x)‖p(z))

(1)

255

where KL(·||·) is the Kullback-Leibler (KL) diver-
gence, p(z) = N (0, 1) is the prior distribution.
The first term ensures that VAE can distill com-
pact variable z in latent space for reconstruction.
The second term pushes posterior distribution to be
close to the prior distribution, securing the mutual
information between original data and the latent
space (Dupont, 2018).
Conditional Text Generation with VAE. Condi-
tional text generation has drawn much attention
recently. By controlling the properties of generated
contents, we can apply the generative models to
many real-world scenarios. We follow the problem
setting in (Hu et al., 2017). Given a set of k condi-
tions C = {c1, c2, ..., ck}, an unlabeled corpus X ,
and conditional text samples Y = Y1∪Y2∪ ...∪Yk
where each Yi is a set of text samples that carries
the condition ci. The goal of a VAE model is to
learn a decoder pθ(ŷ|z, ci) that takes the latent vari-
able z and the condition ci to calculate the distri-
bution over the text samples Yi. Thus, when the
condition ci and a randomly sampled latent vari-
able z ∼ p(z) specified, the model could generate
realistic text samples matching the given condition.

4 Pre-train and Plug-in Variational
Auto-Encoder

As a basis for semi-supervised learning, a large
unlabeled corpus should include diverse text which
covers a vast spectrum of conditions. Thus, text un-
der each condition forms a conditional latent space,
which could be mapped from a larger global latent
space. Based on this, we propose a PRETRAIN-
VAE and a PLUGINVAE to derive the global and
conditional latent space, respectively.

4.1 Framework

PRETRAINVAE is composed of a pre-trained
global encoder for text representation and a pre-
trained global decoder for text generation.
PRETRAINVAE. The encoder and decoder of
PRETRAINVAE are used to encode and generate
text, respectively. As discussed above, PRETRAIN-
VAE is trained on a large amount of unlabeled text
to derive the global latent space Zg for the latent
variable zg, where Zg ∈ Rdg and dg is the space
dimension. Previous studies usually use a common
VAE for text representation and generation. How-
ever, as pointed out in (Bowman et al., 2016), VAE
suffers the notorious “posterior collapse” problem.
To address this, we utilize Wasserstein Autoen-

coder (WAE) (Tolstikhin et al., 2018) for PRE-
TRAINVAE. Different from the original VAE, WAE
encourages aggregated posterior distribution to be
close to the prior, which is effective in alleviat-
ing the reconstruction problem of VAE (Tolstikhin
et al., 2018). Specifically, we adopt WAE-GAN, a
variant of WAE, which incorporates the merits of
adversarial learning. During training, the encoder
encg(x) = qg(zg|x) encodes the text to the latent
space and the decoder decg(zg) = pg(x|zg) recon-
struct the text with the latent variable zg. Thus, the
loss function of PRETRAINVAE is formulated as:

LPRETRAINVAE(x) =− Eqg(zg |x)[log pg(x|zg)]
+ λD(Q(zg), p(zg))

(2)
where Q(zg) =

∫
qg(zg|x)p(x) dx is the aggre-

gated posterior distribution; p(zg) is the prior nor-
mal distribution; D is the adversarial discriminator;
λ is the coefficient hyper-parameter (λ > 0).
PLUGINVAE. For each condition, we use a
condition-specific PLUGINVAE to derive the con-
ditional space. That is, PLUGINVAE is proposed
to learn the transformation between the condi-
tional and global latent space for each condition.
Specifically, for each condition ci, we use a lim-
ited number of conditional samples yi and utilize
the global encoder encg to encode them into vyi .
Note that normally, the encoded text samples un-
der a single condition are not likely to densely
clustered in the global text space Zg, since the
learning process of Zg is condition-independent
and the unlabeled corpus contains diverse text sam-
ples. PLUGINVAE for condition ci consists of an
encoder encci(vyi) = qci(zci |vyi) and a decoder
decci(zci) = pci(vyi |zci). The learned condition-
dependent latent space is Zci ∈ Rdc , where dc is
the space dimension. Thus, PLUGINVAE is ca-
pable of mapping the samples in the global latent
space to and from a denser conditional latent space
(i.e., dc < dg). During training, the loss function
of PLUGINVAE for a single condition is defined
as:
Lsingle(vyi) = −Eq(zci |vyi)[log pci(vyi |zci)]

+ | (KL(qci(zci |vyi)‖p(zci))− β |
(3)

where p(zci) is the prior normal distribution of the
conditional latent space; zci is the latent variable;
vyi = encg(yi) is encoded text samples from Yi.
To enhance the diversity of generated text, we intro-
duce an extra constant term β to control the amount

256

Reconstruction

(a) (c)

Sample and map Generate
conditional text

(b)

ReconstructionEncode

PLUGINVAE

x
<latexit sha1_base64="ze+WcU7V23dwaMcDXxVk0US2TPs=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIXdWGgjBm0sEzAXSEKYnZxNxsxemJkVw5InsLFQxFYfxt5GfBsnl0ITfxj4+P9zmHOOFwuutON8W5ml5ZXVtey6vbG5tb2T292rqSiRDKssEpFseFSh4CFWNdcCG7FEGngC697gapzX71AqHoU3ehhjO6C9kPucUW2syn0nl3cKzkRkEdwZ5C8+7PP4/csud3KfrW7EkgBDzQRVquk6sW6nVGrOBI7sVqIwpmxAe9g0GNIAVTudDDoiR8bpEj+S5oWaTNzfHSkNlBoGnqkMqO6r+Wxs/pc1E+2ftVMexonGkE0/8hNBdETGW5Mul8i0GBqgTHIzK2F9KinT5ja2OYI7v/Ii1IoF96RQrLj50iVMlYUDOIRjcOEUSnANZagCA4QHeIJn69Z6tF6s12lpxpr17MMfWW8/R22QPg==</latexit>

decg
<latexit sha1_base64="9/RuNtyzOuzMzRByHSV+BYq4Yp8=">AAAB7HicbZA7TsNAEIbHPEPCI0BJYxGQqCI7FFBG0FAGCSeRkihar8fJKuu1tbuOFFk5Aw0FCNFyBC7ADeg4CNRsHgUk/NJKn/5/RjszfsKZ0o7zaa2srq1vbOa28oXtnd294v5BXcWppOjRmMey6ROFnAn0NNMcm4lEEvkcG/7gepI3higVi8WdHiXYiUhPsJBRoo3lBUi7vW6x5JSdqexlcOdQqp58vb0PC9+1bvGjHcQ0jVBoyolSLddJdCcjUjPKcZxvpwoTQgekhy2DgkSoOtl02LF9apzADmNpntD21P3dkZFIqVHkm8qI6L5azCbmf1kr1eFlJ2MiSTUKOvsoTLmtY3uyuR0wiVTzkQFCJTOz2rRPJKHa3CdvjuAurrwM9UrZPS9Xbt1S9QpmysERHMMZuHABVbiBGnhAgcE9PMKTJawH69l6mZWuWPOeQ/gj6/UHfjyS6A==</latexit> x̃

<latexit sha1_base64="6txPorvItW2eK2WBwsj61QWfb10=">AAAB8HicbZDLSgMxFIbPeK3jrerSTbAIrspMXehGLLpxWcFepB1KJpO2oUlmSDJiGfoUblwoIu58EfduxLcxvSy09YfAx/+fQ845YcKZNp737SwsLi2vrObW3PWNza3t/M5uTcepIrRKYh6rRog15UzSqmGG00aiKBYhp/WwfznK63dUaRbLGzNIaCBwV7IOI9hY67ZlGI9odj9s5wte0RsLzYM/hcL5h3uWvH25lXb+sxXFJBVUGsKx1k3fS0yQYWUY4XTotlJNE0z6uEubFiUWVAfZeOAhOrROhDqxsk8aNHZ/d2RYaD0Qoa0U2PT0bDYy/8uaqemcBhmTSWqoJJOPOilHJkaj7VHEFCWGDyxgopidFZEeVpgYeyPXHsGfXXkeaqWif1wsXfuF8gVMlIN9OIAj8OEEynAFFagCAQEP8ATPjnIenRfndVK64Ex79uCPnPcfpIKT9A==</latexit>

zg
<latexit sha1_base64="ak/OuH4h9Zi7gMLQkiGdXQFYcYE=">AAAB9XicbVC7TsNAEFzzDA6PACXNiRCJKrJDAWUEDWWQyENKTHQ+X5JTzmfr7hwUrPwHDQUI0dLxA/wBHR8CNZdHAQkjrTSa2dXujh9zprTjfFpLyyura+uZDTu7ubW9k9vdq6kokYRWScQj2fCxopwJWtVMc9qIJcWhz2nd71+M/fqASsUica2HMfVC3BWswwjWRroptDTjAU0bI/uu3W3n8k7RmQAtEndG8uWjr7f3Qfa70s59tIKIJCEVmnCsVNN1Yu2lWGpGOB3ZrUTRGJM+7tKmoQKHVHnp5OoRKhglQJ1ImhIaTdTfEykOlRqGvukMse6peW8s/uc1E90581Im4kRTQaaLOglHOkLjCFDAJCWaDw3BRDJzKyI9LDHRJijbhODOv7xIaqWie1IsXbn58jlMkYEDOIRjcOEUynAJFagCAQn38AhP1q31YD1bL9PWJWs2sw9/YL3+AM2nln0=</latexit>

vyi
<latexit sha1_base64="J1br33v1SdIIyQgXyNdJhQN2W74=">AAAB7nicbZC7TsMwFIZPyq20XAqMLBYFialK2gHGChbGItGL1EaR4zqtVceJbKdSFPUhWBhAiJUn4AV4AzYeBGbcywAtv2Tp0/+fI59z/JgzpW3708qtrW9sbuW3C8Wd3b390sFhS0WJJLRJIh7Jjo8V5UzQpmaa004sKQ59Ttv+6Hqat8dUKhaJO53G1A3xQLCAEayN1R57WeqxiVcq2xV7JrQKzgLK9dOvt/dx8bvhlT56/YgkIRWacKxU17Fj7WZYakY4nRR6iaIxJiM8oF2DAodUudls3Ak6M04fBZE0T2g0c393ZDhUKg19UxliPVTL2dT8L+smOrh0MybiRFNB5h8FCUc6QtPdUZ9JSjRPDWAimZkVkSGWmGhzoYI5grO88iq0qhWnVqneOuX6FcyVh2M4gXNw4ALqcAMNaAKBEdzDIzxZsfVgPVsv89Kcteg5gj+yXn8Ae92UGA==</latexit>

PRETRAINVAE

Zci
<latexit sha1_base64="dV/CIqx4CVoqgSjTb+EYupx7qT8=">AAAB+3icbVC7TsMwFHV4lvAKZWSxWlViqpIywFjBwlgk+hBNFDmO01p1nMh2EFWUD+AL2FgYQIiVL+APWBB/g/sYoOVIVzo6517de0+QMiqVbX8bK6tr6xubpS1ze2d3b986KHdkkglM2jhhiegFSBJGOWkrqhjppYKgOGCkG4wuJn73lghJE36txinxYjTgNKIYKS35VrnmKspCkvcK88bPsU8L36radXsKuEycOak2K27l/uHjq+Vbn26Y4CwmXGGGpOw7dqq8HAlFMSOF6WaSpAiP0ID0NeUoJtLLp7cXsKaVEEaJ0MUVnKq/J3IUSzmOA90ZIzWUi95E/M/rZyo683LK00wRjmeLooxBlcBJEDCkgmDFxpogLKi+FeIhEggrHZepQ3AWX14mnUbdOak3rpxq8xzMUAJHoAKOgQNOQRNcghZoAwzuwCN4Bi9GYTwZr8bbrHXFmM8cgj8w3n8AcsaXww==</latexit>

encci
<latexit sha1_base64="hLlPk1Zh219IlufqQdRXgVEOEMQ=">AAAB/nicbVDLSsNAFJ3UV42vqLhyM7QUXJWkLnRZdOOygn1AU8JkMmmHTiZhZiKUEHDrF7h240IRt+79Azfi3zhpu9DWAxcO59zLvff4CaNS2fa3UVpZXVvfKG+aW9s7u3vW/kFHxqnApI1jFouejyRhlJO2ooqRXiIIinxGuv74svC7t0RIGvMbNUnIIEJDTkOKkdKSZx3VXEVZQLJebhKOvQx7NDc9q2rX7SngMnHmpNqsuJX7h4+vlmd9ukGM04hwhRmSsu/YiRpkSCiKGclNN5UkQXiMhqSvKUcRkYNsen4Oa1oJYBgLXVzBqfp7IkORlJPI150RUiO56BXif14/VeH5IKM8SZX+bbYoTBlUMSyygAEVBCs20QRhQfWtEI+QQFjpxIoQnMWXl0mnUXdO641rp9q8ADOUwTGogBPggDPQBFegBdoAgww8gmfwYtwZT8ar8TZrLRnzmUPwB8b7D1TQmMc=</latexit>

decci
<latexit sha1_base64="x9Qs2J4s93QtIYuEKiw66N1/Ei0=">AAAB/nicbVDLSsNAFJ3UV42vqLhyE1oKrkpSF7osunFZwT6gKWEyuWmHTh7MTIQSAm79AtduXCji1r1/4Eb8GydtF9p64MLhnHu59x4vYVRIy/rWSiura+sb5U19a3tnd8/YP+iIOOUE2iRmMe95WACjEbQllQx6CQccegy63viy8Lu3wAWNoxs5SWAQ4mFEA0qwVJJrHNUcSZkPWS/XfSBuRlya665RterWFOYyseek2qw4lfuHj6+Wa3w6fkzSECJJGBaib1uJHGSYS0oY5LqTCkgwGeMh9BWNcAhikE3Pz82aUnwziLmqSJpT9fdEhkMhJqGnOkMsR2LRK8T/vH4qg/NBRqMklRCR2aIgZaaMzSIL06cciGQTRTDhVN1qkhHmmEiVWBGCvfjyMuk06vZpvXFtV5sXaIYyOkYVdIJsdIaa6Aq1UBsRlKFH9IxetDvtSXvV3matJW0+c4j+QHv/AUVXmL0=</latexit>

p(zci)
<latexit sha1_base64="3PDwN796q0fKag9k3F708b7RmeE=">AAAB8XicbZDLSsNAFIZP6q3WW9Wlm6FFqAglqQtdBt24rGAv2IYwmU7boZNJmJkIMfQtunGhiFvfxl3fxulloa0/DHz8/znMOSeIOVPatqdWbmNza3snv1vY2z84PCoenzRVlEhCGyTikWwHWFHOBG1opjltx5LiMOC0FYzuZnnrmUrFIvGo05h6IR4I1mcEa2M9xZUXPyM+G1/4xbJdtedC6+AsoeyWupeTqZvW/eJ3txeRJKRCE46V6jh2rL0MS80Ip+NCN1E0xmSEB7RjUOCQKi+bTzxG58bpoX4kzRMazd3fHRkOlUrDwFSGWA/VajYz/8s6ie7feBkTcaKpIIuP+glHOkKz9VGPSUo0Tw1gIpmZFZEhlphoc6SCOYKzuvI6NGtV56pae3DK7i0slIczKEEFHLgGF+6hDg0gIGACb/BuKevV+rA+F6U5a9lzCn9kff0AVOiTqw==</latexit>

decci
<latexit sha1_base64="x9Qs2J4s93QtIYuEKiw66N1/Ei0=">AAAB/nicbVDLSsNAFJ3UV42vqLhyE1oKrkpSF7osunFZwT6gKWEyuWmHTh7MTIQSAm79AtduXCji1r1/4Eb8GydtF9p64MLhnHu59x4vYVRIy/rWSiura+sb5U19a3tnd8/YP+iIOOUE2iRmMe95WACjEbQllQx6CQccegy63viy8Lu3wAWNoxs5SWAQ4mFEA0qwVJJrHNUcSZkPWS/XfSBuRlya665RterWFOYyseek2qw4lfuHj6+Wa3w6fkzSECJJGBaib1uJHGSYS0oY5LqTCkgwGeMh9BWNcAhikE3Pz82aUnwziLmqSJpT9fdEhkMhJqGnOkMsR2LRK8T/vH4qg/NBRqMklRCR2aIgZaaMzSIL06cciGQTRTDhVN1qkhHmmEiVWBGCvfjyMuk06vZpvXFtV5sXaIYyOkYVdIJsdIaa6Aq1UBsRlKFH9IxetDvtSXvV3matJW0+c4j+QHv/AUVXmL0=</latexit>

Sample

zci
<latexit sha1_base64="cjqCroEtOxvITpXeDBKIqUV8r1I=">AAAB+3icbVC7TsMwFHV4lvAKZWSxWlViqpIywFjBwlgk+pCaKHIcp7XqOJHtIEqUD+AL2FgYQIiVL+APWBB/g/sYoOVIVzo6517de0+QMiqVbX8bK6tr6xubpS1ze2d3b986KHdkkglM2jhhiegFSBJGOWkrqhjppYKgOGCkG4wuJn73hghJE36txinxYjTgNKIYKS35VrnmKspCkvcK887PsU8L36radXsKuEycOak2K27l/uHjq+Vbn26Y4CwmXGGGpOw7dqq8HAlFMSOF6WaSpAiP0ID0NeUoJtLLp7cXsKaVEEaJ0MUVnKq/J3IUSzmOA90ZIzWUi95E/M/rZyo683LK00wRjmeLooxBlcBJEDCkgmDFxpogLKi+FeIhEggrHZepQ3AWX14mnUbdOak3rpxq8xzMUAJHoAKOgQNOQRNcghZoAwxuwSN4Bi9GYTwZr8bbrHXFmM8cgj8w3n8ApAaX4w==</latexit>

z
0
ci

<latexit sha1_base64="EU0qrVJAYXl0j9NoXSuttaekQZc=">AAAB/3icbVC7TsNAEDyHVzAvByQamhNRBDSRHQooI2gog4STSLGxzudzcsr5obszUjAu+BUaChCi5Tfo+BFqLo8CEkZaaTSzq90dP2VUSNP80kpLyyura+V1fWNza3vHqOy2RZJxTGycsIR3fSQIozGxJZWMdFNOUOQz0vGHl2O/c0e4oEl8I0cpcSPUj2lIMZJK8oz9miMpC0jeLfT72/yo8HLs0cIzqmbdnAAuEmtGqs0Tp+J+207LMz6dIMFZRGKJGRKiZ5mpdHPEJcWMFLqTCZIiPER90lM0RhERbj65v4A1pQQwTLiqWMKJ+nsiR5EQo8hXnRGSAzHvjcX/vF4mw3M3p3GaSRLj6aIwY1AmcBwGDCgnWLKRIghzqm6FeIA4wlJFpqsQrPmXF0m7UbdO641rq9q8AFOUwQE4BMfAAmegCa5AC9gAgwfwBF7Aq/aoPWtv2vu0taTNZvbAH2gfP5brmMg=</latexit>

decg
<latexit sha1_base64="9/RuNtyzOuzMzRByHSV+BYq4Yp8=">AAAB7HicbZA7TsNAEIbHPEPCI0BJYxGQqCI7FFBG0FAGCSeRkihar8fJKuu1tbuOFFk5Aw0FCNFyBC7ADeg4CNRsHgUk/NJKn/5/RjszfsKZ0o7zaa2srq1vbOa28oXtnd294v5BXcWppOjRmMey6ROFnAn0NNMcm4lEEvkcG/7gepI3higVi8WdHiXYiUhPsJBRoo3lBUi7vW6x5JSdqexlcOdQqp58vb0PC9+1bvGjHcQ0jVBoyolSLddJdCcjUjPKcZxvpwoTQgekhy2DgkSoOtl02LF9apzADmNpntD21P3dkZFIqVHkm8qI6L5azCbmf1kr1eFlJ2MiSTUKOvsoTLmtY3uyuR0wiVTzkQFCJTOz2rRPJKHa3CdvjuAurrwM9UrZPS9Xbt1S9QpmysERHMMZuHABVbiBGnhAgcE9PMKTJawH69l6mZWuWPOeQ/gj6/UHfjyS6A==</latexit>

ŷi
<latexit sha1_base64="o5++brFuaadtlKLJ6K4B/AeEMJY=">AAAB/XicbVDJSgNBEO1xjXEbl5sijSHgKczEgx6DXjwmYBZIhqGnp5M06VnorhHGIXjyP7x4UMSr+Q5vfoM/YWc5aOKDgsd7Vd1Vz4sFV2BZX8bS8srq2npuI7+5tb2za+7tN1SUSMrqNBKRbHlEMcFDVgcOgrViyUjgCdb0Btdjv3nHpOJReAtpzJyA9ELe5ZSAllzzsNgBLnyWtYb5Tp9Alg5d7poFq2RNgBeJPSOFyvGo9v14Mqq65mfHj2gSsBCoIEq1bSsGJyMSOBVMv5woFhM6ID3W1jQkAVNONtl+iIta8XE3krpCwBP190RGAqXSwNOdAYG+mvfG4n9eO4HupZPxME6AhXT6UTcRGCI8jgL7XDIKItWEUMn1rpj2iSQUdGB5HYI9f/IiaZRL9nmpXLMLlSs0RQ4doVN0hmx0gSroBlVRHVF0j57QC3o1Hoxn4814n7YuGbOZA/QHxscPWgeY3g==</latexit>

zci
<latexit sha1_base64="YuECGoO3HC8+PnKU0hLqiNnXTTQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0IWy203bpZhN2N0IN/RFePCji1d/jzX/jts1BWx8MPN6bYWZemAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCalGwSU2DTcCO4lCGoUC2+H4dua3H1FpHssHM0nQj+hQ8gFn1Fip/RRkLODToFxxq+4cZJV4OalAjkZQ/ur1Y5ZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj93Ss6s0ieDWNmShszV3xMZjbSeRKHtjKgZ6WVvJv7ndVMzuPYzLpPUoGSLRYNUEBOT2e+kzxUyIyaWUKa4vZWwEVWUGZtQyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwzO8wpuTOC/Ou/OxaC04+cwx/IHz+QOeS4/A</latexit>

yi
<latexit sha1_base64="Kr9zKiAScfd9h9AHI+C+F2nCG10=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHkyXoR3QoecgZNVZ6yPq8X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGn1BlOBM4LfVSjQllYzrErqWSRqj9yfzUKTmzyoCEsbIlDZmrvycmNNI6iwLbGVEz0sveTPzP66YmvPYnXCapQckWi8JUEBOT2d9kwBUyIzJLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBjZI3d</latexit>

Zg
<latexit sha1_base64="arNq5Vu7SJy862IhHFbjbz98opA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/cA2lM12ki7dbMLuRiilP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZIphg2WiES1A6pRcIkNw43AdqqQxoHAVjC8mfqtJ1SaJ/LBjFL0YxpJHnJGjZXuH3tRr1R2K+4MZJl4OSlDjnqv9NXtJyyLURomqNYdz02NP6bKcCZwUuxmGlPKhjTCjqWSxqj98ezUCTm1Sp+EibIlDZmpvyfGNNZ6FAe2M6ZmoBe9qfif18lMeOWPuUwzg5LNF4WZICYh079JnytkRowsoUxxeythA6ooMzadog3BW3x5mTSrFe+8Ur27KNeu8zgKcAwncAYeXEINbqEODWAQwTO8wpsjnBfn3fmYt644+cwR/IHz+QMxIo28</latexit>

ṽyi
<latexit sha1_base64="TcsKtXuTdRK1Z1nu8UA696K/Tng=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoJVgETyWpgh6LXjxWsB/QhrDZTNqlm03Y3RRiyC/x4kERr/4Ub/4bt20O2vpg4PHeDDPz/IRRqWz726hsbG5t71R3a3v7B4d18+i4J+NUEOiSmMVi4GMJjHLoKqoYDBIBOPIZ9P3p3dzvz0BIGvNHlSXgRnjMaUgJVlryzPpIURZAPiu8PPNo4ZkNu2kvYK0TpyQNVKLjmV+jICZpBFwRhqUcOnai3BwLRQmDojZKJSSYTPEYhppyHIF088XhhXWulcAKY6GLK2uh/p7IcSRlFvm6M8JqIle9ufifN0xVeOPmlCepAk6Wi8KUWSq25ilYARVAFMs0wURQfatFJlhgonRWNR2Cs/ryOum1ms5ls/Vw1WjflnFU0Sk6QxfIQdeoje5RB3URQSl6Rq/ozXgyXox342PZWjHKmRP0B8bnD6NYk7k=</latexit>

Zg
<latexit sha1_base64="arNq5Vu7SJy862IhHFbjbz98opA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/cA2lM12ki7dbMLuRiilP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZIphg2WiES1A6pRcIkNw43AdqqQxoHAVjC8mfqtJ1SaJ/LBjFL0YxpJHnJGjZXuH3tRr1R2K+4MZJl4OSlDjnqv9NXtJyyLURomqNYdz02NP6bKcCZwUuxmGlPKhjTCjqWSxqj98ezUCTm1Sp+EibIlDZmpvyfGNNZ6FAe2M6ZmoBe9qfif18lMeOWPuUwzg5LNF4WZICYh079JnytkRowsoUxxeythA6ooMzadog3BW3x5mTSrFe+8Ur27KNeu8zgKcAwncAYeXEINbqEODWAQwTO8wpsjnBfn3fmYt644+cwR/IHz+QMxIo28</latexit>

Zg
<latexit sha1_base64="arNq5Vu7SJy862IhHFbjbz98opA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/cA2lM12ki7dbMLuRiilP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZIphg2WiES1A6pRcIkNw43AdqqQxoHAVjC8mfqtJ1SaJ/LBjFL0YxpJHnJGjZXuH3tRr1R2K+4MZJl4OSlDjnqv9NXtJyyLURomqNYdz02NP6bKcCZwUuxmGlPKhjTCjqWSxqj98ezUCTm1Sp+EibIlDZmpvyfGNNZ6FAe2M6ZmoBe9qfif18lMeOWPuUwzg5LNF4WZICYh079JnytkRowsoUxxeythA6ooMzadog3BW3x5mTSrFe+8Ur27KNeu8zgKcAwncAYeXEINbqEODWAQwTO8wpsjnBfn3fmYt644+cwR/IHz+QMxIo28</latexit>

Zg
<latexit sha1_base64="arNq5Vu7SJy862IhHFbjbz98opA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/cA2lM12ki7dbMLuRiilP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZIphg2WiES1A6pRcIkNw43AdqqQxoHAVjC8mfqtJ1SaJ/LBjFL0YxpJHnJGjZXuH3tRr1R2K+4MZJl4OSlDjnqv9NXtJyyLURomqNYdz02NP6bKcCZwUuxmGlPKhjTCjqWSxqj98ezUCTm1Sp+EibIlDZmpvyfGNNZ6FAe2M6ZmoBe9qfif18lMeOWPuUwzg5LNF4WZICYh079JnytkRowsoUxxeythA6ooMzadog3BW3x5mTSrFe+8Ur27KNeu8zgKcAwncAYeXEINbqEODWAQwTO8wpsjnBfn3fmYt644+cwR/IHz+QMxIo28</latexit>

encg
<latexit sha1_base64="Li9nok92h2Eqq6yhlwfhTUGRPrA=">AAAB7HicbVC7SgNBFL3rMyY+opY2g1GwCrux0DJoYxnBTQLJEmYns8mQmdllZjYQlnyDjYUitn6CP+Af2PkhWjt5FJp44MLhnHu599ww4Uwb1/10VlbX1jc2c1v5wvbO7l5x/6Cu41QR6pOYx6oZYk05k9Q3zHDaTBTFIuS0EQ6uJ35jSJVmsbwzo4QGAvckixjBxko+laTT6xRLbtmdAi0Tb05K1ZOvt/dh4bvWKX60uzFJBZWGcKx1y3MTE2RYGUY4HefbqaYJJgPcoy1LJRZUB9n02DE6tUoXRbGyJQ2aqr8nMiy0HonQdgps+nrRm4j/ea3URJdBxmSSGhtrtihKOTIxmiRHXaYoMXxkCSaK2VsR6WOFibH/ydsneIuRl0m9UvbOy5Vbr1S9ghlycATHcAYeXEAVbqAGPhBgcA+P8ORI58F5dl5mrSvOfOYQ/sB5/QGNg5Ly</latexit>

encg
<latexit sha1_base64="Li9nok92h2Eqq6yhlwfhTUGRPrA=">AAAB7HicbVC7SgNBFL3rMyY+opY2g1GwCrux0DJoYxnBTQLJEmYns8mQmdllZjYQlnyDjYUitn6CP+Af2PkhWjt5FJp44MLhnHu599ww4Uwb1/10VlbX1jc2c1v5wvbO7l5x/6Cu41QR6pOYx6oZYk05k9Q3zHDaTBTFIuS0EQ6uJ35jSJVmsbwzo4QGAvckixjBxko+laTT6xRLbtmdAi0Tb05K1ZOvt/dh4bvWKX60uzFJBZWGcKx1y3MTE2RYGUY4HefbqaYJJgPcoy1LJRZUB9n02DE6tUoXRbGyJQ2aqr8nMiy0HonQdgps+nrRm4j/ea3URJdBxmSSGhtrtihKOTIxmiRHXaYoMXxkCSaK2VsR6WOFibH/ydsneIuRl0m9UvbOy5Vbr1S9ghlycATHcAYeXEAVbqAGPhBgcA+P8ORI58F5dl5mrSvOfOYQ/sB5/QGNg5Ly</latexit>

Figure 1: The whole workflow of our proposed framework.

of encoded information in VAE (Dupont, 2018;
Chen et al., 2018; Kim and Mnih, 2018). By set-
ting β to an appropriate value, PLUGINVAE could
extract compact conditional information without
sacrificing the fluency or accuracy.

Although we can already generate conditional
text under a single condition by Equation 3, it is
possible to even further improve the conditionality
by introducing negative samples. We construct the
negative samples y

′
i from Y

′
i and encode them:

Y
′
i = Y − Yi

v
′
yi = encg(y

′
i)

(4)

Thus, the loss function of PLUGINVAE with
negative samples is defined as:

LPLUGINVAE(vyi , v
′
yi)

= Lsingle(vyi)− γ Lsingle(v
′
yi)

(5)

where vyi is a batch of encoded samples under con-
dition ci, and v

′
yi is a batch of encoded negative

samples; γ is a hyper-parameter balancing the pos-
itive and negative samples. For different tasks, the
best setting for γ may vary. Intuitively, the larger
the difference between the conditions is, the smaller
γ should be.

4.2 Workflow
In this section, we provide the details of training
and generation procedures. As illustrated in Figure
1, the workflow is composed of three steps.
Pre-train once, infer everywhere. First, as shown
in Figure 1(a), using the unlabeled corpus X , we
pre-train PRETRAINVAE to learn the global la-
tent space Zg by reconstruction with Equation 2.
Once pre-trained, the weights of both encg and
decg are fixed. As an unsupervised VAE model,
PRETRAINVAE is capable of generating diverse
but unconditional text.
Train it when you need it. Previous meth-
ods (Kingma et al., 2014; Hu et al., 2017) learn

the joint conditional space by jointly considering
all conditions. However, once the model is trained,
it is not possible to add a new condition without
a full retraining. Different from those approaches,
PPVAE is totally flexible that allows adding new
conditions. Shown in Figure 1(b), once a con-
dition is added, we only need to train a PLUG-
INVAE specifically for this condition with Equa-
tion 3 (or Equation 5, if provided with samples
of other conditions). Since PLUGINVAE is text-
irrelevant and only learns to map between two la-
tent spaces, the training number of parameters is
only 0.34% (see Section 6.3) of fine-tuning PRE-
TRAINVAE or retraining other models. Addition-
ally, although we need to train k PLUGINVAE for
k conditions, the total number of trained param-
eters is still much smaller than existing methods
(unless k > 1/0.34% ≈ 294, which is impossible
in actual applications). Plus, we can parallel the
conditional training to speed up the process easily.
Plug it in and generate. Shown in Figure 1(c),
once PLUGINVAE for the condition ci is trained,
we can plug it into the PPVAE framework and
generate text together with PRETRAINVAE.

First, we randomly sample a latent variable zci
from the prior distribution p(zci) = N (0, 1). Then
we use PLUGINVAE’s decoder decci to map zci to
the global latent space Zg and obtain z

′
ci :

z
′
ci = decci(zci). (6)

Since z
′
ci ∈ Zg, we can directly use the global

decoder decg to generate text:

ŷi = decg(z
′
ci) (7)

where ŷi is the generated text under condition ci.

5 Experimental Settings

5.1 Datasets
Following the setting of (Hu et al., 2017), we
mainly focus on short text generation (no longer

257

Dataset #Train #Dev #Test Avg-len

Yelp 444,101 63,483 126,670 8.93
News Titles 249,043 23,949 20,000 9.85

Table 1: The statistics of Yelp and News Titles.

than 15 tokens), which is easier for both automatic
and human evaluations. We use Yelp (Shen et al.,
2017) and News Titles (Fu et al., 2018) for exper-
iments. Yelp is a collection of restaurant reviews.
We use the pre-processed version used in (Shen
et al., 2017), where two polarity sentiment labels
are provided. For News Titles, we choose the ti-
tles belong to Business, Entertainment and Health
categories for our experiments.

Both Yelp and News Titles are datasets with rel-
atively short text. We filter out text longer than 15
words, then choose the top 8,900 and 10,000 words
as the vocabulary for Yelp and News Titles, respec-
tively. The statistics of the two datasets are listed
in Table 1. We discard the labels in the original
training and validation splits. We use the original
training split as the unlabeled corpus; the validation
split to select the best unsupervised models, and
the test split as the labeled conditional text.

Based on the Yelp dataset, we define two tasks:
(1) Sentiment. This task aims at generating text
samples, either positive or negative. The ratio of
positive/negative text in Yelp is roughly 0.6 : 0.4.
We randomly sample 200 positive and 200 nega-
tive text for supervised training. (2) Length. This
task aims at generating text samples with a spe-
cific length. We define (len ≤ 3) as short text,
(len ≥ 12) as long text and (3 < len < 12) as
medium text. We respectively sample 200 text for
short, medium, and long text for supervised train-
ing.

Based on the News Titles dataset, we define the
categorical text generation task called Topic. This
task aims at generating text samples on a certain
topic. The ratio of business/health/entertainment
in News Title is 0.38 : 0.15 : 0.47, which is more
imbalanced than Yelp. We randomly sample 200
text for each category for supervised learning.

5.2 Baselines

We use two semi-supervised methods, S-
VAE (Kingma et al., 2014) and CTRL-GEN (Hu
et al., 2017) as our baselines. S-VAE incorporates
a classifier to provide conditional distribution for
unlabeled data. Note that S-VAE is originally

proposed for image generation but adapted to
text generation as a baseline by Hu et al. (2017).
CTRL-GEN further exploits several regularization
terms to enhance the disentanglement between
the structured code and the unstructured code.
For a fair comparison, both the text encoder
and decoder of the two baselines are the same
as PRETRAINVAE. Furthermore, the baseline
methods also exploit the same unlabeled corpus X
and labeled corpus Y as described in the original
papers.

5.3 Models
PPVAE is a model-agnostic approach, which
means that both the encoders and encoders of PRE-
TRAINVAE and PLUGINVAE can be modified to
work under different settings. Here, we describe
the model architecture used in our experiments.
PRETRAINVAE. For the encoder, we use a one-
layer Bidirectional Gated Recurrent Unit (Bi-GRU)
with 256 hidden units in each direction as its
encoder. Two linear Fully-Connected (FC) lay-
ers are used for re-parameteristic trick (Kingma
and Welling, 2014). For the decoder, we use a
Transformer (Vaswani et al., 2017) (3 layers, 8
heads). Additionally, we add extra positional em-
bedding after each block, and the linearly trans-
formed encoded vector is provided as input for
each block (Brock et al., 2019). For a fair compari-
son, we use the same encoder-decoder architecture
for both S-VAE and CTRL-GEN.
PLUGINVAE. The encoder is a two-layer FC net-
work of 64/32 hidden units taking input in dg di-
mensions with an additional linear output layer of
dc units. The decoder is a two-layer FC network
of 32/64 hidden units taking the latent variable in
dc dimensions as input with a linear output layer
of dg units. The activation function used in the FC
networks is LeakyRelu (Maas et al., 2013).

5.4 Hyper-Parameters
PRETRAINVAE. The size of latent space dg is set
to 128. The word embedding is in 256 dimensions
and randomly initialized. The output softmax ma-
trix is tied with the embedding layer. For the adver-
sarial classifier, we adopt two 128D hidden FC lay-
ers with LeakyRelu activation and one 1D output
linear layer without bias. The balance coefficient
λ is 20 for Yelp and 15 for News Titles. We train
the WAE-GAN with Wasserstein Divergence (Wu
et al., 2018) to smooth the training process. The co-
efficient k and power p of Wasserstein Divergence

258

Task Conditions Method Accuracy Log-Variance Distinct-1 Distinct-2
(↑ better) (↓ better) (↑ better) (↑ better)

Sentiment {Positive, Negative}
S-VAE 0.7194 -5.38 0.0198 0.2520
CTRL-GEN 0.6998 -2.78 0.0026 0.0164
PPVAE-single (ours) 0.7832 -11.12 0.0350 0.2568
PPVAE (ours) 0.8484 -11.90 0.0356 0.2627

Length {Short, Medium, Long}
S-VAE 0.8598 -4.82 0.0187 0.1795
CTRL-GEN 0.3957 -1.96 0.0021 0.0146
PPVAE-single (ours) 0.9640 -6.96 0.0375 0.2549
PPVAE (ours) 0.9722 -7.64 0.0372 0.2538

Topic {Business, Health, Entmt.}
S-VAE 0.6930 -2.32 0.0360 0.2162
CTRL-GEN 0.5335 -3.39 0.0107 0.0431
PPVAE-single (ours) 0.7725 -3.82 0.0497 0.3152
PPVAE (ours) 0.8024 -3.68 0.0478 0.3056

Table 2: The results of conditional text generation tasks. We use boldface and underline to indicate the best
and the second-best performance. PPVAE-single indicates PPVAE with a PLUGINVAE trained under the single
condition setting, as described in Section 5.5. We show the natural logarithm (ln) of variance, since the original
scale is too small for demonstration.

are set to 2 and 6, respectively. During pre-training,
the batch size is set to 512. Adam (Kingma and Ba,
2015) with beta1 = 0 is used as the optimizer. The
learning rate is set to 5× 10−4.
PLUGINVAE. We set the size of latent space dc =
20. γ is set to 0.1 for sentiment tasks, 0.05 for
categorical tasks, and 3 × 10−3 for length tasks.
The batch size is set to 128. Adam (Kingma and Ba,
2015) with beta1 = 0.5 is used as the optimizer,
learning rate is 3 × 10−4 for 20K iterations. β
linearly increases from 0 to 5 in first 10K iterations.

5.5 Evaluation Settings

Metrics. We evaluate the results with two metrics,
accuracy and diversity. For accuracy, we train a
sentiment classifier and categorical classifier (Kim,
2014), which could achieve accuracy of 90% and
97% on the validation set, respectively. The accu-
racy of length task can be directly calculated with
the word count of generated text. Plus, a model that
performs well on only one condition but poorly on
others is not practically useful. Thus, to measure
the robustness among conditions, we calculate the
variance of accuracy under all conditions in a task.
For diversity, we adopt Distinct-1 and Distinct-
2 (Li et al., 2016) metrics. Distinct-1/Distinct-2 are
the ratios of unique 1-gram/2-gram, respectively.
A higher value indicates better diversity. For all
tasks and models, we randomly generate 10K text
for each condition by greedy decoding and report
the averaged results.
Single Condition Generation. In a real-world sce-
nario, the full set of conditions is not always avail-

able. When provided only a labeled set of target
text (i.e., k = 1), it is not possible to learn the
joint conditional space for S-VAE and CTRL-GEN
any more. However, PPVAE can deal with that by
training without negative samples using Equation 3.

6 Experimental Results

6.1 Overall Comparisons

Accuracy. The results of conditional text gener-
ation are listed in Table 2. On sentiment task,
our model outperforms CTRL-GEN and S-VAE
by 0.1486 and 0.129, respectively. On length task,
the accuracy of our model exceeds 95%, dramat-
ically outperforming S-VAE and CTRL-GEN by
0.1124 and 0.5765 on accuracy. Notably, the per-
formance of CTRL-GEN (0.3957) is extremely
low, demonstrating the limitation of its generator-
discriminator (Goodfellow et al., 2014) training
process and its token-based discriminator, which is
unable to discriminate text with different lengths.
On topic task, our model scores higher on accuracy
than S-VAE and CTRL-GEN by 0.1094 and 0.2689,
respectively. On all three tasks, PPVAE-single
performs slightly poorer than PPVAE with nega-
tive samples, verifying the effectiveness of nega-
tive sampling. Furthermore, our models achieve
the lowest variance on all three tasks, indicating
that PPVAE is robust and achieves a good balance
among conditions.
Diversity. Diversity is a long-lasting issue lying
in the field of generative models. Recent works
(Wang et al., 2017; Razavi et al., 2019) reveal the
capability of the diverse content generation with

259

Task Method Fluency Conditionality

Sentiment

S-VAE 3.10 3.04
CTRL-GEN 3.65 3.23
PPVAE-single 3.54 3.23
PPVAE 3.30 3.29

Length

S-VAE 3.64 0.8598
CTRL-GEN 2.53 0.3597
PPVAE-single 3.43 0.9640
PPVAE 3.50 0.9722

Topic

S-VAE 3.31 2.78
CTRL-GEN 3.09 2.51
PPVAE-single 3.38 3.33
PPVAE 3.45 3.57

Table 3: Human evaluation results. Note that since the
length task is objectively defined, we copy the accuracy
results from Table 2.

VAE-based methods. These works also conclude
that VAE-based methods have better output diver-
sity than GAN-based models. Our experimental
results support this conclusion well. Particularly,
CTRL-GEN suffers poor diversity, which indicates
the generation of “dull text” (Li et al., 2016). Both
S-VAE and PPVAE show prominently better di-
versity than GAN-based model, CTRL-GEN. Note
that the relation between the usage of negative ex-
amples and text diversity of PPVAE is not statisti-
cally prominent (p > 0.05).

6.2 Human Evaluation

We conduct human annotations as a complementary
evaluation beyond automatic metrics. Specifically,
eight individual judges are asked to rate over 200
conditional samples generated from each model
and each condition. That is, for each model, a total
of 4, 800 text samples are annotated. A judge needs
to rate fluency and conditionality in the standard
1 to 5 scale. Fluency measures whether the text
samples are natural and fluent as real (i.e., human-
written) ones. Conditionality indicates whether
the generated text adheres to the given condition.
Shown in Table 3, PPVAE achieves the best condi-
tionality in both automatic and human evaluations
on all three tasks. Meanwhile, PPVAE retains a
satisfying fluency on sentiment and length tasks
and obtains the best fluency on the topic task.

6.3 Training Costs

To measure the efficiency of proposed methods,
we report the training time and the number of pa-
rameters of S-VAE, CTRL-GEN and PPVAE in
Table 4. We train the models on a single Nvidia

Method # Training Params Training Time

S-VAE 6.5M 1.4h
CTRL-GEN 8.5M 3.5h

PRETRAINVAE 6.5M 1.2h (only once)
PLUGINVAE 22K 64s

Table 4: Average numbers of parameters and time
costs for training.

Task Method Acc. Distinct-1/2

Sentiment
Fine-tuning 0.5319 0.0281 / 0.2845
PPVAE-single 0.7832 0.0350 / 0.2568
PPVAE 0.8484 0.0356 / 0.2627

Length
Fine-tuning 0.9456 0.0340 / 0.2923
PPVAE-single 0.9640 0.0375 / 0.2549
PPVAE 0.9722 0.0372 / 0.2538

Table 5: The comparisons of fine-tuned PRETRAIN-
VAE with the full PPVAE on the two tasks of Yelp
dataset.

β Accuracy Distinct-1 Distinct-2

0.0 1.0000 0.0001 0.0001
2.0 0.9938 0.0256 0.1629
5.0 0.9908 0.0301 0.2112

10.0 0.9875 0.0324 0.2370

Table 6: The impact of different β on long text genera-
tion task.

GTX 1080 GPU and report the training time until
the convergence of each model. PRETRAINVAE
has the same size of S-VAE but only needs to be
trained once and does not require a full retraining
when a new condition added. Also, PLUGINVAE,
which learns to transform between the global latent
space and the conditional latent space, only has
22K parameters and can be trained within about
one minute.

6.4 PLUGINVAE vs. Fine-Tuning

As a natural baseline, the conditional generation
can also be done by directly fine-tuning PRETRAIN-
VAE on each condition. Shown in Table 5, despite
the fact that it is not computationally efficient and
saving the full weights is undesirable for industrial
applications when the model is large (e.g., GPT-
2 (Radford et al., 2019)), both PLUGINVAE trained
with and without negative samples significantly out-
perform a directly fine-tuned PRETRAINVAE on
accuracy.

260

Task Condition Generated Examples

Sentiment Positive The services are friendly, fast.
Negative The egg drop soup was old and tasted like feet.

Length
Short Great pricing!
Medium I refused to work with you and this place.
Long And this made me feel uncomfortable and the prices aren’t right.

Topic
Business FDA Approves New Case of E-cigarettes
Health Ebola : Virus Spreads in the US
Entertainment Surprise Birthday: The Guys of the Cast of Disney Parks

Table 7: Some conditional examples generated by PPVAE for qualitative analysis (cherry-picked).

Generated Examples

S-VAE
Chinese State Media: 17 Miners Trapped Underground
Huge Increases in Obamacare Premiums Are Coming
Herbalife Ltd. (HLF) Probe Earns Bill Ackman Back Millions

CTRL-GEN
Pfizer’s Astrazeneca’s Astrazeneca Bid for Astrazeneca
FDA’s New Drug to Treat Migraines
Pfizer to Acquire Seragon in $42.9B

PPVAE
Despite Highway Crisis, Many Worries Remain on US Oil Exports
Lululemon: Digital Sales Surge in 1Q Net Income, Revenue
Crisis of Market: US Stocks Climb; Nike Jumps

Table 8: Some generated conditional examples under
condition Business (randomly sampled).

Failed Examples

Grammatical
Eat the service!
In addition, this location sucks it is.
Star Wars 7 will include US production on set

Conditional
(Negative) I was shocked that this is what I needed.
(Long) Are you actually drunk outside?
(Business) Michael Jackson’s New Album ‘Xscape’

Table 9: Some failed examples (cherry-picked).

6.5 Effect of Hyper-parameter β

Since β is an important hyper-parameter for PP-
VAE, we test β ∈ {0, 2, 5, 10} on the long text gen-
eration task. From the results in Table 6, we find
that β controls the balance between diversity and
accuracy. Specifically, when β is too large, more
diverse samples could be generated, but the accu-
racy may be sacrificed slightly. On the contrary,
when β is too small, the accuracy could climb to
a higher value, but meanwhile, the diversity drops
drastically. Empirically, we find that β = 5 is an
appropriate value for all tasks.

7 Case Study

We select some generated conditional text of each
condition in Table 7. As shown in the table, our
proposed PPVAE is capable of generating realistic
conditional text. Also, shown in Table 8, on topic
task, we randomly select some examples from the
output of each model. The output of S-VAE seems
to be diverse but is poorly conditioned. CTRL-
GEN suffers an obvious diversity issue, which
makes it repeatedly output similar text.

For the error analysis, we pick some failed ex-
amples of PPVAE in Table 9. We categorize the
errors into two main classes. (1) Grammatical.
Grammatical problems are common in NLG. As
we analyze, this kind of errors can be mitigated
with a deeper encoder and decoder with even more
unlabeled data for pre-training. (2) Conditional.
Conditional errors are of great interest to us since
they lie in our focus. We choose three typical er-
rors and list them in Table 9. In the first sentence,
“shocked” is a subtle word which may indicate ei-
ther positive or negative sentiment depending on
the context. Thus, with a greedy decoding strat-
egy, it may be incorrectly decoded into the other
polarity. We believe this kind of errors could be
fixed with more elaborate decoding strategies (e.g.,
Weighted Decoding (See et al., 2019)). In the sec-
ond sentence, the length is limited by the nature of
an interrogative sentence. As a linguistic fact, an
interrogative sentence often has fewer words than
a declarative sentence. In the third sentence, we
remark an overlapping problem between classes.
Some topics (e.g., music album) may appear in
both business and entertainment news. In some
way, these samples can also be considered as cor-
rectly conditioned ones, which highlights the im-
portance of a fine-grained human evaluation on this
task.

261

8 Conclusion

In this paper, we present a novel PPVAE frame-
work for flexible conditional text generation, which
decouples the text generation module from the con-
dition representation module. The extensive ex-
periments demonstrate the superiority of the pro-
posed PPVAE against the existing alternatives on
conditionality and diversity while allowing new
conditions to be added without a full retraining.

Acknowledgments

We are grateful for the insightful comments from
the anonymous reviewers. We would like to es-
pecially thank Daya Guo for his help and sugges-
tions. This research was supported by National Nat-
ural Science Foundation of China (No. 61872278).
Chenliang Li is the corresponding author.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Józefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. In CoNLL.

Andrew Brock, Jeff Donahue, and Karen Simonyan.
2019. Large scale GAN training for high fidelity
natural image synthesis. In ICLR.

Tian Qi Chen, Xuechen Li, Roger B. Grosse, and
David K. Duvenaud. 2018. Isolating sources of
disentanglement in variational autoencoders. In
NeurIPS.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman,
Ilya Sutskever, and Pieter Abbeel. 2016. Infogan:
Interpretable representation learning by information
maximizing generative adversarial nets. In NeurIPS.

Emilien Dupont. 2018. Learning disentangled
joint continuous and discrete representations. In
NeurIPS.

Jesse H. Engel, Matthew Hoffman, and Adam Roberts.
2018. Latent constraints: Learning to generate con-
ditionally from unconditional generative models. In
ICLR.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In ACL.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. CoRR, abs/1707.02633.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao,
and Rui Yan. 2018. Style transfer in text: Explo-
ration and evaluation. In AAAI.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. 2014. Gen-
erative adversarial nets. In NeurIPS.

Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin,
Hong Chi, James Cao, Peng Chen, and Ming Zhou.
2018. Question generation from SQL queries im-
proves neural semantic parsing. In EMNLP.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzkeb-
ski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In ICML.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In ICML.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
CTRL: A conditional transformer language model
for controllable generation. CoRR, abs/1909.05858.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya
Takamura, and Manabu Okumura. 2016. Control-
ling output length in neural encoder-decoders. In
EMNLP.

Hyunjik Kim and Andriy Mnih. 2018. Disentangling
by factorising. In ICML.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez
Rezende, and Max Welling. 2014. Semi-supervised
learning with deep generative models. In NeurIPS.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In ICLR.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
NAACL-HLT.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng.
2013. Rectifier nonlinearities improve neural net-
work acoustic models. In ICML.

Mehdi Mirza and Simon Osindero. 2014. Conditional
generative adversarial nets. CoRR, abs/1411.1784.

Tong Niu and Mohit Bansal. 2018. Polite dialogue gen-
eration without parallel data. Trans. Assoc. Comput.
Linguistics, 6:373–389.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/k16-1002
https://doi.org/10.18653/v1/k16-1002
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm
http://papers.nips.cc/paper/7527-isolating-sources-of-disentanglement-in-variational-autoencoders
http://papers.nips.cc/paper/7527-isolating-sources-of-disentanglement-in-variational-autoencoders
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets
http://papers.nips.cc/paper/7351-learning-disentangled-joint-continuous-and-discrete-representations
http://papers.nips.cc/paper/7351-learning-disentangled-joint-continuous-and-discrete-representations
https://openreview.net/forum?id=Sy8XvGb0-
https://openreview.net/forum?id=Sy8XvGb0-
https://www.aclweb.org/anthology/P18-1082/
https://www.aclweb.org/anthology/P18-1082/
http://arxiv.org/abs/1707.02633
http://arxiv.org/abs/1707.02633
http://arxiv.org/abs/1707.02633
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17015
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17015
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets
https://doi.org/10.18653/v1/d18-1188
https://doi.org/10.18653/v1/d18-1188
http://proceedings.mlr.press/v97/houlsby19a.html
http://proceedings.mlr.press/v70/hu17e.html
http://proceedings.mlr.press/v70/hu17e.html
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
https://doi.org/10.18653/v1/d16-1140
https://doi.org/10.18653/v1/d16-1140
http://proceedings.mlr.press/v80/kim18b.html
http://proceedings.mlr.press/v80/kim18b.html
https://doi.org/10.3115/v1/d14-1181
https://doi.org/10.3115/v1/d14-1181
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models
http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.18653/v1/n16-1014
https://doi.org/10.18653/v1/n16-1014
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
https://transacl.org/ojs/index.php/tacl/article/view/1424
https://transacl.org/ojs/index.php/tacl/article/view/1424

262

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Ali Razavi, Aäron van den Oord, and Oriol Vinyals.
2019. Generating diverse high-fidelity images with
VQ-VAE-2. In NeurIPS.

Abigail See, Stephen Roller, Douwe Kiela, and Jason
Weston. 2019. What makes a good conversation?
how controllable attributes affect human judgments.
In NAACL-HLT.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi S.
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In NeurIPS.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015.
Learning structured output representation using
deep conditional generative models. In NeurIPS.

Ilya O. Tolstikhin, Olivier Bousquet, Sylvain Gelly,
and Bernhard Schölkopf. 2018. Wasserstein auto-
encoders. In ICLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Ke Wang and Xiaojun Wan. 2018. Sentigan: Gener-
ating sentimental texts via mixture adversarial net-
works. In IJCAI.

Liwei Wang, Alexander G. Schwing, and Svetlana
Lazebnik. 2017. Diverse and accurate image de-
scription using a variational auto-encoder with an ad-
ditive gaussian encoding space. In NeurIPS.

Jiqing Wu, Zhiwu Huang, Janine Thoma, Dinesh
Acharya, and Luc Van Gool. 2018. Wasserstein di-
vergence for gans. In ECCV.

Xiaopeng Yang, Xiaowen Lin, Shunda Suo, and Ming
Li. 2018. Generating thematic chinese poetry using
conditional variational autoencoders with hybrid de-
coders. In IJCAI.

Xiaoyuan Yi, Maosong Sun, Ruoyu Li, and Zonghan
Yang. 2018. Chinese poetry generation with a work-
ing memory model. In IJCAI.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In AAAI.

Tiancheng Zhao, Ran Zhao, and Maxine Eskénazi.
2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. In ACL.

Wangchunshu Zhou, Tao Ge, Ke Xu, Furu Wei, and
Ming Zhou. 2020. Self-adversarial learning with
comparative discrimination for text generation. In
ICLR.

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://papers.nips.cc/paper/9625-generating-diverse-high-fidelity-images-with-vq-vae-2
http://papers.nips.cc/paper/9625-generating-diverse-high-fidelity-images-with-vq-vae-2
https://doi.org/10.18653/v1/n19-1170
https://doi.org/10.18653/v1/n19-1170
http://papers.nips.cc/paper/7259-style-transfer-from-non-parallel-text-by-cross-alignment
http://papers.nips.cc/paper/7259-style-transfer-from-non-parallel-text-by-cross-alignment
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models
https://openreview.net/forum?id=HkL7n1-0b
https://openreview.net/forum?id=HkL7n1-0b
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://doi.org/10.24963/ijcai.2018/618
https://doi.org/10.24963/ijcai.2018/618
https://doi.org/10.24963/ijcai.2018/618
http://papers.nips.cc/paper/7158-diverse-and-accurate-image-description-using-a-variational-auto-encoder-with-an-additive-gaussian-encoding-space
http://papers.nips.cc/paper/7158-diverse-and-accurate-image-description-using-a-variational-auto-encoder-with-an-additive-gaussian-encoding-space
http://papers.nips.cc/paper/7158-diverse-and-accurate-image-description-using-a-variational-auto-encoder-with-an-additive-gaussian-encoding-space
https://doi.org/10.1007/978-3-030-01228-1_40
https://doi.org/10.1007/978-3-030-01228-1_40
https://doi.org/10.24963/ijcai.2018/631
https://doi.org/10.24963/ijcai.2018/631
https://doi.org/10.24963/ijcai.2018/631
https://doi.org/10.24963/ijcai.2018/633
https://doi.org/10.24963/ijcai.2018/633
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://openreview.net/forum?id=B1l8L6EtDS
https://openreview.net/forum?id=B1l8L6EtDS

