
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2532–2538
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

2532

Simple and Effective Retrieve-Edit-Rerank Text Generation

Nabil Hossain† Marjan Ghazvininejad♠

†Dept. Computer Science, University of Rochester
♠Facebook AI Research

nhossain@cs.rochester.edu, {ghazvini,lsz}@fb.com

Luke Zettlemoyer♠

Abstract

Retrieve-and-edit seq2seq methods typically
retrieve an output from the training set and
learn a model to edit it to produce the final out-
put. We propose to extend this framework with
a simple and effective post-generation ranking
approach. Our framework (i) retrieves sev-
eral potentially relevant outputs for each in-
put, (ii) edits each candidate independently,
and (iii) re-ranks the edited candidates to se-
lect the final output. We use a standard
editing model with simple task-specific re-
ranking approaches, and we show empirically
that this approach outperforms existing, sig-
nificantly more complex methodologies. Ex-
periments on two machine translation (MT)
datasets show new state-of-art results. We also
achieve near state-of-art performance on the
Gigaword summarization dataset, where our
analyses show that there is significant room
for performance improvement with better can-
didate output selection in future work.

1 Introduction

Retrieve-and-edit text generation methods have re-
ceived significant recent interest; editing human-
authored text can potentially avoid many of the
challenges that are seen while generating text from
scratch, including the tendency to be overly repeti-
tive or to degrade on longer texts (Holtzman et al.,
2018, 2019). Retrieve-and-edit methods have been
developed for summarization (Cao et al., 2018),
machine translation (Wu et al., 2019), language
modeling (Guu et al., 2018), and conversation gen-
eration (Weston et al., 2018). These methods first
retrieve a single output from the training set, and
then use a learned model to edit it into the final
output.

In this paper, we show that generation perfor-
mance can be improved with a retrieve-edit-rerank
approach that instead retrieves a set of outputs from

Figure 1: Our retrieve-edit-rerank framework, generat-
ing candidate outputs with three retrieved outputs, and
re-ranking ŷ2 as the best candidate post-generation.

the training set, edits each independently, and then
re-ranks the results to produce the final output. Fig-
ure 1 shows an overview of the approach.

We use standard keyword-based retrieval and a
simple editor, where the retrieved output is concate-
nated to the original input to train a Transformer-
based seq2seq editing model. Our final re-ranking
step is task specific, but again very simple in every
case. Our goal here is not to find the best possible
way to do the re-ranking. Instead, we show that
gains are possible and that it helps to see what edits
are made for multiple candidates before making the
final decision, instead of following previous work
by trying to select a single candidate before editing.

We evaluate performance on the Gigaword sum-
marization dataset (Rush et al., 2015) and on the
English to Dutch (EN-NL) and the English to Hun-
garian (EN-HU) machine translation (MT) tasks,
following Bulte and Tezcan (2019). For MT, we ex-
perimented with different re-ranking schemes but
found that the original model score (log-likelihood)
worked best, amounting to extended beam search
within the complete retreive-edit-rerank pipeline.
We improve performance by 6.5 BLEU points on
EN-NL and 7.5 on EN-HU over the state-of-art
Neural Fuzzy Repair system (Bulte and Tezcan,
2019). On Gigaword, we simply re-rank by return-
ing the most common output, and we achieve up



2533

to 1.2 ROUGE improvement over the comparable
Re3Sum model (Cao et al., 2018). Finally, through
qualitative analysis, we find evidence that better
post-generation ranking is feasible and can lead to
substantial performance improvement, which em-
phasizes the need for future work in developing
new post-generation ranking techniques.

2 Related Work

Recent work has developed retrieve-and-edit ap-
proaches for many tasks, including dialogue gen-
eration (Weston et al., 2018), language modeling
(Guu et al., 2018), code generation (Hashimoto
et al., 2018), neural machine translation (NMT)
(Gu et al., 2018; Zhang et al., 2018; Cao and Xiong,
2018) and post-editing for NMT (Hokamp, 2017;
Dabre et al., 2017). Candidate ranking has served
as a core part in some retrieval-based models (Ji
et al., 2014; Yan et al., 2016), but these models do
not edit the retrieved candidates.

For machine translation, Bulte and Tezcan
(2019) developed a retrieve-and-edit based LSTM
model called Neural Fuzzy Repair (NFR), which
they applied on two MT datasets obtained from
(Steinberger et al., 2012). Using a keyword based
followed by a token edit distance based retrieval
method called sss+ed, they showed that concate-
nating the source and retrieved outputs as the in-
put significantly boosts translation quality. NFR
is trained by augmenting the source with up to 3
retrieved outputs, which are fed together into the
editing model in several ways. Our approach, in-
stead, simply edits multiple candidates separately
and then re-ranks the final results.

For summarization, Re3Sum (Cao et al., 2018)
is an LSTM-based model developed under the
retrieve-and-edit framework, and tested on the Gi-
gaword summarization (also headline generation)
task (Rush et al., 2015). Re3Sum retrieves 30 head-
lines from the training set using the popular infor-
mation retrieval method Lucene1. Next, it learns
a model to pick the single best retrieved headline,
which is then edited. BiSET (Wang et al., 2019) is
a retrieve-and-edit framework with more complex
retrieval ranking and editing stages, which again
edits only a single output.

We compare our framework’s performance
against those of NFR, Re3Sum, and BiSET, show-
ing the effectiveness of post-generation ranking.

1https://lucene.apache.org/

3 Framework

Figure 1 shows our proposed retrieve-edit-rerank
framework. It has three components: (i) a retrieval
mechanism to extract output from the training set;
(ii) a seq2seq model to generate output from the
source concatenated with the retrieved output; and
(iii) a post-generation ranking module to select a
high quality output from a set of generated candi-
dates.

For the rest of this paper, we will use (x, y) to
represent a source and target pair, (x′, y′) to denote
a retrieved source and output pair from the training
set, and ŷ to represent the edited/generated output.

3.1 Retrieve

Given input x, the goal of the retrieve module is
to find a similar training example (x′, y′). We
experiment with both Lucene and sss+ed. These
can be replaced with any other retrieval methods in
the literature.

3.2 Joint Pre-ranking and Generation

Similar to Re3Sum, we design a model that can
jointly learn to produce the edited output ŷ and
re-rank the retrieved outputs y′, which we refer to
as pre-ranking, a common practice to determine
which retrieved outputs are worth editing.

For editing, we use a Transformer as our seq2seq
model. We provide the model a concatenated input
x[SEP]y′, where [SEP] is a separator token, and
we train it to produce the original target y with a
standard cross entropy loss.

For pre-ranking, we add a [RANK] token to the
Transformer’s encoder analogous to the [CLS] to-
ken in BERT (Devlin et al., 2019). We train the
model to predict the similarity between y′ and y as
the output of the [RANK] token, akin to predicting
a token from a different vocabulary (Ghazvininejad
et al., 2019). We use a cross entropy loss based
on a text similarity metric2, adding it to the Trans-
former’s loss function.

3.3 Post-generation Ranking

For source x, given a set of N input (x concate-
nated with N retrieved outputs y′) and generated
candidate output pairs:

{(x[SEP]y′1; ŷ1), . . . , (x[SEP]y
′
N ; ŷN )}

2we use BLEU for MT and ROUGE-L for Gigaword. This
can be any other text similarity metric.



2534

this module’s objective is to select a high quality
candidate output. Ideally, we want to find:

ŷ∗ = argmax
ŷi

similarity(ŷi , y), 1 ≤ i ≤ N

For post-ranking, we use simple ranking func-
tions that work effectively. For MT, we calculate
the log-likelihood score of the generated candi-
date outputs using our trained model (Transformer
based) and we choose the candidate that gets the
highest model score. For Gigaword, our ranking
function simply chooses the most frequently gener-
ated output from the list of candidates. In prelimi-
nary experiments, we tried other ranking methods,
but we did not see a gain compared to our simple
post-ranking methods.

Our goal here is not to find the best possible
way to do the post-ranking, but only to show that
gains are possible. In particular, running the pre-
ranker over a larger candidate list is not enough;
we find that it is better to see what edits are made
for multiple candidates before making the final
decision. This strongly suggests that the direction
is worthy of future work, to determine how to best
combine the evidence from x, x′, y′ and ŷ.

4 Experiments

4.1 Datasets and Evaluation Metrics

We test our proposed framework on the machine
translation datasets English to Dutch (EN-NL) and
English to Hungarian (EN-HU) following previous
work (Bulte and Tezcan, 2019). The training, val-
idation, and test set sizes, respectively, are 2.4M,
3000 and 3207, and both datasets have the same
source English sentences.

Additionally, we apply our framework on the
Gigaword summarization task (Rush et al., 2015).
Here, the training, validation, and test set sizes are
3.8M, 189k, and 1951 respectively.

We evaluate MT performance using BLEU3

scores. For evaluation on Gigaword, we use the F1
scores for ROUGE-1, ROUGE-2, and ROUGE-L
with commonly used evaluation parameters4.

4.2 Implementation Details

We preprocess the data with Byte Pair Encoding
(BPE) (Sennrich et al., 2016). Our model is built
using the Fairseq library (Ott et al., 2019). We

3we use the multi-bleu.perl script from Moses.
4ROUGE evaluation parameters: -m -n 2 -w 1.2

follow most of the Transformer base hyperparam-
eter configurations Vaswani et al. (2017). We use
a 6-layer Transformer with 8 attention heads per
layer, 512 model dimensions, 2048 hidden dimen-
sions and shared embeddings. Our Transformer
uses segment embeddings, with one segment for x
and another for y′. For training, we use a learning
rate of 5e−4, a batch size of 128k tokens, the Adam
optimizer (Kingma and Ba, 2014), a dropout of 0.3,
and a joined dictionary. We train our models for
200k update steps, and we calculate validation loss
following each epoch to choose our final model.

For test, we use a beam size of 5.

4.3 Training
For MT, we use the 3 best retrieved outputs per
source x to create 4 training examples:

{x, x[SEP]y′1, x[SEP]y′2, x[SEP]y′3}

This is similar to NFR, which then uses for test, the
input x[SEP]y′1 if it exists, and only x otherwise.
We use both sss+ed and Lucene to compare how
retrieval impacts translation quality.

For Gigaword, we train with 10 retrieved outputs
as opposed to 30 retrieved by (Cao et al., 2018),
and for testing we use 30 retrieved outputs.

As a baseline, we also train a Transformer with-
out retrieval.

4.4 Results
The MT results in Table 1 show that for both EN-
NL and EN-HU, the Transformer without retrieval
slightly outperforms the LSTM based NFR which
includes retrieval. Replacing LSTM with Trans-
former in NFR (Tr + sss+ed) gives roughly a 4
point increase in BLEU. Replacing sss+ed with
Lucene further increases BLEU by 2 points.

Generating from x concatenated with the best
pre-ranked output further improves performance,

System EN-NL EN-HU
LSTM 51.45 40.47
NFR 58.91 48.24
Transformer (Tr) 59.88 49.61
Tr + sss+ed (NFR equivalent) 62.86 52.74
Tr + Lucene + x [SEP] y′1 64.92 55.16
Tr + Lucene + pre-rank 65.20 55.36
Tr + Lucene + post-rank (ours) 65.43 55.73

Table 1: BLEU scores on the MT datasets. y′1 implies
using the best retrieved output from Lucene. LSTM
results are reported from Bulte and Tezcan (2019).



2535

System R-1 R-2 R-L
LSTM (from Cao et al. (2018)) 35.01 16.55 32.42
Re3Sum 37.04 19.03 34.46
Transformer (Tr) 37.68 18.79 34.87
Tr + Luc + x [SEP] y′1 37.51 19.15 34.86
Tr + Luc + pre-rank 36.46 18.01 33.85
Tr + Luc + post-rank (ours) 38.23 19.58 35.60
BiSET 39.11 19.78 36.87

Table 2: ROUGE scores for Gigaword summarization.
y′1 implies using the best retrieved output from Lucene.

and the best results are obtained by post-ranking,
for which we use the highest scored output accord-
ing to the model. Overall, our retrieve-edit-rerank
system with Transformer, Lucene, and a simple
but effective post-ranking function obtains a BLEU
score increase of 6.52 on EN-NL and 7.49 on EN-
HU over the current state of art NFR model.

Results on Gigaword are shown in Table 2. The
Transformer baseline obtains more than a 2 point
increase in ROUGE over the LSTM baseline, and
it achieves comparable performance to Re3Sum
which is LSTM based and uses retrieval. While
pre-ranking before editing hurts performance, with
post-ranking, our model is able to outperform the
Transformer baseline and Re3Sum, obtaining be-
tween 0.55-1.24 improvement in ROUGE scores.

Our model comes slightly short of the retrieve-
and-edit based state-of-art BiSET (Wang et al.,
2019). However, BiSET uses more complex pre-
ranking and editing stages which could also incor-
porated into our model. We leave this exploration
to future work as it is largely orthogonal to post-
ranking, which is the focus of our efforts.

Overall, with retrieve-edit-rerank, our model out-
performs comparable systems which use retrieve-
and-edit but no post-generation ranking, demon-
strating that a simple post-ranking can boost the
performance across two challenging tasks.

5 Post-ranking Analysis

5.1 Oracle Experiments

We report a more detailed analysis on Gigaword,
which strongly suggests performance can be further
improved by using better post-ranking methods.

For this purpose, we use an Oracle that has ac-
cess to the gold target outputs. Using this Oracle,
we find the N -best generated candidate outputs
(out of 30 total generated) in terms of ROUGE-1
similarity to the target. We vary N from 1 to 30,
and for each N , we randomly select one of the N -

Figure 2: Comparison with Oracle-based post-ranking
methods in Gigaword.

best Oracle-chosen outputs. The ROUGE-1 scores
obtained for each N are shown in Figure 2. We also
provide lower bounds which show the performance
obtained with the candidate from the best N that is
least similar to the target.

Figure 2 shows that our post-generation ranker,
which selects the most-frequent candidate output,
performs better than choosing a random candidate
output (N=30). We also observe that randomly
choosing from one of the 1st - 26th best (out of 30)
generated outputs surpasses the summarization per-
formance achieved with our post-ranking function.
Moreover, choosing any of the 12-best candidates
is a feasible strategy that outperforms our ranking
function. These observations suggest that many of
the 30 retrieved outputs are useful for effective sum-
mary generation, and hence, there is a large room
for improving by designing new post-generation
ranking algorithms.

Similar analysis on MT shows that a ranker that
always selects the optimal of the three candidate
outputs gets about 3-5 BLEU points improvement
over our post-ranking based models, leaving room
for further performance gains.

5.2 Examples

To analyze the impact of post-ranking, we compare
various outputs from our models for the Gigaword
test set, as shown in Table 3.

For the sample 3A, when augmenting the source
with y′1 or the pre-ranked y′, the model simply
copies the retrieved text and ignores important de-
tails from the source. However, the Transformer
output indicates that most of the salient information
can be obtained from the source itself. By gener-
ating multiple outputs with multiple augmented
inputs and then choosing the most-frequent out-
put, our post-ranking function helps to lessen the
sensitivity of the model to certain retrieved outputs.



2536

Source jurors visited phil spector s mansion thursday to see the place where actress lana clarkson died , some of them sitting
in a chair to mimic the position in which her body was found

Target jurors in spector trial visit mansion where actress died
Transformer phil spector jury visits scene of actress s death

Ret-ID Retrieved Output Candidate Output
y′1 jurors tour phil spector s home jurors tour phil spector s home

pre-rank (y′15) spector jury tours scene of clarkson s death spector jury tours scene of clarkson s death
post-rank (y′19) phil spector found guilty of #nd-degree murder jurors visit phil spector s mansion to see where actress died

Example 3A.

Source puerto rico ended water rationing for nearly half a million residents tuesday after heavy rain partly replenished a
reservoir serving the san juan metropolitan area

Target puerto rico ends water rationing
Ret-ID Retrieved Output Candidate Output

y′1 for second time in # years water rationed in san juan puerto rico ends water rationing
pre-rank (y′4) water rationing resumes tuesday for ###,### puerto ricans water rationing resumes tuesday for ###,### puerto ricans
post-rank (y′3) puerto rico just days away from water rationing if rain does n’t puerto rico ends water rationing

Example 3B.

Table 3: Sample outputs from the Gigaword test set. “Ret-ID” indicates which of the 30 retrieved y′ was used in
the input, for example, y′1 and the pre-ranked y′. For the (most-frequent) post-ranked output, we show the y′ for
which the generated output had the highest generation score (log-likelihood) from the model.

For sample 3B, post-ranking chooses the output
generated using y′1 which is also the actual target.
However, due to a poor retrieval, pre-ranking forces
the model to generate an output that largely differs
from the target.

We also found some examples where both the
retrieve-only y′1 and the pre-ranked y′ were the
same, and they were copied verbatim to generate
the candidate output. However, several of these
copied retrieved outputs were too general sum-
maries, and since the source was ignored during
generation, the generated candidate output was
missing some article specific information present in
the target summary. In many of these cases, simply
using the source without any retrieval in the input
resulted in an output more representative of the tar-
get summary, and also post-ranking helped select
this better output. These examples highlight the
cases where simply relying on the best retrieval or
on the pre-ranking can hurt results since the output
generated using only the source without any re-
trieval is the same as the higher quality post-ranked
output.

Overall, these examples demonstrate the flexibil-
ity offered by our post-ranking module. It allows
the framework to choose between combinations of
generations ignoring retrieval, generations using
the closest retrieved output and generations using
the pre-ranked output. The post-ranking function
also acts like a voting scheme, helping to convey
the salient information from the inputs to the output
while ignoring noise in the inputs.

6 Conclusion and Future Work

In this paper, we presented a retrieve-edit-rerank
framework for seq2seq text generation. We used
Lucene for retrieval, a Transformer model for edit-
ing, and simple task-specific post-generation rank-
ing techniques. We applied the framework on
two MT datasets and the Gigaword summarization
dataset. Our results show that our simple rank-
ing functions are effective in helping our model
outperform the comparable retrieve-and-edit based
methods for these datasets.

By performing analysis on Gigaword, we find
that there exists room to improve summarization
performance with better post-ranking algorithms, a
promising direction for future research.

This is in line with our overall goal, which is
not to find the best possible way to do the post-
ranking, but only to show that gains are possible by
editing multiple candidates and then comparing the
results. Moving forward, we would like to apply
this framework to other retrieve-and-edit based gen-
eration scenarios such as dialogue, conversation,
and code generation.

References

Bram Bulte and Arda Tezcan. 2019. Neural fuzzy re-
pair: Integrating fuzzy matches into neural machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1800–1809, Florence, Italy. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/P19-1175
https://doi.org/10.18653/v1/P19-1175
https://doi.org/10.18653/v1/P19-1175


2537

Qian Cao and Deyi Xiong. 2018. Encoding gated
translation memory into neural machine translation.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3042–3047, Brussels, Belgium. Association
for Computational Linguistics.

Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei.
2018. Retrieve, rerank and rewrite: Soft template
based neural summarization. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 152–161, Melbourne, Australia. Association
for Computational Linguistics.

Raj Dabre, Fabien Cromieres, and Sadao Kurohashi.
2017. Enabling multi-source neural machine trans-
lation by concatenating source sentences in multiple
languages. arXiv preprint arXiv:1702.06135.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6111–
6120, Hong Kong, China. Association for Computa-
tional Linguistics.

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Vic-
tor OK Li. 2018. Search engine guided neural ma-
chine translation. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren,
and Percy Liang. 2018. Generating sentences by
editing prototypes. Transactions of the Association
for Computational Linguistics, 6:437–450.

Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren,
and Percy S Liang. 2018. A retrieve-and-edit frame-
work for predicting structured outputs. In Advances
in Neural Information Processing Systems, pages
10052–10062.

Chris Hokamp. 2017. Ensembling factored neural ma-
chine translation models for automatic post-editing
and quality estimation. In Proceedings of the Sec-
ond Conference on Machine Translation, pages 647–
654.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. 2018.
Learning to write with cooperative discriminators.

In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1638–1649, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2019. The curious case of neural text degener-
ation. ArXiv, abs/1904.09751.

Zongcheng Ji, Zhengdong Lu, and Hang Li. 2014. An
information retrieval approach to short text conver-
sation. arXiv preprint arXiv:1408.6988.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389, Lisbon, Portugal.
Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Ralf Steinberger, Andreas Eisele, Szymon Klocek,
Spyridon Pilos, and Patrick Schlüter. 2012. DGT-
TM: A freely available translation memory in 22 lan-
guages. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC’12), pages 454–459, Istanbul, Turkey. Euro-
pean Language Resources Association (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Kai Wang, Xiaojun Quan, and Rui Wang. 2019.
BiSET: Bi-directional selective encoding with tem-
plate for abstractive summarization. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2153–2162, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Jason Weston, Emily Dinan, and Alexander H Miller.
2018. Retrieve and refine: Improved sequence
generation models for dialogue. arXiv preprint
arXiv:1808.04776.

https://doi.org/10.18653/v1/D18-1340
https://doi.org/10.18653/v1/D18-1340
https://doi.org/10.18653/v1/P18-1015
https://doi.org/10.18653/v1/P18-1015
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.1162/tacl_a_00030
https://doi.org/10.1162/tacl_a_00030
https://doi.org/10.18653/v1/P18-1152
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
http://www.lrec-conf.org/proceedings/lrec2012/pdf/814_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/814_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/814_Paper.pdf
https://doi.org/10.18653/v1/P19-1207
https://doi.org/10.18653/v1/P19-1207


2538

Jiawei Wu, Xin Wang, and William Yang Wang. 2019.
Extract and edit: An alternative to back-translation
for unsupervised neural machine translation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 1173–1183,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Rui Yan, Yiping Song, and Hua Wu. 2016. Learning
to respond with deep neural networks for retrieval-
based human-computer conversation system. In Pro-
ceedings of the 39th International ACM SIGIR con-
ference on Research and Development in Informa-
tion Retrieval, pages 55–64.

Jingyi Zhang, Masao Utiyama, Eiichro Sumita, Gra-
ham Neubig, and Satoshi Nakamura. 2018. Guid-
ing neural machine translation with retrieved transla-
tion pieces. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1325–
1335, New Orleans, Louisiana. Association for Com-
putational Linguistics.

https://doi.org/10.18653/v1/N19-1120
https://doi.org/10.18653/v1/N19-1120
https://doi.org/10.18653/v1/N18-1120
https://doi.org/10.18653/v1/N18-1120
https://doi.org/10.18653/v1/N18-1120

