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Abstract

End-to-end models for speech translation (ST)
more tightly couple speech recognition (ASR)
and machine translation (MT) than a traditional
cascade of separate ASR and MT models, with
simpler model architectures and the potential
for reduced error propagation. Their perfor-
mance is often assumed to be superior, though
in many conditions this is not yet the case.
We compare cascaded and end-to-end models
across high, medium, and low-resource condi-
tions, and show that cascades remain stronger
baselines. Further, we introduce two methods
to incorporate phone features into ST models.
We show that these features improve both archi-
tectures, closing the gap between end-to-end
models and cascades, and outperforming previ-
ous academic work — by up to 9 BLEU on our
low-resource setting.

1 Introduction

End-to-end models have become the common approach
for speech translation (ST), but the performance gap be-
tween these models and a cascade of separately trained
speech recognition (ASR) and machine translation (MT)
remains, particularly in low-resource conditions. Mod-
els for low-resource ASR leverage phone1 information,
but this information is not typically leveraged by cur-
rent sequence-to-sequence ASR or speech translation
models. We propose two methods to incorporate phone
features into current neural speech translation models.
We explore the existing performance gap between end-
to-end and cascaded models, and show that incorporat-
ing phone features not only closes this gap, but greatly
improves the performance and training efficiency of
both model architectures, particularly in lower-resource
conditions.

The sequences of speech features used as input for
ST are =10 times longer than the equivalent sequence of
characters in e.g. a text-based MT model. This impacts
memory usage, the number of model parameters, and

1 ‘ > .
The term ‘phone’ refers to segments corresponding to a col-
lection of fine-grained phonetic units, but which may separate
allophonic variation: see Jurafsky and Martin (2000).
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training time. Multiple consecutive feature vectors
can belong to the same phone, but the exact number
depends on the phone and local context. Further, these
speech features are continuously valued rather than
discrete, such that a given phone will have many
different instantiations across a corpus. Neural models
learn to associate ranges of similarly valued feature
vectors in a data-driven way, impacting performance
in lower-resource conditions. Using phoneme-level in-
formation provides explicit links about local and global
similarities between speech features, allowing models
to learn the task at hand more efficiently and yielding
greater robustness to lower-resource conditions.

We propose two simple heuristics to integrate
phoneme-level information into neural speech transla-
tion models: (1) as a more robust intermediate represen-
tation in a cascade; and (2) as a concatenated embedding
factor. We use the common Fisher Spanish—English
dataset to compare with previous work, and simulate
high-, mid-, and low-resource conditions to compare
model performance across different data conditions. We
compare to recent work using phone segmentation for
end-to-end speech translation (Salesky et al., 2019), and
show that our methods outperform this model by up to
20 BLEU on our lowest-resource condition.” Further,
our models outperform all previous academic work on
this dataset, achieving similar performance trained on
20 hours as a baseline end-to-end model trained on the
full 160 hour dataset. Finally, we test model robustness
by varying the quality of our phone features, which
may indicate which models will better generalize across
differently-resourced conditions.

2 Models with Phone Supervision

We add higher-level phone features to low-level speech
features to improve our models’ robustness across data
conditions and training efficiency. We propose two meth-
ods to incorporate phone information into cascaded and
end-to-end models, depicted in Figure 1. Our phone
cascade uses phone labels as the machine translation
input, in place of the output transcription from a speech
recognition model. Our phone end-to-end model uses

*4-reference BLEU scores are used for this dataset.
’Our code is public: github.com/esalesky/xnmt-devel

2388

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2388-2397
July 5 - 10, 2020. (©2020 Association for Computational Linguistics


github.com/esalesky/xnmt-devel

CASCADE

END-TO-END

I:":":"] ........ $ ........ DDDD DDDD .................. DDDD DDDD .........

V
y

translation

translation

Model 1:

Phone Cascade

translation

Model 2:
Phone End-to-End

Model 3:

Phone Segmentation

'FT'

translation translation

Figure 1: Comparison between traditional cascaded and end-to-end models, and our proposed methods using phone
features as (1) the intermediate representation in a cascaded model; and (2) a concatenated embedding factor in an
end-to-end model. We additionally compare to previous work; (3) where phone segmentation is used for feature

vector downsampling in time (Salesky et al., 2019).

phone labels to augment source speech feature vectors
in end-to-end models. We call these end-to-end or ‘di-
rect’ because they utilize a single model with access to
the source speech features, though they additionally use
phone features generated by an external model. We addi-
tionally compare to a recent end-to-end model proposed
by Salesky et al. (2019).

Model 1: Phone Cascade. In a cascade, the interme-
diate representation between ASR and MT is the final
output of a speech recognition model, e.g. characters,
subwords, or words. Using separate models for ASR
and MT means that errors made in ASR are likely to
propagate through MT. Common errors include substitu-
tion of phonetically similar words, or misspellings due
to irregularities in a language’s orthography, the latter of
which may be addressed by using phone labels in place
of ASR output. By not committing to orthographic tar-
gets, we believe this model will propagate fewer errors
to downstream MT.

Model 2: Phone End-to-End. Our final model uses
phone-factored embeddings, where trainable embed-
dings for phone features are concatenated to typical
speech feature vector input. Because phone durations
are variable and typically span more than one filterbank
feature (or frame), adjacent filterbank features may have
the predicted phone label; in the example shown in Fig-
ure 1, /R/ spans three frames or filterbank features. We
note that this method maintains the same source se-
quence length as the original speech feature sequence.
This method associates similar feature vectors at the
corpus level, because all filterbank features with the
same phone alignment (e.g. /OH/) will have the same
trainable phone embedding concatenated. In MT and
NER, concatenating trainable embeddings for linguistic
features to words, such as morphemes and phones, has
improved models’ ability to generalize (Sennrich and
Haddow, 2016; Chaudhary et al., 2018). While these

works appended finer-grained information to associate
words with similar lower-level structure, we use phone
embeddings to associate higher-level structure to simi-
lar but unique speech feature vectors globally across a
corpus.

Model 3: Phone Segmentation. We compare to the
method from Salesky et al. (2019) as a strong end-to-end
baseline. Here, phone boundaries are used to segment
and compress speech feature vector sequences. Within
each utterance, the feature vectors of consecutive speech
frames with the same phone label are averaged to pro-
duce one feature vector for translation from a variable
number of frames. This significantly reduces source
sequence lengths (by ~80%), reducing the number of
model parameters and memory. Rather than having a
variable number of feature vectors per phone-like unit,
each has one representation, more similar in granularity
to character-based MT. The averaged feature vectors re-
main continuously-valued, and are locally summarized:
a given phone across the corpus will still have different
representations in each instance.

3 Data

We use the Fisher Spanish-English corpus,4 which con-
sists of parallel speech, transcripts, and translations, en-
abling comparisons between cascaded and direct models
on the same data and allowing us to generate phone su-
pervision using matched data. The dataset contains 160
hours of Spanish telephone speech, split into 138K ut-
terances, which were translated via crowdsourcing by
Post et al. (2013). We use the standard dev and test sets,
each with ~4k utterances. Because we are particularly
interested in how our methods will affect training across
differently-resourced conditions, we compare results us-
ing randomly selected 40 hour and 20 hour subsets of
the data.

¢ joshua.incubator.apache.org/data/fisher-callhome-corpus
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4 Generating Phone Supervision

To generate phoneme-level labels for sequences of
speech features, we generate frame-level alignments us-
ing a trained speech recognizer. Specifically, we extract
40-dimensional Mel filterbank features with per-speaker
mean and variance normalization using Kaldi (Povey
et al., 2011). We train an HMM/GMM system on the
full Fisher Spanish dataset with the Kaldi recipe (Povey
et al., 2011), using the Spanish CALLHOME Lexicon
(LDC96L.16), and compute per-frame phone alignments
with the triphone model (tri3a) with LDA+MLLT fea-
tures. This yields 50 phone labels, including silence
(<sil>), noise, and laughter.

Producing phone alignments uses supervision
from a transcript, which inherently does not exist at
inference time. While phones can be extracted from
Kaldi lattices at inference time, we found that our
HMM/GMM model was not our best performing ASR
model on this dataset — by greater than 10 WER. To
leverage our better-performing neural ASR models
for phone generation, we create essentially a ‘2-pass’
alignment procedure: first, generating a transcript, and
second, using this transcript to force align phones.
Table 1 shows the mapping between phone quality and
the ASR models used for phone feature generation.
This procedure enables us to both improve phone

Alignment Quality WER ASR Supervision
Gold - Gold transcript
High 23.2  Salesky et al. (2019)
Med 30.4  Seq2Seq ASR
Low 35.5 Kaldi HMM/GMM

Table 1: Mapping between phone quality and the ASR
models used for alignment generation, with the models’
WER on Fisher Spanish test.

alignment quality and also match training and inference
procedures for phone generation for our translation
models. In Section 8, we compare the impact of phone
alignment quality on our translation models utilizing
phone features, and show higher quality phone features
can improve downstream results by >10 BLEU.

Producing phone features in this way uses the same
data (source speech and transcripts) as the ASR task
in a cascade, and auxiliary ASR tasks from multi-task
end-to-end models, but as we show, to far greater effect.
Further, auxiliary tasks as used in previous work rely on
three-way parallel data, while it is possible to generate
effective phoneme-level supervision using a recognizer
trained on other corpora or languages (Salesky et al.,
2019), though we do not do this here.

5 Model & Training Procedure

As in previous academic work on this corpus (Bansal
et al., 2018; Sperber et al., 2019; Salesky et al., 2019),
we use a sequence-to-sequence architecture inspired

by Weiss et al. (2017) modified to train within lower
resources; specifically, each model converges within
=5 days on one GPU. We build encoder-decoder
models with attention in xnmt (Neubig et al., 2018)
with 512 hidden units. Our pyramidal encoder uses
3-layer BiLSTMs with linear network-in-network
(NiN) projections and batch normalization between
layers (Sperber et al., 2019; Zhang et al., 2017). The
NiN projections are used to downsample by a factor
of 2 between layers, resulting in the same total 4x
downsampling in time as the additional convolutional
layers from Weiss et al. (2017); Bansal et al. (2019):
They give us the benefit of added depth with fewer
additional parameters. We use single layer MLP
attention (Bahdanau et al., 2015) with 128 units and 1
decoder layer as opposed to 3 or 4 in previous work —
we did not see consistent benefits from additional depth.

In line with previous work on this dataset, all
experiments preprocess target text by lowercasing and
removing punctuation aside from apostrophes. We use
40-dimensional Mel filterbank features as previous
work did not see significant difference with higher-
dimensional features (Salesky et al., 2019). We use 1k
BPE units for translation text, shown in Salesky et al.
(2019) to have both better performance and training
efficiency than characters (Weiss et al., 2017; Sperber
et al., 2019) or words (Bansal et al., 2018). For both
text and phones, we use 64-dimensional embeddings.

For the MT component in cascaded speech transla-
tion models, we compared using the pyramidal speech
architecture above (3 encoder, 1 decoder layers) to
the traditional BiLSTM text model (2 layers each for
encoder and decoder). Using the pyramidal architecture
resulted in the same performance as the BILSTM model
when translating BPE transcriptions from ASR, but
gave us consistent improvements of up to 1.5 BLEU
when instead translating phone sequences; we posit
this is because phone sequences are longer than BPE
equivalents. Accordingly, we use the same model
architecture for all our ASR, MT, and ST models.

We use layer dropout with p = 0.2 and target embed-
ding dropout with p = 0.1 (Gal and Ghahramani, 2016).
We apply label smoothing with p = 0.1 (Szegedy et al.,
2016) and fix the target embedding norm to 1 (Nguyen
and Chiang, 2018). For inference, we use beam of size
15 and length normalization with exponent 1.5. We
set the batch size dynamically depending on the input
sequence length with average batch size was 36. We
use Adam (Kingma and Ba, 2015) with initial learning
rate 0.0003, decayed by 0.5 when validation BLEU did
not improve for 10 epochs initially and subsequently
5 epochs. We do not use L2 weight decay or Gaussian
noise, and use a single model replica. We use input
feeding (Luong et al., 2015), and exclude utterances
longer than 1500 frames in training for memory.
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6 Prior Work: Cascaded vs End-to-End
Models on Fisher Spanish-English

The large body of research on the Fisher Spanish-
English dataset, including both cascaded and end-to-end
models, makes it a good benchmark to compare these ar-
chitectures. Not all previous work has compared across
multiple resource settings or compared to cascaded mod-
els, which we address in this section. We summarize
best previous results on this dataset on high, medium,
and low-resource conditions in Table 2.

Best Results. The cascade of traditional HMM/DNN
ASR and Joshua MT models from Kumar et al. (2014)
set a competitive baseline on the full dataset (40.4 test
BLEU) which no subsequent academic models have
been able to match until this work; subsequent explo-
ration of end-to-end models has produced notable rel-
ative improvements but the best end-to-end academic
number (Salesky et al., 2019) remains 1.6 BLEU behind
this traditional cascade.

Industry models from Weiss et al. (2017) achieved ex-
ceptional performance with very deep end-to-end mod-
els on the full dataset (47.3 test BLEU), exceeding a
cascade for the first time. They additionally show results
with an updated cascade using neural models, improving
over Kumar et al. (2014). Their results have been previ-
ously unmet by the rest of the community. This is likely
in part due to the computational resources required to
fully explore training schedules and hyperparameters
with models of their depth. While their ASR models
took ~4 days to converge, their ST models took an-
other 2 weeks, compared to the lighter-weight models
of recent academic work which converged in <5 days
(Sperber et al., 2019; Salesky et al., 2019; Bansal et al.,
2019).

This dataset is challenging: improving ASR WER
from 35 (Post et al.) to 23 (Kumar et al.) only resulted in
4 BLEU ST improvement: see Components in Table 2.
We believe this to be in part because the multi-reference
scoring masks some model differences, and the conver-

sational phenomena (like disfluencies) are challenging.

Lower-Resource. While deep end-to-end models
have become competitive at higher-resource conditions,
previous work on this dataset has showed they are
not as data-efficient as cascades under lower-resource
conditions. While some works have tested multiple
resource conditions, only Sperber et al. (2019) com-
pared against cascades across multiple conditions. Their
end-to-end baseline outperformed their cascades on the
full dataset, but not under lower-resource conditions,
while their end-to-end but multi-stage attention-passing
model is more data-efficient than previous models and
shows the best previous results under lower-resource
condition. Sperber et al. do not report results without
auxiliary ASR, MT, and autoencoding tasks, which they
state add up to 2 BLEU.

Additional Data. Stoian et al. (2020); Bansal et al.
(2019); Sperber et al. (2019) investigate speech trans-
lation performance using additional corpora through
transfer learning from ASR and auxiliary MT tasks. The
ability to leverage non-parallel corpora was previously
a strength of cascades and had not been explored with
end-to-end models. We do not use additional data here,
but show these numbers as context for our results with
phone supervision, and refer readers to Sperber et al. for
discussion of cascaded and end-to-end models’ capacity
to make use of more data.

Parameter Tuning. We find cascaded model perfor-
mance can be impacted significantly by model settings
such as beam size and choice of ASR target preprocess-
ing. While Weiss et al. (2017); Sperber et al. (2019) use
character targets for ASR, we use BPE, which gave us
an average increase of 2 BLEU. Further, we note that
search space in decoding has significant impact on cas-
caded model performance. In cascaded models, errors
produced by ASR can be unrecoverable, as the MT com-
ponent has access only to ASR output. While Sperber
etal. (2019) use a beam of size 1 for the ASR component
of their cascade to compare with their two-stage end-to-

HIGH (160hr) MID (40hr) LOW (20hr) Components
Model Source dev test dev test dev test ASRl MT"?
Weiss et al. (2017) 451 455 - - - - 232 579
Cascaded Kumar et al. (2014) - 40.47 - - - - 25.3 629
Sperber et al. (2019) - 32.5 - 16.8 - 6.6 40.9 58.1
Weiss et al. (2017) 465 413" - - - -
Salesky et al. (2019) 37.6  38.8 21.0 198 11.1 100
End-to-End g beretal 2019) — 367 - 319 - 228
Stoian et al. (2020)  34.1 34.6 - - 103 102
R Sperber et al. (2019) - 38.8 - - - -
+Add'IData g L eral 2020) 379 378 - - 201 202

Table 2: End-to-end vs cascaded speech translation model performance in BLEU? on Fisher Spanish-English data
from the literature. () denotes the best previous academic result on the full dataset, (*) the best from industry.

Component models for cascades reported on test on full dataset: ASR reported in WER{ and MT in BLEU?.
2391



end models, we find that using equal beam sizes of 15
for both ASR and MT improves cascaded performance
with the same model by 4-8 BLEU; combining these
two parameter changes makes the same cascaded model
a much more competitive baseline (compare lines 3 in
both Table 2 and Table 3). In contrast, widening beam
size to yield an equivalent search space for end-to-end
models has diminishing returns after a certain point; we
did not see further benefits with a larger beam (> 15).

Our Baselines. We report best numbers from previ-
ous work in Table 2 for comparison (which may use
multi-task training), but use single-task models in our
work. We report our baseline results in Table 3. On the
full dataset, our baseline cascade improves slightly over
Kumar et al. (2014) with 41.0 compared to 40.4 on test,
a mark most recent work has not matched primarily due
to model choices noted above, with component ASR
performance of WER 30.4 and 58.6 BLEU for MT. Our
end-to-end baseline is comparable to the baselines in
Salesky et al. (2019); Sperber et al. (2019); Stoian et al.
(2020). This suggests we have competitive baselines
for both end-to-end and cascaded models.

7 Results Using Phone Features

We compare our two ways to leverage phone features
to our cascaded and end-to-end baselines across three
resource conditions. Table 3 shows our results; follow-
ing previous work, all BLEU scores are multi-reference.
Average single reference scores may be found in Ap-
pendix A. All models using phone supervision outper-
form the end-to-end baseline on all three resource con-
ditions, while our proposed models also exceed the cas-
caded baseline and previous work at lower-resource
conditions.

Phone features. Salesky et al. (2019) performs most
similarly to the end-to-end baseline, but nonetheless rep-
resents an average relative improvement of 13% across
the three data sizes with a significant reduction in train-
ing time. Our phone featured models use not just the
phone segmentation, but also the phone labels, and per-
form significantly better. Our phone end-to-end model
not only shows less of a decrease in performance across

Baseline End-to-End
Hybrid Cascade

Salesky et al. (2019)
Phone Cascade
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Figure 2: Performance of all models relative to ‘Base-
line Cascade’ (A = 0) across our 3 resource conditions.

models in , end-to-end models in
purple. Our proposed models yield improvements
across all three conditions, with a widening margin un-
der low-resource conditions for the phone cascade.

resource conditions than Salesky et al. (2019), but fur-
ther improves by 4 BLEU over the baseline cascade
on our two lower-resource conditions. This suggests
augmenting embeddings with discrete phone features
is more effective than improved downsampling. The
phone cascade performs still better, with marked im-
provements across all conditions over all other models
(see Figure 2). On the full dataset, using phones as the
source for MT in a cascade performs ~2 BLEU better
than using BPE, while at 40 and 20 hours this increases
to up to 10 BLEU. We analyze the robustness of phone
models further in Section 8.

Hybrid cascade. We additionally use a ‘hybrid cas-
cade’ model to compare using phone features to im-
proving ASR. Our hybrid cascade uses an ASR model
with phone-informed downsampling and BPE targets
(Salesky et al., 2019). This improves the WER of our
ASR model to 28.1 on dev and 23.2 on test, matching
Weiss et al. (2017)’s state-of-the-art on test (23.2) and
approaching it on dev (25.7). Our hybrid cascade per-
forms more similarly to Weiss et al.’s cascade on the full
dataset, with 45.0 to their 45.5 on test, and is our best-
performing ST model on the full dataset. However, at
lower-resource conditions, it does not perform as favor-

HIGH (160hr) MID (40hr) LOW (20hr)

Model dev test A dev test A dev test A
.§ Baseline End-to-End 324  33.7 - 19.5 174 - 9.8 9.8 -
S Saleskyetal. (2019)  37.6 3838 +52 21.0 198 +2.0 11.1 10.0 +0.8
& Baseline Cascade 397 410 +73 298 27.1 4100 226 202 +11.6
§ Phone End-to-End 40.5 42.1 +83 345 330 +153 267 262 +16.7
2 Phone Cascade 416 433 +94 372 374 +189 322 315 +22.1
E Hybrid Cascade 429 450 +109 333 312 +138 232 215 +126

Table 3: Results in BLEU?T comparing our proposed phone featured models to baselines. We compare three resource
conditions, and show average improvement for dev and test (A). Best performance bolded by column.
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ably compared to phone featured models — as shown in
Figure 2, both the phone cascade and phone end-to-end
models outperform the hybrid cascade at lower-resource
conditions, by up to 10 BLEU at 20 hours. This suggests
improving ASR may enable cascades to perform better
at high-resource conditions, but under lower-resource
conditions it is not as effective as utilizing phone fea-
tures.

Training time. In addition to performance improve-
ments, our models with phone features are typically
more efficient with respect to training time, shown in
Table 4. The fixed time to produce phone labels, which
must be performed before translation, becomes a greater
proportion of overall training time at lower-resource
settings. In particular, the phone end-to-end model of-
fers similar training time reduction over the baseline to
Salesky et al. (2019), where downsampling reduces se-
quence lengths by up to 60%, with unreduced sequence
lengths through earlier convergence; this model offers a
better trade-off between time and performance.

Model HIGH MID LOW A

Baseline End-to-End 118hr 40hr 22hr -

Salesky et al. (2019)  41hr 13hr 10hr 0.4x
Baseline Cascade 76hr 19hr 12hr 0.6x
Phone Cascade 57hr  3%hr 27hr 0.7x
Phone End-to-End 42hr  20hr 13hr 0.4x
Hybrid Cascade 47hr  34hr 24hr 0.6x

Table 4: Total training time for all models (includ-
ing time to generate phone features) on 3 resource condi-
tions. The ASR and MT models in the baseline cascade
can be trained in parallel, reflected here, while phone
featured models may not as the MT requires phone fea-
tures from ASR.

Comparing to previous work using additional data.
Previous work used the parallel speech transcripts in
this dataset for auxiliary tasks with gains of up to 2
BLEU; we show using the same data to generate phone
supervision is far more effective. We note that our phone
models further outperform previous work trained with
additional corpora. The attention-passing model of Sper-
ber et al. (2019) trained on additional parallel Spanish-
English text yields 38.8 on test on the full dataset, which
Salesky et al. (2019) matches on the full dataset and
our proposed models exceed, with the phone cascade
yielding a similar result (37.4) trained on only 40 hours.
Pre-training with 300 hours of English ASR data and
fine-tuning on 20 hours of Spanish-English data, Stoian
et al. (2020); Bansal et al. (2019) improve their end-to-
end models from =10 BLEU to 20.2. All three of our
proposed models exceed this mark trained on 20 hours
of Fisher.

8 Model Robustness & Further Analysis

In this section, we analyze the robustness of each of
our models by varying the quality of our phone features,
and further explore the strengths and limitations of each
model.

8.1 Phone Cascade

Phone cascades use a representation for translation
which may be more robust to non-phonetic aspects of
orthography. However, as a cascaded model, this still
requires hard decisions between ASR and MT, and so
we may expect lower phone quality to lead to unrecov-
erable errors. Figure 3 compares the impact of phone
quality on the performance of phone cascades trained on
our high, medium, and low-resource conditions. We use
alignments produced with gold transcripts as an upper
bound on performance. We note that with gold align-
ments, translation performance is similar to text-based
translation (see Section 6). We see that phone quality
does have a significant impact on performance, with the
MT model trained on low phone quality yielding similar
translation performance using the full 160 hour dataset
to the MT model with the highest quality phones trained
on only 20 hours. However, we also see significantly
more data-efficiency with this model, with less reduc-
tion in performance between 160hr = 40hr = 20hr
training conditions than previous models.

Phone Cascade
€0 e Phone Quality
Gold
High
43.3 Med
40.6 39.8 Low

49.4

BLEU [4Ref]
8 8 &8 8

o

160hr 40hr 20hr
Hours of Training Data

Figure 3: Phone Cascade Robustness: using phone la-
bels in place of BPE as the text source for downstream
MT. Comparing performance across our three data con-
ditions and phone label qualities.

Redundancy. For the phone cascade models com-
pared in Figure 3, we collapse adjacent consecutive
phones with the same label, i.e. when three consecutive
frames have been aligned to the same phone label ‘B
B B’ we have reduced the sequence to a single phone
‘B’ for translation. We additionally compared translating
non-uniqued phone sequences (e.g. the same sequence
length as the number of frames) as a more controlled
proxy for our model’s handling of longer frame-based
feature vector sequences compared to Salesky et al.
(2019)’s downsampled feature vector sequences. The
redundant phones caused consistent decreases in BLEU,
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with much greater impact in lower-resource conditions.
Translating the full sequence of redundant frame-level
phone labels, for the full 160hr dataset, all models per-
formed on average 0.6 BLEU worse; for 40hr, 1.8 BLEU
worse; and with 20 hours, 4.1 BLEU worse — a 13%
decrease in performance solely from non-uniqued se-
quences.

Phones correspond to a variable-length number of
speech frames depending on context, speaker, and other
semantic information. When translating speech feature
vectors, speech features within a phone are similar but
uniquely valued; using instead phone labels in a phone
cascade, the labels are identical though still redundant.
These results suggest our LSTM-based models are better
able to handle redundancy and variable phone length
at higher resource conditions with sufficient examples,
but are less able to handle redundancy with less training
data.

8.2 Phone End-to-End

Our phone end-to-end model concatenates trainable em-
beddings for phone labels to frame-level filterbank fea-
tures, associating similar feature vectors globally across
the corpus, as opposed to locally within an utterance
as with the phone-averaged embeddings (Section 8.3).
Figure 4 compares the results of these factored models
using phone features of differing qualities, with ‘gold’
alignments as an upper bound. The phone end-to-end
models compared do not reach the same upper perfor-
mance as the phone cascades: comparing gold phone
labels, the phone end-to-end model performs slightly
worse at 160hr with more degradation in performance
at 40hr and 20hr. While this comparison is even more
pronounced for ‘low’ phone quality than ‘gold,” the
phone end-to-end model has more similar performance
between ‘gold’ and ‘high’ phone quality than the cas-
cade.

This model’s input contains both the phone features
used in the phone cascade and speech features of the
baseline end-to-end model, but unlike the phone cas-

Phone End-to-End
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BLEU [4Ref]
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=)
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Hours of Training Data

Figure 4: Phone End-to-End Robustness: trainable
embeddings for phone labels are concatenated to frame-
level filterbank features. Comparing performance across
three data conditions and phone label qualities.

cade or Salesky et al. (2019) the input sequence has
not been reduced in length. That the end-to-end phone
model achieves top performance and converges much
faster than end-to-end baseline is unsurprising, as access
to both speech feature vectors and phone labels miti-
gates the effects of long noisy input sequences. The sig-
nificant performance improvements over Salesky et al.
(2019), however, are more interesting, as these models
make use of the similar information in different ways —
the use of discrete embeddings seems to aid the phone
end-to-end model, though the sequence length is not re-
duced. The model’s performance degradation compared
to the phone cascade in lower-resource conditions is
likely due in part to these sequence lengths, as shown by
our additional experiments with input redundancy for
the cascade. The greater reduction in performance here
using lower quality phones suggests the noise of the
labels and concatenated filterbank features compound,
further detracting from performance. Perhaps further
investigation into the relative weights placed on the two
embedding factors over the training process could close
this additional gap.

8.3 Phone Segmentation: Salesky et al. (2019)

We also compare to the models from Salesky et al.
(2019) as a strong end-to-end baseline. That work intro-
duced downsampling informed by phone segmentation
— unlike our other models, the value of the phone label
is not used, but rather, phone alignments are used only
to determine the boundary between adjacent phones for
variable-length downsampling. Their model provides
considerable training and decoding time improvements
due to the reduced source sequence length, and shows
consistent improvements over the baseline end-to-end
model using the original filterbank feature sequences
which increase with the amount of training data. How-
ever, their model has lower overall performance and
with much smaller performance improvements over our
baselines in lower-resource conditions than the phone
featured models we propose here. We hypothesize that
the primary reason for their BLEU improvements is the
reduction in local redundancy between similar frames,
as discovered in the previous section. We refer readers
to their paper for further analysis.

8.4 Quality of Phone Labels

We show two examples of phone sequences produced
with each overall model quality in Figure 5, uniqued
within consecutive frame sequences with the same label
for space constraints. Individual phones are typically
5-20 frames. We see the primary difference in produced
phones between different models is the label values,
rather than the boundaries. While we do see some cases
where the boundaries shift, they chiefly vary by only
1-3 frames. It is not the case that there are significantly
more or fewer phone segments aligned per utterance by
quality, though there are outlying utterances (Example
2 — ‘Low’).
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Figure 5: Two examples of phone sequences demonstrat-
ing differences across qualities of phone features.

(See Table 1 for the mapping between quality and gen-
eration procedure). Note: word-level segmentation is
not marked, as it is also not present in {speech,phone}
source sequences for translation.

Relating our observed trends to the differences be-
tween our phone cascades and phone end-to-end models,
we note that differences in frame-level phone boundaries
would not affect our phone cascaded models, where the
speech features are discarded, while they would affect
our phone end-to-end models, where the phone labels
are concatenated to speech feature vectors and asso-
ciate them across the corpus. While errors in phone
labels may be seen as ‘unrecoverable’ in a cascade, for
the end-to-end model, they add noise to distribution
of filterbank feature associated with each phone label
embedding, which appears to have a more negative im-
pact on performance than the hard decisions in cascades.
Though the concatenated filterbank features may allow
our end-to-end models to recover from discrete label er-
rors, our results testing various phone qualities suggest
this may only be the case under higher-resource settings
with sufficient examples.

9 Related Work

Speech translation was initially performed by cascad-
ing separately trained ASR and MT models, allowing
each model to be trained on larger data sources without
parallel speech, transcriptions, and translations, but po-
tentially yielding unrecoverable errors between models.
Linking models through lattices with both phrase-based
(Kumar et al., 2014) and neural MT (Sperber et al.,
2017) reduced many such errors. Using one model to
directly translate speech was later enabled by attentional
encoder-decoder models.

Direct end-to-end speech translation was first ex-
plored as a way to reduce both error propagation, and
also the need for high quality intermediate transcrip-
tions (e.g. for unwritten languages). The first such mod-
els were investigated in Bérard et al. (2016); Duong
et al. (2016), but these used, respectively, a small syn-
thetic corpus and evaluated on speech-to-text alignments
rather than translation. Subsequently Weiss et al. (2017)

extended these neural attentional models to deep, multi-
task models with excellent results on Fisher Spanish—
English, exceeding a cascade for the first time. However,
efforts from the community have not yet replicated their
success (Stoian et al., 2020; Sperber et al., 2019; Salesky
et al., 2019). End-to-end models have performed incon-
sistently compared to cascades on other corpora: Bérard
et al. (2018) perform well on high-resource audiobooks
but do not exceed a cascade; Anastasopoulos and Chi-
ang (2018) found ‘triangle’ models performed better
than cascades for 2 of 3 very low-resource language
pairs; and in the most recent IWSLT evaluation cam-
paigns, cascades have remained the highest-performing
systems (Niehues et al., 2018, 2019).

Similarly-motivated work exists in speech transla-
tion. In addition to Salesky et al. (2019); Sperber et al.
(2019) addressed above, preliminary cascades using
phone-like units have been explored for low-resource
speech translation, motivated by translation of unwrit-
ten languages where a traditional cascade would not be
possible. To this end, Bansal et al. (2018) utilized un-
supervised term discovery, and Wilkinson et al. (2016)
synthesized speech; but these approaches were only
evaluated in terms of precision and recall and were not
tested on both ‘higher-resource’ and natural speech data
conditions.

10 Conclusion

We show that phone features significantly improve the
performance and data efficiency of neural speech trans-
lation models. We study the existing performance gap
between cascaded and end-to-end models, and intro-
duce two methods to use phoneme-level features in
both architectures. Our improvements hold across high,
medium, and low-resource conditions. Our greatest im-
provements are seen in our lowest-resource settings
(20 hours), where our end-to-end model outperforms a
strong baseline cascade by =5 BLEU, and our cascade
outperforms prior work by 9 BLEU. Generating phone
features uses the same data as auxiliary speech recog-
nition tasks from prior work; our experiments suggest
these features are a more effective use of this data, with
our models matching the performance from previous
works’ performance without additional training data.
We hope that these model comparisons and results in-
form development of more robust end-to-end models,
and provide a stronger benchmark for performance on
low-resource settings.
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A Single-Reference BLEU Scores ASR{ MT?  Cascade End-to-End

These tables contain the same results as our tables and Data [dev _test dev test dev test dev test
figures as in the main paper, but show average single- Full 33.3 304 34.5 33.6 232 23.7 19.0 19.6
reference BLEU scores in place of multi-reference 40hr 44.8 46.7 299 283 174 15.7 11.5 104
(4-reference) BLEU. WER for ASR is unchanged: the 20hr 56.3 59.1 224 226 132 118 59 53
dataset contains a single reference transcript for ASR.
Results from prior work report only multi-reference  Table 8: Baseline results for end-to-end and cascaded
BLEU and so are not included below. speech translation models, with component ASR and
MT model performance for cascades (blue). ASR results
in WERJ and translation results in BLEUT.

Phone 160hr 40hr 20hr

. Phone 160hr 40hr 20hr
Quality

dev  test dev test dev test Quality
Gold 333 332293 285244 230

dev test dev test dev test

Gold 34.1 313|279 234205 172

GUEL 241 250 ) 216 217 189 183 Med " 240 237|208 184 | 165 146
Med 23.1 234|206 207|176 172 L %05 183|170 130|120 87
Low 182 19.1 | 164 170 | 141 142 oW : : : : : :

Table 6: Phone End-to-End. Trainable embeddings
for phone labels are concatenated to frame-level
filterbank features. Comparing method robustness
to phone quality and resource conditions.

Table 5: Phone Cascades. We use frame-level
phone labels as the text source for downstream MT.
Comparing method robustness to phone quality and
resource conditions.

Full (160hr) 40hr 20hr

Model dev test A dev test A dev test A
'§ Baseline End-to-End  19.0 19.6 - 115 104 - 5.9 5.3 —
§ Salesky et al. (2019) 22.0 219 +27 12,6 11.6 +1.2 6.7 6.2 +0.9
& Baseline Cascade 232 237 +42 174 157 456 132 11.8  +6.9
§ Phone End-to-End 240 237 +46 208 184 +8.7 165 146 +10.0
2 Phone Cascade 24.1 251 453 21.6 21.7 +10.7 189 183 +13.0
E Hybrid Cascade 249 259 +6.1 196 182 +8.0 13.6 126 +7.5

Table 7: Results in BLEU?T comparing our proposed phone featured models to baselines. We compare three resource
conditions, and show average improvement for dev and test (A). Best performance bolded by column.
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