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Abstract

Pretrained neural models such as BERT, when

fine-tuned to perform natural language infer-

ence (NLI), often show high accuracy on stan-

dard datasets, but display a surprising lack of

sensitivity to word order on controlled chal-

lenge sets. We hypothesize that this issue is

not primarily caused by the pretrained model’s

limitations, but rather by the paucity of crowd-

sourced NLI examples that might convey the

importance of syntactic structure at the fine-

tuning stage. We explore several methods to

augment standard training sets with syntacti-

cally informative examples, generated by ap-

plying syntactic transformations to sentences

from the MNLI corpus. The best-performing

augmentation method, subject/object inver-

sion, improved BERT’s accuracy on controlled

examples that diagnose sensitivity to word or-

der from 0.28 to 0.73, without affecting per-

formance on the MNLI test set. This improve-

ment generalized beyond the particular con-

struction used for data augmentation, suggest-

ing that augmentation causes BERT to recruit

abstract syntactic representations.

1 Introduction

In the supervised learning paradigm common in

NLP, a large collection of labeled examples of a

particular classification task is randomly split into

a training set and a test set. The system is trained

on this training set, and is then evaluated on the

test set. Neural networks—in particular systems

pretrained on a word prediction objective, such as

ELMo (Peters et al., 2018) or BERT (Devlin et al.,

2019)—excel in this paradigm: with large enough

pretraining corpora, these models match or even

exceed the accuracy of untrained human annotators

on many test sets (Raffel et al., 2019).

At the same time, there is mounting evidence

that high accuracy on a test set drawn from the

same distribution as the training set does not indi-

cate that the model has mastered the task. This dis-

crepancy can manifest as a sharp drop in accuracy

when the model is applied to a different dataset that

illustrates the same task (Talmor and Berant, 2019;

Yogatama et al., 2019), or as excessive sensitivity

to linguistically irrelevant perturbations of the input

(Jia and Liang, 2017; Wallace et al., 2019).

One such discrepancy, where strong perfor-

mance on a standard test set did not correspond

to mastery of the task as a human would define

it, was documented by McCoy et al. (2019b) for

the Natural Language Inference (NLI) task. In

this task, the system is given two sentences, and is

expected to determine whether one (the premise)

entails the other (the hypothesis). Most if not all

humans would agree that NLI requires sensitivity

to syntactic structure; for example, the following

sentences do not entail each other, even though they

contain the same words:

(1) The lawyer saw the actor.

(2) The actor saw the lawyer.

McCoy et al. constructed the HANS challenge set,

which includes examples of a range of such con-

structions, and used it to show that, when BERT

is fine-tuned on the MNLI corpus (Williams et al.,

2018), the fine-tuned model achieves high accuracy

on the test set drawn from that corpus, yet displays

little sensitivity to syntax; the model wrongly con-

cluded, for example, that (1) entails (2).

We consider two explanations as to why BERT

fine-tuned on MNLI fails on HANS. Under

the Representational Inadequacy Hypothesis,

BERT fails on HANS because its pretrained rep-

resentations are missing some necessary syntac-

tic information. Under the Missed Connection

Hypothesis, BERT extracts the relevant syntactic

information from the input (cf. Goldberg 2019;
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Tenney et al. 2019), but it fails to use this infor-

mation with HANS because there are few MNLI

training examples that indicate how syntax should

support NLI (McCoy et al., 2019b). It is possible

for both hypotheses to be correct: there may be

some aspects of syntax that BERT has not learned

at all, and other aspects that have been learned, but

are not applied to perform inference.

The Missed Connection Hypothesis predicts that

augmenting the training set with a small number

of examples from one syntactic construction would

teach BERT that the task requires it to use its syn-

tactic representations. This would not only cause

improvements on the construction used for augmen-

tation, but would also lead to generalization to other

constructions. In contrast, the Representational In-

adequacy Hypothesis predicts that to perform better

on HANS, BERT must be taught how each syntac-

tic construction affects NLI from scratch. This

predicts that larger augmentation sets will be re-

quired for adequate performance and that there will

be little generalization across constructions.

This paper aims to test these hypotheses. We

constructed augmentation sets by applying syntac-

tic transformations to a small number of examples

from MNLI. Accuracy on syntactically challenging

cases improved dramatically as a result of augment-

ing MNLI with only about 400 examples in which

the subject and the object were swapped (about

0.1% of the size of the MNLI training set). Cru-

cially, even though only a single transformation

was used in augmentation, accuracy increased on

a range of constructions. For example, BERT’s ac-

curacy on examples involving relative clauses (e.g,

The actors called the banker who the tourists saw

9 The banker called the tourists) was 0.33 without

augmentation, and 0.83 with it. This suggests that

our method does not overfit to one construction, but

taps into BERT’s existing syntactic representations,

providing support for the Missed Connection Hy-

pothesis. At the same time, we also observe limits

to generalization, supporting the Representational

Inadequacy Hypothesis in those cases.

2 Background

HANS is a template-generated challenge set de-

signed to test whether NLI models have adopted

three syntactic heuristics. First, the lexical overlap

heuristic is the assumption that any time all of the

words in the hypothesis are also in the premise, the

label should be entailment. In the MNLI training

set, this heuristic often makes correct predictions,

and almost never makes incorrect predictions. This

may be due to the process by which MNLI was gen-

erated: crowdworkers were given a premise and

were asked to generate a sentence that contradicts

or entails the premise. To minimize effort, workers

may have overused lexical overlap as a shortcut

to generating entailed hypotheses. Of course, the

lexical overlap heuristic is not a generally valid

inference strategy, and it fails on many HANS ex-

amples; e.g., as discussed above, the lawyer saw

the actor does not entail the actor saw the lawyer.

HANS also includes cases that are diagnostic of

the subsequence heuristic (assume that a premise

entails any hypothesis which is a contiguous sub-

sequence of it) and the constituent heuristic (as-

sume that a premise entails all of its constituents).

While we focus on counteracting the lexical overlap

heuristic, we will also test for generalization to the

other heuristics, which can be seen as particularly

challenging cases of lexical overlap. Examples of

all constructions used to diagnose the three heuris-

tics are given in Tables A.5, A.6 and A.7.

Data augmentation is often employed to increase

robustness in vision (Perez and Wang, 2017) and

language (Belinkov and Bisk, 2018; Wei and Zou,

2019), including in NLI (Minervini and Riedel,

2018; Yanaka et al., 2019). In many cases, augmen-

tation with one kind of example improves accuracy

on that particular case, but does not generalize to

other cases, suggesting that models overfit to the

augmentation set (Jia and Liang, 2017; Ribeiro

et al., 2018; Iyyer et al., 2018; Liu et al., 2019). In

particular, McCoy et al. (2019b) found that aug-

mentation with HANS examples generalized to

a different word overlap challenge set (Dasgupta

et al., 2018), but only for examples similar in length

to HANS examples. We mitigate such overfitting to

superficial properties by generating a diverse set of

corpus-based examples, which differ from the chal-

lenge set both lexically and syntactically. Finally,

Kim et al. (2018) used a similar augmentation ap-

proach to ours but did not study generalization to

types of examples not in the augmentation set.

3 Generating Augmentation Data

We generate augmentation examples from MNLI

using two syntactic transformations: INVERSION,

which swaps the subject and object of the source

sentence, and PASSIVIZATION. For each of these

transformations, we had two families of augmenta-
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Original MNLI example:

There are 16 El Grecos in this small collection. →
This small collection contains 16 El Grecos.

Inversion (original premise):

There are 16 El Grecos in this small collection. 9

16 El Grecos contain this small collection.

Inversion (transformed hypothesis):

This small collection contains 16 El Grecos. 9

16 El Grecos contain this small collection.

Passivization (transformed hypothesis; non-entailment):

This small collection contains 16 El Grecos. 9

This small collection is contained by 16 El Grecos.

Random shuffling with a random label:

16 collection small El contains Grecos This. 9/→
collection This Grecos El small 16 contains.

Table 1: A sample of syntactic augmentation strategies,

with gold labels (→: entailment; 9: non-entailment).

For the full list, see Table A.1 in the Appendix.

tion sets. The ORIGINAL PREMISE strategy keeps

the original MNLI premise and transforms the hy-

pothesis; and TRANSFORMED HYPOTHESIS uses

the original MNLI hypothesis as the new premise,

and the transformed hypothesis as the new hypoth-

esis (see Table 1 for examples, and §A.2 for de-

tails). We experimented with three augmentation

set sizes: small (101 examples), medium (405) and

large (1215). All augmentation sets were much

smaller than the MNLI training set (297k).1

We did not attempt to ensure the naturalness of

the generated examples; e.g., in the INVERSION

transformation, The carriage made a lot of noise

was transformed into A lot of noise made the car-

riage. In addition, the labels of the augmentation

dataset were somewhat noisy; e.g., we assumed

that INVERSION changed the correct label from en-

tailment to neutral, but this is not necessarily the

case (if The buyer met the seller, it is likely that

The seller met the buyer). As we show below, this

noise did not hurt accuracy on MNLI.

Finally, we included a random shuffling condi-

tion, in which an MNLI premise and its hypothesis

were both randomly shuffled, with a random label.

We used this condition to test whether a syntacti-

cally uninformed method could teach the model

that, when word order is ignored, no reliable infer-

ences can be made.

1The augmentation sets and the code used to generate them
are available at https://github.com/aatlantise/
syntactic-augmentation-nli.

4 Experimental setup

We added each augmentation set separately to the

MNLI training set, and fine-tuned BERT on each

resulting training set. Further fine-tuning details

are in Appendix A.1. We repeated this process for

five random seeds for each combination of augmen-

tation strategy and augmentation set size, except for

the most successful strategy (INVERSION + TRANS-

FORMED HYPOTHESIS), for which we had 15 runs

for each augmentation size. Following McCoy et al.

(2019b), when evaluating on HANS, we merged

the neutral and contradiction labels produced by

the model into a single non-entailment label.

For both ORIGINAL PREMISE and TRANS-

FORMED HYPOTHESIS, we experimented with us-

ing each of the transformations separately, and with

a combined dataset including both inversion and

passivization. We also ran separate experiments

with only the passivization examples with an en-

tailment label, and with only the passivization ex-

amples with a non-entailment label. As a baseline,

we used 100 runs of BERT fine-tuned on the unaug-

mented MNLI (McCoy et al., 2019a).

We report the models’ accuracy on HANS, as

well as on the MNLI development set (MNLI test

set labels are not publicly available). We did not

tune any parameters on this development set. All of

the comparisons we discuss below are significant

at the p < 0.01 level (based on two-sided t-tests).

5 Results

Accuracy on MNLI was very similar across aug-

mentation strategies and matched that of the unaug-

mented baseline (0.84), suggesting that syntactic

augmentation with up to 1215 examples does not

harm overall performance on the dataset. By con-

trast, accuracy on HANS varied significantly, with

most models performing worse than chance (which

is 0.50 on HANS) on non-entailment examples,

suggesting that they adopted the heuristics (Fig-

ure 1). The most effective augmentation strategy,

by a large margin, was inversion with a transformed

hypothesis. Accuracy on the HANS word overlap

cases for which the correct label is non-entailment—

e.g., the doctor saw the lawyer 9 the lawyer saw

the doctor—was 0.28 without augmentation, and

0.73 with the large version of this augmentation set.

Simultaneously, this strategy decreased BERT’s

accuracy on the cases where the heuristic makes the

correct prediction (The tourists by the actor called

the authors → The tourists called the authors); in
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Figure 1: Comparison of syntactic augmentation strategies. Dots represent accuracy on the HANS examples that

diagnose the lexical overlap heuristic, as produced by each of the runs of BERT fine-tuned on MNLI combined

with each augmentation data set. Horizontal bars indicate median accuracy across runs. Chance accuracy is 0.5.

fact, the best model’s accuracy was similar across

cases where lexical overlap made correct and incor-

rect predictions, suggesting that this intervention

prevented the model from adopting the heuristic.

The random shuffling method did not improve

over the unaugmented baseline, suggesting that

syntactically-informed transformations are essen-

tial (Table A.2). Passivization yielded a much

smaller benefit than inversion, perhaps due to the

presence of overt markers such as the word by,

which may lead the model to attend to word order

only when those are present. Intriguingly, even

on the passive examples in HANS, inversion was

more effective than passivization (large inversion

augmentation: 0.13; large passivization augmen-

tation: 0.01). Finally, inversion on its own was

more effective than the combination of inversion

and passivization.

We now analyze in more detail the most effective

strategy, inversion with a transformed hypothesis.

First, this strategy is similar on an abstract level

to the HANS subject/object swap category, but the

two differ in vocabulary and some syntactic proper-

ties; despite these differences, performance on this

HANS category was perfect (1.00) with medium

and large augmentation, indicating that BERT ben-

efited from the high-level syntactic structure of

the transformation. For the small augmentation

set, accuracy on this category was 0.53, suggesting

that 101 examples are insufficient to teach BERT

that subjects and objects cannot be freely swapped.

Conversely, tripling the augmentation size from

medium to large had a moderate and inconsistent

effect across HANS subcases (see Appendix A.3

for case-by-case results); for clearer insight about

the role of augmentation size, it may be necessary

to sample this parameter more densely.

Although inversion was the only transforma-

tion in this augmentation set, performance also

improved dramatically on constructions other than

subject/object swap (Figure 2); for example, the

models handled examples involving a prepositional

phrase better, concluding, for instance, that The

judge behind the manager saw the doctors does not

entail The doctors saw the manager (unaugmented:

0.41; large augmentation: 0.89). There was a

much more moderate, but still significant, improve-

ment on the cases targeting the subsequence heuris-

tic; this smaller degree of improvement suggests

that contiguous subsequences are treated separately

from lexical overlap more generally. One excep-

tion was accuracy on “NP/S” inferences, such as

the managers heard the secretary resigned 9 The

managers heard the secretary, which improved dra-

matically from 0.02 (unaugmented) to 0.50 (large

augmentation). Further improvements for subse-

quence cases may therefore require augmentation

with examples involving subsequences.

A range of techniques have been proposed over

the past year for improving performance on HANS.

These include syntax-aware models (Moradshahi

et al., 2019; Pang et al., 2019), auxiliary models de-

signed to capture pre-defined shallow heuristics so

that the main model can focus on robust strategies
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Figure 2: Augmentation using subject/object inversion with a transformed hypothesis. Dots represent the accuracy

on HANS examples diagnostic of each of the heuristics, as produced by each of the 15 runs of BERT fine-tuned

on MNLI combined with each augmentation data set. Horizontal bars indicate median accuracy across runs.

(Clark et al., 2019; He et al., 2019; Mahabadi and

Henderson, 2019), and methods to up-weight diffi-

cult training examples (Yaghoobzadeh et al., 2019).

While some of these approaches yield higher accu-

racy on HANS than ours, including better gener-

alization to the constituent and subsequence cases

(see Table A.4), they are not directly comparable:

our goal is to assess how the prevalence of syn-

tactically challenging examples in the training set

affects BERT’s NLI performance, without modify-

ing either the model or the training procedure.

6 Discussion

Our best-performing strategy involved augmenting

the MNLI training set with a small number of in-

stances generated by applying the subject/object

inversion transformation to MNLI examples. This

yielded considerable generalization: both to an-

other domain (the HANS challenge set), and, more

importantly, to additional constructions, such as rel-

ative clauses and prepositional phrases. This sup-

ports the Missed Connection Hypothesis: a small

amount of augmentation with one construction in-

duced abstract syntactic sensitivity, instead of just

“inoculating” the model against failing on the chal-

lenge set by providing it with a sample of cases

from the same distribution (Liu et al., 2019).

At the same time, the inversion transformation

did not completely counteract the heuristic; in par-

ticular, the models showed poor performance on

passive sentences. For these constructions, then,

BERT’s pretraining may not yield strong syntac-

tic representations that can be tapped into with a

small nudge from augmentation; in other words,

this may be a case where our Representational Inad-

equacy Hypothesis holds. This hypothesis predicts

that pretrained BERT, as a word prediction model,

struggles with passives, and may need to learn the

properties of this construction specifically for the

NLI task; this would likely require a much larger

number of augmentation examples.

The best-performing augmentation strategy in-

volved generating premise/hypothesis pairs from

a single source sentence—meaning that this strat-

egy does not rely on an NLI corpus. The fact that

we can generate augmentation examples from any

corpus makes it possible to test if very large aug-

mentation sets are effective (with the caveat, of

course, that augmentation sentences from a differ-

ent domain may hurt performance on MNLI itself).

Ultimately, it would be desirable to have a model

with a strong inductive bias for using syntax across

language understanding tasks, even when overlap

heuristics lead to high accuracy on the training set;

indeed, it is hard to imagine that a human would ig-

nore syntax entirely when understanding a sentence.

An alternative would be to create training sets that

adequately represent a diverse range of linguistic

phenomena; crowdworkers’ (rational) preferences

for using the simplest generation strategies possible

could be counteracted by approaches such as ad-

versarial filtering (Nie et al., 2019). In the interim,

however, we conclude that data augmentation is

a simple and effective strategy to mitigate known

inference heuristics in models such as BERT.
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A Appendix

A.1 Fine-tuning details

We used bert-base-uncased for all experi-

ments. As is standard, we fine-tuned this pretrained

model on MNLI by training a linear classifier to

predict the label from the CLS token’s final layer

embedding, while continuing to update BERT’s

parameters (Devlin et al., 2019). The order of train-

ing examples was reshuffled for each model. All

models were trained for three epochs.

A.2 Generating augmentation examples

The following list describes the augmentation

strategies we used. Table A.1 illustrates all of these

strategies as applied to a particular source sentence.

Note that inversion generally changes the meaning

of the sentence (the detective followed the suspect

refers to a different event from the suspect followed

the detective), but passivization on its own does

not (the detective followed the suspect refers to

the same event as the suspect was followed by the

detective).

• Inversion (original premise): For a source

example (p, h,→), generate (p, INV(h),9),
where INV returns the source sentence with

the subject and object switched. Ignore source

examples whose label is 9.

• Inversion (transformed hypothesis): For a

source (p, h) (with any label), discard the

premise p and generate (h, INV(h),9).

• Passivization (original premise): For a source

(p, h) (with any label), generate (p, PASS(h)),
with the same label, where PASS returns the

passive version of the source sentence (with-

out changing its meaning).

• Passivization (transformed hypothesis): For a

source (p, h), discard the premise p, and gen-

erate two examples, one with an entailment

label—(h, PASS(h),→)—and one with a non-

entailment label—(h, PASS(INV(h)),9).

We identified transitive sentences in MNLI that

could serve as source sentences using the con-

stituency parses provided with MNLI, excluding

the noisier TELEPHONE genre. We did so by search-

ing for matrix S nodes with exactly one NP daugh-

ter of the VP, where the subject and the object were

both full noun phrases (i.e., neither were a personal

pronoun such as me), and where the verb lemma

was not be or have. We kept the original tense of

the verb, and modified its agreement features if

necessary (e.g., the movie stars Matt Dillon and

Gary Sinise was transformed into Matt Dillon and

Gary Sinise star the movie).

The size of the largest augmentation set was

1215 for all strategies. This size was determined

based on the largest augmentation dataset we could

generate from MNLI for the inversion with original

premise strategy using the procedure mentioned

above. For fair comparison, we kept the same size

even for strategies where we could have generated

a larger dataset. We also created a Medium dataset

by randomly sampling 405 of the cases identify-

ing using the procedure above, as well as a small

dataset with 101 examples. We performed this pro-

cess only once for each strategy: as such, runs var-

ied only in the classifier’s weight initialization and

the order of examples but not in the augmentation

examples included in training.

To create the Combined augmentation dataset,

we concatenated the inversion and passivization

datasets, then randomly discarded half of the ex-

amples (to match the size of the combined dataset

with the others). As with the other datasets, we

only did this once: the Combined augmentation set

was the same across runs. One consequence of this

procedure is that the number of passivization and

inversion examples was not exactly identical.

A.3 Detailed Results

The following tables provide the detailed results

of our experiments. Table A.2 shows each strat-

egy’s mean accuracy on MNLI, as well on the

HANS cases that diagnose each of the three heuris-

tics (the Lexical Overlap Heuristic, the Subse-

quence Heuristic, and the Constituent Heuristic),

for which the correct label is non-entailment (9).

Table A.3 zooms in on the best-performing aug-

mentation strategy—subject/object inversion with

a transformed hypothesis—on BERT’s accuracy

on HANS, both when the correct label is entail-

ment (→) and when the label is non-entailment

(9). Finally, the last three tables detail the effect

of augmentation by inversion with a transformed

hypothesis on each of the 30 HANS subcases, bro-

ken down by the heuristic that they were designed

to diagnose: the Lexical Overlap Heuristic (Ta-

ble A.5), the Subsequence Heuristic (Table A.6),

and the Constituent Heuristic (Table A.7).
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Original

There are 16 El Grecos in this small collection. →
This small collection contains 16 El Grecos.

Inversion

Original premise:

There are 16 El Grecos in this small collection. 9

16 El Grecos contain this small collection.

Transformed hypothesis:

This small collection contains 16 El Grecos. 9

16 El Grecos contain this small collection.

Passivization

Original premise:

There are 16 El Grecos in this small collection. →
16 El Grecos are contained by this small collection.

Transformed hypothesis (entailment label):

This small collection contains 16 El Grecos. →
16 El Grecos are contained by the small collection.

Transformed hypothesis (non-entailment label):

This small collection contains 16 El Grecos. 9

This small collection is contained by 16 El Grecos.

Random shuffling (with random label)

are collection. small El this in 16 There Grecos 9/→
collection This Grecos El small 16 contains.

Table A.1: Syntactic augmentation strategies (full table).
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MNLI Overlap Subsequence Constituent

S M L S M L S M L S M L

Original premise

Inversion .84 .84 .84 .07 .40 .44 .01 .06 .12 .06 .09 .12

Passivization .84 .84 .84 .23 .35 .54 .04 .05 .09 .13 .11 .15

Combined .84 .84 .84 .42 .25 .36 .07 .05 .04 .14 .15 .12

Transformed hypothesis

Inversion .84 .84 .84 .46 .71 .73 .09 .25 .23 .17 .23 .18

Passivization .84 .84 .84 .41 .43 .31 .06 .06 .07 .13 .15 .17

Combined .84 .84 .84 .32 .64 .71 .06 .13 .28 .15 .26 .22

Pass. (only pos) .84 .84 .84 .30 .20 .29 .04 .04 .05 .10 .13 .11

Pass. (only neg) .84 .84 .85 .36 .45 .39 .06 .06 .06 .15 .13 .13

Random shuffling .84 .84 .84 .26 .19 .35 .05 .05 .06 .15 .14 .14

Unaugmented .84 .28 .05 .13

Table A.2: Accuracy of models trained using each augmentation strategy when evaluated on HANS examples di-

agnostic of each of the three heuristics—lexical overlap, subsequence and constituent—for which the correct label

is non-entailment (9). Augmentation set sizes are S (101 examples), M (405) and L (1215). Chance performance

is 0.5.

Subset of HANS Label Unaugmented Small Medium Large

MNLI All 0.84 0.84 0.84 0.84

Subject/object swap 9 0.19 0.53 1.00 1.00

All other → 0.96 0.93 0.77 0.77

lexical overlap 9 0.30 0.44 0.64 0.66

Subsequence → 0.99 0.99 0.84 0.85

9 0.05 0.09 0.25 0.23

Constituent → 0.99 0.98 0.97 0.97

9 0.13 0.17 0.23 0.18

Table A.3: Effect on HANS accuracy of augmentation using subject/object inversion with a transformed hypothesis.

Results are shown for BERT fined-tuned on the MNLI training set augmented with the three size of augmentation

sets (101, 405 and 1215 examples), as well as for BERT fine-tuned on the unaugmented MNLI training set.
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Entailment Non-entailment

Architecture or training method Overall L S C L S C

Baseline (McCoy et al., 2019a) 0.57 0.96 0.99 0.99 0.28 0.05 0.13

Learned-Mixin + H (Clark et al., 2019) 0.69 0.68 0.84 0.81 0.77 0.45 0.60

DRiFt-HAND (He et al., 2019) 0.66 0.77 0.71 0.76 0.71 0.41 0.61

Product of experts (Mahabadi and Henderson, 2019) 0.67 0.94 0.96 0.98 0.62 0.19 0.30

HUBERT + (Moradshahi et al., 2019) 0.63 0.96 1.00 0.99 0.70 0.04 0.11

MT-DNN + LF (Pang et al., 2019) 0.61 0.99 0.99 0.94 0.07 0.07 0.13

BiLSTM forgettables (Yaghoobzadeh et al., 2019) 0.74 0.77 0.91 0.93 0.82 0.41 0.61

Ours:

Inversion (transformed hypothesis), small 0.60 0.93 0.99 0.98 0.46 0.09 0.17

Inversion (transformed hypothesis), medium 0.63 0.77 0.84 0.97 0.71 0.25 0.23

Inversion (transformed hypothesis), large 0.62 0.77 0.85 0.97 0.73 0.23 0.18

Combined (transformed hypothesis), medium 0.65 0.92 0.96 0.98 0.64 0.13 0.26

Table A.4: HANS accuracy from various architectures and training methods, broken down by the heuristic that the

example is diagnostic of and by its gold label, as well as overall accuracy on HANS. All but MT-DNN + LF use

BERT as base model. L, S, and C stand for lexical overlap, subsequence, and constituent heuristics, respectively.

Augmentation set sizes are n = 101 for small, n = 405 for medium, and n = 1215 for large.
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Subcase Unaugmented Small Medium Large

Subject-object swap 0.19 0.53 1.00 1.00

The senators mentioned the artist. 9 The artist mentioned the senators.

Sentences with PPs 0.41 0.61 0.81 0.89

The judge behind the manager saw the doctors. 9 The doctors saw the manager.

Sentences with relative clauses 0.33 0.53 0.77 0.83

The actors called the banker who the tourists saw. 9 The banker called the tourists.

Passives 0.01 0.04 0.29 0.13

The senators were helped by the managers. 9 The senators helped the managers.

Conjunctions 0.45 0.59 0.69 0.81

The doctors saw the presidents and the tourists. 9 The presidents saw the tourists.

Untangling relative clauses 0.98 0.94 0.74 0.76

The athlete who the judges saw called the manager. → The judges saw the athlete.

Sentences with PPs 1.00 0.98 0.85 0.86

The tourists by the actor called the authors. → The tourists called the authors.

Sentences with relative clauses 0.99 0.98 0.89 0.89

The actors that danced encouraged the author. → The actors encouraged the author.

Conjunctions 0.83 0.78 0.68 0.66

The secretaries saw the scientists and the actors. → The secretaries saw the actors.

Passives 1.00 0.99 0.67 0.67

The authors were supported by the tourists. → The tourists supported the authors.

Table A.5: Subject/object inversion with a transformed hypothesis: results for the HANS subcases that are diag-

nostic of the lexical overlap heuristic, for four training regimens—unaugmented (trained only on MNLI), and with

small (n = 101), medium (n = 405) and large (n = 1215) augmentation sets. Chance performance is 0.5. Top:

cases in which the gold label is non-entailment. Bottom: cases in which the gold label is entailment.
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Subcase Unaugmented Small Medium Large

NP/S 0.02 0.03 0.47 0.50

The managers heard the secretary resigned. 9 The managers heard the secretary.

PP on subject 0.12 0.21 0.21 0.23

The managers near the scientist shouted. 9 The scientist shouted.

Relative clause on subject 0.07 0.13 0.14 0.13

The secretary that admired the senator saw the actor. 9 The senator saw the actor.

MV/RR 0.00 0.01 0.05 0.02

The senators paid in the office danced. 9 The senators paid in the office.

NP/Z 0.06 0.09 0.41 0.25

Before the actors presented the doctors arrived. 9 The actors presented the doctors.

Conjunctions 0.98 0.96 0.87 0.86

The actor and the professor shouted. → The professor shouted.

Adjectives 1.00 1.00 0.92 0.91

Happy professors mentioned the lawyer. → Professors mentioned the lawyer.

Understood argument 1.00 0.99 0.97 0.97

The author read the book. → The author read.

Relative clause on object 0.99 0.98 0.70 0.71

The artists avoided the actors that performed. → The artists avoided the actors.

PP on object 1.00 1.00 0.75 0.79

The authors called the judges near the doctor. → The authors called the judges.

Table A.6: Subject/object inversion with a transformed hypothesis: results for the HANS subcases diagnostic

of the subsequence heuristic, for four training regimens—unaugmented (trained only on MNLI), and with small

(n = 101), medium (n = 405) and large (n = 1215) augmentation sets. Top: cases in which the gold label is

non-entailment. Bottom: cases in which the gold label is entailment.
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Subcase Unaugmented Small Medium Large

Embedded under preposition 0.41 0.43 0.57 0.49

Unless the senators ran, the professors recommended the doctor. 9 The senators ran.

Outside embedded clause 0.00 0.01 0.02 0.01

Unless the authors saw the students, the doctors resigned. 9 The doctors resigned.

Embedded under verb 0.17 0.25 0.28 0.22

The tourists said that the lawyer saw the banker. 9 The lawyer saw the banker.

Disjunction 0.01 0.01 0.04 0.03

The judges resigned, or the athletes saw the author. 9 The athletes saw the author.

Adverbs 0.06 0.13 0.25 0.13

Probably the artists saw the authors. 9 The artists saw the authors.

Embedded under preposition 0.96 0.94 0.94 0.95

Because the banker ran, the doctors saw the professors. → The banker ran.

Outside embedded clause 1.00 1.00 0.99 0.99

Although the secretaries slept, the judges danced. → The judges danced.

Embedded under verb 0.99 0.99 0.98 0.97

The president remembered that the actors performed. → The actors performed.

Conjunction 1.00 1.00 0.98 0.99

The lawyer danced, and the judge supported the doctors. → The lawyer danced.

Adverbs 1.00 1.00 0.93 0.96

Certainly the lawyers advised the manager. → The lawyers advised the manager.

Table A.7: Subject/object inversion with a transformed hypothesis: results for the HANS subcases diagnostic of the

constituent heuristic, for four training regimens—unaugmented (trained only on MNLI), and with small (n = 101),

medium (n = 405) and large (n = 1215) augmentation sets. Chance performance is 0.5. Top: cases in which the

gold label is non-entailment. Bottom: cases in which the gold label is entailment.


