
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2283–2295
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

2283

Semantic Scaffolds for Pseudocode-to-Code Generation

Ruiqi Zhong Mitchell Stern Dan Klein
Computer Science Division

University of California, Berkeley
{ruiqi-zhong,mitchell,klein}@berkeley.edu

Abstract

We propose a method for program generation
based on semantic scaffolds, lightweight struc-
tures representing the high-level semantic and
syntactic composition of a program. By first
searching over plausible scaffolds then using
these as constraints for a beam search over
programs, we achieve better coverage of the
search space when compared with existing
techniques. We apply our hierarchical search
method to the SPoC dataset for pseudocode-
to-code generation, in which we are given
line-level natural language pseudocode anno-
tations and aim to produce a program satisfy-
ing execution-based test cases. By using se-
mantic scaffolds during inference, we achieve
a 10% absolute improvement in top-100 ac-
curacy over the previous state-of-the-art. Ad-
ditionally, we require only 11 candidates to
reach the top-3000 performance of the pre-
vious best approach when tested against un-
seen problems, demonstrating a substantial im-
provement in efficiency.

1 Introduction

Systems that can map from natural language de-
scriptions of tasks or programs to executable code
have the potential for great societal impact, help-
ing to bridge the gap between non-expert users
and basic automation or full-fledged software de-
velopment. Accordingly, this area of research has
garnered significant interest in recent years, with
systems being devised for the translation of natu-
ral language specifications into database queries
(Wang et al., 2018), if-then programs (Chen et al.,
2016), game elements (Ling et al., 2016), and more.

While much of the prior work in executable se-
mantic parsing involves short descriptions being
mapped into single-line programs, some tasks have
recently been proposed that involve multiple natu-
ral language utterances on the input side and full
programs on the output side, often reaching tens of

Line Pseudocode Code
1 in function main int main() {
2 n is a long integer 0 long n = 0;
3 while n is less than o while (n < ‘o’) {
4 … …
5 close while scope }

Translate

while (n < o) {

while (n < ‘o’)

Other wrong
candidates

error: use of undeclared
identifier 'o'

error: missing '{'

Figure 1: Pseudocode is translated to code for each line
and combined to form a valid program. Certain combi-
nations are invalid due to syntactic and semantic con-
straints.

lines in length and including non-trivial state ma-
nipulation. Examples include the Magic the Gather-
ing and Hearthstone datasets (Ling et al., 2016) de-
rived from trading cards and Java or Python classes
implementing their behavior in a game engine, the
CONCODE dataset (Iyer et al., 2018) consisting of
Java documentation strings and method bodies, and
the NAPS and SPoC datasets (Zavershynskyi et al.,
2018; Kulal et al., 2019) consisting of pseudocode
annotations and source code for programming com-
petition problems.

Past approaches to these large-scale language-
to-code tasks have typically employed sequence-
based models (Ling et al., 2016) that do not ac-
count for structure on the output side, or tree-based
models (Allamanis et al., 2015; Rabinovich et al.,
2017a; Yin and Neubig, 2017; Hayati et al., 2018;
Iyer et al., 2019) that incorporate the syntax but not
the semantics of the output domain. However, if
we want to generate programs that can be executed
successfully, the inclusion of both syntactic and se-
mantic constraints is crucial. As shown in Figure 1,
while multiple program fragments may be syntacti-
cally correct and represent plausible translations of
the corresponding pseudocode, not all of them will
lead to executable programs.

To address this, we propose a search proce-
dure based on semantic scaffolds, lightweight sum-

2284

maries of higher-level program structure that in-
clude both syntactic information as well as seman-
tic features such as variable declarations and scope
constraints. See Section 3 for a more formal defini-
tion. While these do not encode the full spectrum of
constraints used in some formal program synthesis
tools (Solar-Lezama, 2009; Gulwani et al., 2017),
they strike a balance between utility, speed, and
ease of use, offering substantial improvements in
system performance without a significant increase
in complexity.

In this work we focus on the Search-based Pseu-
docode to Code (SPoC) dataset (Kulal et al., 2019)
due to its challenging multiline programs and avail-
ability of input-output test suites to evaluate de-
notation accuracy. The dataset contains line-level
pseudocode annotations for 18,356 C++ programs
provided by crowdsource workers from Amazon
Mechanical Turk. As in the approach of Kulal et al.
(2019), we first obtain candidate code fragments
for each line using an off-the-shelf neural machine
translation system. We then aim to find the highest-
scoring combination of fragments that results in a
valid program. Although finding the optimal pro-
gram under this setting is NP-hard when variable
usage constraints are introduced (see Section A.3),
we can approximate it with a hierarchical beam
search. Our algorithm first searches for seman-
tic scaffolds for the program, then assembles frag-
ments together conditioned on these scaffolds. This
hierarchical approach speeds up search, produces
higher quality variations, and leads to substantial
improvements in our system’s final accuracy.

We achieve a new state-of-the-art by solving
55.1% of the test cases within 100 attempts. This
represents a 10.4% absolute improvement over the
previous best (Kulal et al., 2019), and reaches 81%
of our model’s oracle performance. When tested
against unseen problems (or crowd-workers), our
top 11 (or top 52, respectively) candidates have
the same performance as their top 3000 candidates,
demonstrating marked gains in efficiency.

We complement our results with a discussion
of specific cases in which our semantic scaffolds
use global program context to resolve ambiguities
in the pseudocode. We also conduct a manual er-
ror analysis of 200 failures to better characterize
the limitations of our method and suggest possible
extensions for future work.

Our contributions are summarized as follows:

• We propose the use of semantic scaffolds to

add semantic constraints to models for long-
form language-to-code generation tasks.

• We introduce a hierarchical beam search al-
gorithm that incorporates these constraints,
resulting in heightened efficiency, better cov-
erage of the search space, and stronger per-
formance when compared with the standard
approach.

• We achieve a new state-of-the-art accuracy
of 55.1% on the SPoC pseudocode-to-code
dataset.

2 Pseudocode-to-Code Task

In this work, we focus on the SPoC dataset intro-
duced by Kulal et al. (2019).

2.1 Data

This dataset consists of C++ solutions to problems
from Codeforces, a competitive programming web-
site, along with the input-output test cases used for
each problem to evaluate correctness. It contains
18,356 programs in total with 14.7 lines per pro-
gram on average. Each line is annotated with a
natural language pseudocode description given by
a crowd worker from Amazon Mechanical Turk.
On average, there are 7.86 tokens per line of code
and 9.08 tokens per pseudocode annotation. From
the full dataset, 1,752 programs with annotations
from unseen crowd workers and 1,820 programs
for unseen problems are held out for evaluation.
More details can be found in Kulal et al. (2019).

2.2 Task

Suppose the target program has L lines. For each
line l ∈ [L], we are given a natural language pseu-
docode annotation xl and an indentation level il.
Our goal is to find a candidate program y based
on (x1, i1), . . . , (xL, iL) that can solve the given
problem (i.e. pass all the test cases) using as few
submission attempts as possible. The search effi-
ciency of an algorithm is calculated as the fraction
of problems it can solve using a budget of B at-
tempts per problem, where an attempt includes
both compiling a candidate program and running
the test cases.

As in Kulal et al. (2019), for each pseudocode
line xl, we use an off-the-shelf neural machine
translation system to obtain a set of C candidate
code pieces Yl = {ylc | c ∈ [C]}, where candidate
code piece ylc has probability plc. A full candidate

2285

program y is a concatenation of candidate code
pieces, one per line, and has score p(y):

y = concatLl=1ylcl , p(y) =
L∏
l=1

plcl . (1)

We aim to find valid high-scoring programs in our
search procedure.

3 Combination Constraints

Kulal et al. (2019) propose best-first search as a
baseline, which enumerates all complete candidate
programs in descending order by score. Using a
priority queue, this algorithm can efficiently find
the exact top B highest scoring candidates in time
O(L log(BL)) per candidate.

However, this approach ignores any dependence
between different lines. For example, any of the
code piece candidates in Figure 1 could potentially
be used in a valid program, but if we naively com-
bine certain subsets of candidates together, the re-
sulting program will be invalid due to the use of
undeclared variables or mismatching braces. To
solve this problem, we propose to enforce certain
syntactic and semantic constraints when combin-
ing candidate code pieces.

3.1 Syntactic Constraints
The candidate program should adhere to the gram-
matical specification of the target language. How-
ever, since incorporating the complete set of C++
grammatical constraints would require significant
engineering effort, we instead restrict our atten-
tion to the set of “primary expressions” consisting
of high-level control structures such as if, else,
for loops, function declarations, etc. As shown
in Figure 2, we parse the candidate code pieces for
each line into a list of primary expression symbols.
In order for code pieces from consecutive lines to
be used together, there must exist a grammatical
derivation that combines their respective symbols.
The complete list of primary expression can be
found in the appendix; see Tables 6 and 7.

Additionally, some production rules are associ-
ated with the start or end of a variable scope block.
We require that the number of open scope blocks
equals the indentation level il for each line l.

3.2 Symbol Table Constraints
Each scope block is associated with a symbol table
(Aho et al., 1986) keeping track of the variables
that have been declared within that scope or any

containing scopes. We extract the variable names
used or declared by each code piece (Figure 3)
and ensure that (1) undeclared variables are not
used, and (2) variables are not redeclared within
the same scope. After checking these constraints,
any variables declared by a given code piece will
be added to the symbol table associated with the
current scope.

These symbol table constraints are based on the
semantic information of code pieces and are fun-
damentally different from previous AST-based syn-
tactic constraints for code generation (Rabinovich
et al., 2017b; Yin and Neubig, 2017). Formally,
any context free grammar that specifies the same
constraints requires at least exponential description
complexity. We provide a proof adapted from Ellul
et al. (2005) in Appendix A.2.

3.3 Syntactic and Semantic Scaffolds

We note two properties of the aforementioned con-
straints. First, we can efficiently compute whether
a program prefix can possibly lead to a full program
that satisfies the constraints by using an incremental
parser (Ghezzi and Mandrioli, 1979) and checking
the symbol tables. Secondly, not all information
from a code piece is necessary to verify the con-
straints. Accordingly, when multiple code piece
candidates have the same primary expression sym-
bols and variable declarations and usage, swapping
between them would not affect the satisfiability
of the constraints. For example, changing from
a += 1 to a -= 1 will not change a compilable
program into a non-compilable one, or vice versa.
These two properties will help motivate the hier-
archical beam search algorithm introduced in the
next section.

More formally, we take the configuration φ(ylc)
of a line ylc to be the minimal set of features re-
quired to verify the above constraints. The prefix
scaffold Sy,l = [φ(y1c1), φ(y2c2), . . . , φ(ylcl)] of a
program y then contains all the information needed
to verify the constraints for the first l lines. We can
efficiently compute whether Sy,l1 is a valid prefix
scaffold when l < L and whether Sy,L is a valid
scaffold for a full program when l = L.

1To keep notation uncluttered, we sometimes use φ to
denote a configuration, we ignore the subscript y of S when
we refer to a general scaffold that is not necessarily associated
with a specific program, and we ignore the subscript l = L of
S when we refer to the scaffold of a full program.

2286

Code Pieces Extracted Primary Expressions

int main() {
 int n, ans = 1;
 for (int i = 1; i <= n / 2 -
1; i++) cout << 2 << " ";
 if (n % 2 == 0)
 cout << 2 << endl;
}

return_type function_name () {start
 terminal_stmt
 forstart terminal_parathenses
 terminal_stmtend
 if terminal_parathensesstart
 terminal_stmtend
}end

(a) Code pieces are parsed into
Primary Expressions Symbols

Symbol Production Rules Used

function

stmt*
for_stmt
if_stmt

return_type function_name () {start
stmt* }end
stmt* stmt
for_stmt | if_stmt | terminal_stmt
ifstart terminal_parathenses
terminal_stmtend;

(b) Production rules of Primary
Expression Grammar

function

return
type int

main

() {start

stmt*

}end

terminal
stmt

for
stmt

if stmt

int n, ans = 1;

forstart

terminal
parathenses

 …

terminal
stmt end

(int i = 1;
i <= n / 2 - 1;

i++)
cout << 2
<< " ";

(c) Abstract Syntax Tree of the
code piece combination.

function
name

Figure 2: Example primary expression grammar. Subscripts “start/end” refers to starting/ending variable scopes.

const int N = 35;
int main() {

int n, h[N], count;

main
N

Program Prefix

Symbol Table
per Scope

n
h

count i

Variable i declared in the third scope
Variable i, n, count used in the third scope

Variable
Used/Declared

main() scope for () scopefile scope

Next Line for (int i = 0; i < n; i ++)
count++;

extract

Figure 3: Extracting variables used or declared at each
scope for a given code piece to verify the symbol table
constraints.

4 Constrained Search

4.1 Beam Search

Our goal is to find the top B highest-scoring candi-
date programs that satisfy the aforementioned con-
straints. Unfortunately, finding whether even one
solution exists is NP-hard (proof given in Section
A.3). One way we can approximate the solution is
to use a standard beam search. The beam maintains
a list of hypothesis program prefixes along with
their respective scores. We extend the beam by
adding the candidate code pieces from the next line
to each candidate program prefix if they form valid
combinations under the constraints, then prune the
hypotheses with scores outside of the top W . The
algorithm ends after L steps, returning all the valid
hypotheses in the final beam.

4.2 Scaffold Search

Although beam search can approximate the top
B solutions, the time complexity of beam search
grows quadratically with the beam width W . Find-
ing the top B candidates requires that W ≥ B,
and hence each candidate takes Ω(BL) (amortized)
time to generate, which can become intractable if
B is on the order of thousands. Even worse, beam
search is often biased towards variations at the end
of the program due to its greedy decisions, and can

waste its budget on candidates that are unlikely to
be the correct solution.

This is in direct contrast to the computationally
lighter baseline which generates the exact (unbi-
ased) top candidates independently for each line
without constraint. Can we combine the advantages
of both algorithms? A key observation is that the
assumption of independent scoring across different
lines allows fast and unbiased full program candi-
date generation, while an expensive beam search is
inevitably needed to deal with the inherent depen-
dence between lines.

Therefore, we propose a hierarchical beam
search method that first uses beam search with a
smaller beam width W to find likely scaffolds, in-
cluding only the minimum dependency information
between lines to satisfy the constraints, then scores
candidates independently for each line conditioned
on the scaffold. We assign probability p(φlγ) to
configuration φlγ by marginalizing all code piece
candidates at line l with configuration φlγ , and as-
sign probability p(S) to scaffold S by multiplying
the configuration probabilities from each line:

p(φlγ) =
∑

φ(ylc)=φlγ

plc, p(S) =
L∏
i=1

p(S[i]).

(2)
Using this scoring function, we run a scaffold beam
search with size W , then select the top K highest
scoring scaffolds S1, S2 . . . SK .

Next, to generate program candidates from a
given scaffold S, we filter out all code pieces in
Yl that do not have the configuration specified by
S; in other words, the new set of code candidate
pieces for each line l is

Y S
l = {ylc ∈ Yl | φ(ylc) = S[l]}. (3)

As a result, conditioned on a fixed scaffold S, code
pieces from each line can be chosen independently
and the resulting full program will be guaranteed
to satisfy the aforementioned constraints.

2287

Given K candidate scaffolds, we enumerate the
top full program candidate from each scaffold and
choose the highest scoring one. This takes time
O(K + L log(BL)) per candidate. In practice, we
pick relatively small K and the running time has
only logarithmic dependence on B.

4.3 Tradeoffs in Early Detection
An alternative view on beam search is that it front
loads the computation to reject invalid programs
that do not satisfy the constraints earlier in the
search process. A brute force alternative is to gen-
erate the next highest scoring candidates from the
unconstrained baseline and reject invalid ones. This
method is guaranteed to produce top-scoring solu-
tions, but it might need arbitrarily many candidates
to find a valid one. We need to compare the com-
putational efficiency between these two methods.

The most computationally expensive operation
in constraint verification is to verify whether the
next line is valid given the program prefix. There-
fore, we count how many times this verifier func-
tion is called as a proxy to measure computational
efficiency. We allow the brute force method to use
as large a verifier function call quota as our “ac-
tive” beam search method: it can validate/reject a
program candidate until the quota is used up.

Section 6.4 compares our scaffold search method
against this brute force approach. The latter needs
thousands of times more computation to attain the
same level of performance as the former.

5 Implementation2

Empty Pseudocode Around 26% of the lines in
the data set do not have pseudocode annotations.
They usually correspond to lines of code that do not
have semantically meaningful information, such
as “int main() {”, “{”, “}”, etc. Kulal et al.
(2019) replaced these empty pseudocode lines with
the ground truth code, effectively giving this in-
formation away to the search algorithm. We did
not use the gold code pieces for these lines, which
makes our task more challenging.

Model Training We use OpenNMT (Klein et al.,
2017) with its default settings to translate pseu-
docode into code piece candidates. Our model
is a two-layer LSTM seq2seq model with hidden
size 512, an attention mechanism (Bahdanau et al.,
2014) and copy pointers (Vinyals et al., 2015).

2Our implementation is available at https://github.
com/ruiqi-zhong/SemanticScaffold.

We estimate the fraction problems solvable given
infinite search budget and 100 candidates per line
as in Kulal et al. (2019) to obtain an oracle bound
on performance. Due to slight difference in hy-
perparameters and tokenization method, our model
has higher ceiling: on the unseen worker (prob-
lems) test set, the oracle performance3 is 74.4%
(60.5%), compared to 71.4% (55.2%) in previous
work. Across all test examples, the oracle perfor-
mance is 68%.

Parsing Code Pieces Since no off-the-shelf C++
parser extracts the information we need from code
pieces, we implement our own primary expression
parser to extract high level control information. We
rely on the following heuristic assumptions to parse
the code pieces generated by the model: (1) a code
piece belongs to only one variable scope; (2) the
generation of every primary expression terminal
symbol lies in one line. Our parser fails on less
than 0.01% of the code pieces in the dataset. While
selecting the candidates for each line, we immedi-
ately reject the ungrammatical pieces we cannot
parse. Without deliberate implementation optimiza-
tion, this parsing operation takes on average 2.6
seconds to process all the top 100 code pieces for a
problem – approximately the same wallclock time
as 1 compilation attempt.

Search Algorithm Hyperparameters As in Ku-
lal et al. (2019), we consider the top C = 100 code
pieces for each line. Unless otherwise mentioned,
our default beam width W is 50 for scaffold search
and we keep the top K = 20 scaffolds for the
subsequent generation.

6 Search Performance

6.1 Metrics

We evaluate a search algorithmA by computing the
fraction of problem it can solve on the test set given
evaluation budget B per problem, which we denote
as fA(B). We plot fA against B and evaluate it
at B = 1, 10, 100, 1000 for each algorithm A to
compare performance.

We note that the difference of f values between
two algorithms becomes smaller and less infor-
mative as B increases. With infinite code piece
candidates and budget, a brute force search can

3The oracle performance here is not a universal property
of the data, but depends on the model used to generate the
code pieces.

https://github.com/ruiqi-zhong/SemanticScaffold
https://github.com/ruiqi-zhong/SemanticScaffold

2288

Line Pseudocode Code Piece Candidates Syntactic Config SymTable

1 in function main int main() {

 long long n = 0; terminal_stmt ; declare n
2 n is a long integer 0 long n = 0; terminal_stmt ; declare n

 while (n < ‘o’) { while condition { use n
3 while n is less than o while (n < o) { while condition { use n, o

 while (n < ‘o’) while condition use n

4 rest of the program omitted …

(a) Candidate code pieces and configs ϕ

(b) Search over scaffolds

Marginalize
over common

Configs

SymTable
Configs differ

Config

2 terminal_stmt declare n
3 while condition { use n

Other scaffolds
omitted
...

error: use of undeclared
identifier 'o'

(c) Generate from scaffolds

terminal_stmt declare n

while condition { use n

long long n = 0;
long n = 0;

2 terminal_stmt declare n
3 while condition { use n, o

while (n < ‘o’) {

(d) Combine
2 long long n = 0;
3 while (n < ‘o’) {

2 long n = 0;
3 while (n < ‘o’) {

Syntactic
Configs differ

Figure 4: (a) Candidate code pieces and their syntactic/Symtable configuration for each line; (b) use beam search
to find highest scoring valid scaffolds; (c) given a scaffold, select code pieces that has the same configurations for
each line. (d) combine code pieces to form full program.

enumerate all possible programs, find the right so-
lution and f converges to 1. Direct comparison
on f values hence becomes meaningless as B in-
creases. To address this deficiency, we define a
lead metric lA1,A2(B) equal to the extra budget X
needed by algorithm A2 to reach the same level of
performance as A1 given budget B. Formally,

lA1,A2(B) = inf{X | fA2(B +X) ≥ fA1(B)}.
(4)

A visualization can be seen in Figure 5(c).
We report our algorithms’ performance on the

heldout test set with annotations from unseen
crowd workers and with unseen problems sepa-
rately.

6.2 Comparison of Constraints
We compare four settings:

• No Constraints: the best-first search method
that scores lines independently.

• Syntactic Constraints: the constraints on the
primary expression and indentation level as
described in section 3.1.

• Symbol Table Constraints: both the syn-
tactic constraints and the symbol table con-
straints described in section 3.2. We abbrevi-
ate this as SymTable.

• Backoff: sometimes hierachical beam search
with the SymTable constraints fails to return

Figure 5: (a), (b) Comparison of f performance under
different constraints. (c) a zoom in visualization on the
definition of lead metrics (d) lead of SymTable con-
straint on Syntactic constraint on different test sets.

any valid scaffold. We back off to just the
Syntactic constraints if this happens.

Additionally, we compare with the Previous state-
of-the-art reported by Kulal et al. (2019).

The results can be seen in Figure 5 and Table 1,
where we use the constraint type as a shorthand for
the search algorithm under this constraint. Without
constraints, the baseline algorithm performs espe-
cially poorly because it needs syntactic context to
select relevant code pieces for 26% of the lines
with empty pseudocode.

SymTable outperforms Syntactic. As shown in

2289

Test Against Unseen Workers
Hierarchical Search (H), Beam Width W = 50
Constraint B=1 B=10 B=102 B=103

None 0.0% 8.1 % 29.2 % 44.3%
Previous 30.7% 44.4% 53.7% 58.6%
Syntactic 42.8 % 51.9% 59.3% 65.9%
SymTable 45.8% 55.1% 62.6% 67.3%
Backoff 46.0% 55.3% 62.8% 67.6%

Test Against Unseen Problems
Constraint B=1 B=10 B=102 B=103

None 0.0% 3.0% 11.5% 21.8%
Previous 17.8% 28.4% 34.2% 38.3%
Syntactic 27.5 % 35.4% 42.1% 47.8%
SymTable 31.0% 39.2 46.0% 49.3%
Backoff 31.2% 39.4% 46.1% 49.6%

Table 1: Comparison of the fraction of program passed
when B = 100,1,2,3 under different constraints; con-
straint satisfied by hierarchical beam search with the
default hyper-parameters mentioned in Section 5. “Pre-
vious” refers to the previous state of the art model.

Figure 5(d), the lead of SymTable on Syntactic
grows linearly: the more these two algorithms
search, the more budget is needed by Syntactic
to reach the same level as SymTable. Syntactic
needs nearly 600 more budget to have comparable
performance with SymTable that uses 400 budget.

We notice that all of our constrained search meth-
ods outperform the previous state-of-the-art. Av-
eraged across all test examples, Backoff can solve
55.1% of the problems within 100 budget, which is
≈ 10% higher than the previous work. On unseen
workers (problems), the top 11 (top 52) candidates
of Backoff solve the same fraction of problems
as the top 3000 candidates of the best performing
algorithm in Kulal et al. (2019).

6.3 Regular vs. Hierarchical Beam Search

We use regular beam search with beam width
W = 200 to generateB = 100 valid candidate full
programs. We did not experiment with B = 1000
because beam search with W ≥ B ≥ 1000 is
computationally intractable. For hierarchical beam
search we experiment with W = 10, 25, 50 for
scaffold search and keep the top K = min(W, 20)
scaffolds for subsequent searches.

Table 2 compares the performance of hierarchi-
cal beam search against regular beam search with
different beam sizes under Syntactic and SymTable
constraints. We find that if hierarchical beam
search is used, even dropping the beam width

Test Against Unseen Workers, Syntactic
Method, Width B=1 B=10 B=102

H, W=10 42.8% 51.7% 59.1%
H, W=25 42.8% 51.8% 59.3%

H, W = 50 42.8% 51.9% 59.3%
R, W=200 42.4% 51.3% 58.2%

Test Against Unseen Workers, SymTable
Method, Width B=1 B=10 B=102

H, W=10 45.4% 54.3% 61.0%
H, W=25 45.6% 54.7% 61.9%

H, W = 50 45.8% 55.1% 62.6%
R, W=200 45.6% 54.9% 61.9%

Table 2: Comparison of different beam size with Syn-
tactic and SymTable constraint when tested against un-
seen workers. H/R refers to hierarchical/regular beam
search and W is the beam width. The same results on
unseen problems can be seen in appendix .

from 50 to 10 leads to negligible change in per-
formance. In contrast, even with a large beam
width W = 200, regular beam search method can-
not efficiently search for the solution and leads to a
noticeable drop in performance.

We observe a similar trend for SymTable: regu-
lar beam search with beam width W = 200 under-
performs hierarchical search with beam width
W = 25. However, if we further decrease the
hierarchical beam search width from 25 to 10 in
this setting, we observe a significant drop in perfor-
mance, possibly because there are more variable
usage variations than syntactic variations.

6.4 Scaffold Search vs. Brute Force Method

We now compare scaffold search to the brute force
algorithm as described in section 4.3. We make
B = 50,000 attempts for the brute force method so
that its performance can match at least the top 10
candidates of our constrained approach and make
the lead metrics meaningful. To save computation
and avoid compiling all 50,000 programs, we early
reject every candidate that does not fulfill our con-
straints.

The lead of our approaches against the brute
force algorithm is shown in Figure 6. After being
adjusted for the constraint checking quota used, the
lead of our approach is tens of thousands ahead of
the unconstrained approach. Scaffold search saves
lot of computation by inducing a little overhead
earlier in the search process.

2290

Figure 6: Lead of SymTable and Syntactic constraints
on non-constrained approach with equal quota on test
set with unseen (a) workers and (b) problems.

7 Analysis

7.1 Program Candidate Variations

Beam search has the problem of producing fewer
variations at the beginning of the search. Such a
weakness might be tolerable if we only care about
the top 1 candidate, but becomes disastrous in a
search setting where we want the top B candidates,
whose variation is typically spread across the entire
program.

We describe the following procedure to formally
define this intuition. We first aggregate code piece
choices for each line for all the topB programs. As
shown in Figure 8(a), we construct a matrix such
that each column corresponds to a full program
candidate; the number r in the ith row and jth

column means that on line i, the jth full program
candidate chooses the rth code piece candidate (i.e.
yici = yir). Then we can build a prefix tree (Figure
8(b)) by treating each column as a string, where
each traversal from the root to a leaf is a complete
candidate program y. We define the representative
branch/program as a traversal from the root to a
leaf that always chooses the child that contains the
most leaves (with ties being broken randomly). For
each of the remaining B − 1 programs/traversals,
we find the smallest line number where it starts to
diverge from the representative branch. Among
these B − 1 programs, we count the fraction of
divergences that take place in the first/second half
of the lines. For example, in Figure 8(b), 0% of the
divergences occur in the first half.

We compare hierarchical vs. regular beam search
under syntactic constraints with different beam
widths W : hierarchical W = 10, 50 and regular
W = 50, 200. We group the programs by length L,
consider the top B = 25 attempted programs for
each problem and report the fraction of divergences
that occur in the first half of the program length for
each group.

Length L H 10 H 50 R 50 R 200
(0, 10] 45.4% 45.5% 43.6% 45.5%

(10, 20] 63.2% 63.4% 58.2% 63.4%
(20, 30] 63.6% 63.6% 56.8% 63.6%
(30, 40] 67.2% 67.3% 58.2% 67.3%
(40,∞) 69.4% 68.8% 56.8% 68.8%

Table 3: Fraction of divergence in the first half of
the program, grouped by program length L. In the
column headers, H/R represents Hierarchical/Regular
beam search under Syntactic constraint, and the num-
ber represents beam width W . The column with the
lowest fraction is underlined.

The results can be seen in Table 3. For regular
beam search, a moderate beam width W = 50 con-
sistently brings fewer variations in the first half of
the program, and it needs a larger W = 200 to
fix this problem. In contrast, a small W for hier-
archical beam search produces the same amount
of variations in the first half of the program. The
same statistics under SymTable constraints can be
seen in the appendix (Table 5) and the conclusion
holds similarly.

7.2 Rejection by Constraints

In this section we give representative examples
on what program candidates are rejected by our
syntactic and symbol table constraints.

Syntactic Constraints As mentioned in Sec-
tion 5, about 26% of the lines do not have pseu-
docode. They may correspond to “}”, “int
main(){”, “{”, ”return 0”, “};” or “;”.
These lines need contextual information to select
valid code pieces and naı̈vely combining the top 1
candidate from each line independently will always
produce grammatically invalid programs. Syntactic
constraints also rule out stylistic ambiguities. For
example, when there is only one statement within
an if statement, the programmer can optionally
include a curly brace. However, the pseudocode
does not contain such detailed information about
style. Both “if(...){” and “if(...)” might
be valid, but only one of them can be correct given
the context of a program. Our syntactic constraints,
which contain a curly brace constraint, can help us
select the right code piece.

Symbol Table (SymTable) Constraints Pseu-
docode annotations are sometimes implicit about
variable declarations. Given the instruction “set
N to 222222”, both code pieces (1) “int N =

2291

Reason (percentage) Pseudocode Gold Solution Model Generation

(a) Generation wrong (47.5%)
let value1, value2, val, a,
b be integers with val = 0

int value1, value2, val,
a, b = 0 ;

int value1, value2, val =
0, a, b;

(b) Needs type disambiguation (12.5%)
s[occur[i][j] + k] = letter

- a + A
s[occur[i][j] + k] =
letter - 'a' + 'A';

s[occur[i][j] + k] =
'letter' - a + A;

(c) Needs syntax disambiguation (0.5%) else if dB is less than dW } else if (dB < dW) { else if (dB < dW)

(d) Variable name typos (15.0%) if lfg = 1 if (flg == 1) { if (lfg == 1) {

(e) Pseudocode wrong (23.5%) set ans = 25*length of s ans += (25 * s.length()); int ans = 25 * s.length();

Figure 7: Categorized error analysis for lines that no generated code piece is functionally equivalent to the gold.
The percentage in the parentheses refers to the fraction of this category out of the 200 samples.

1

Full Program Rank

Line
Number

The 4 th full program
candidate picked the rank
0 code piece in line 6 .

1 2 3 4 5 6
1 0 0 0 0 0 0
2 1 1 1 1 1 1
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 1 2 1
6 0 1 3 0 1 2

0

0
0

0 1 2

10 3 20 1
3 branches diverge

from the representative
branch at line 5.

3

first half
program

Figure 8: (a) A matrix that represents each candidate’s
choices of code pieces for each line. (b) A prefix tree
constructed by treating each column as a string; the rep-
resentative branch is the second column and marked
with red color.

222222;” and (2) “N = 222222;” are poten-
tially valid. We might disambiguate this case with
a SymTable constraint: if the variable is declared
before in the same scope, then we know this code
piece should not contain a repeated declaration and
hence we should choose candidate (2); otherwise
we should choose (1) to avoid using undeclared
variables. SymTable constraints are also helpful
when the pseudocode does not put quotation marks
around string/character literals. Consider the in-
struction “if lucky is A then do the following” with
the ground truth code piece “if (lucky ==
’A’) {”. The model might misunderstand A as
a variable name and generate “if (lucky ==
A) {”. This error can be ruled out by SymTable
constraint if variable A is undeclared.

However, SymTable constraints do not preclude
all errors related to declarations. Consider the fol-
lowing generation where the last line is wrong:

i n t now = −1, c n t = 0 ;
f o r (i n t i = 0 ; i < n ; ++ i) {

. . . / / some l i n e s o m i t t e d
/ / c n t = 1 , now = v [i] ; / / go ld
i n t c n t = 1 , now = v [i] ; / / pred

}

A programmer will usually not declare new vari-
ables in the last line of a variable scope. However,
technically this is not an invalid statement and the
SymTable constraint fails to reject this wrong candi-

date. Extra modelling is needed to take into account
programming conventions and common sense.

7.3 Code Piece Error Analysis

So far we have focused on combining independent
candidates from each line together to search for
the target program. This heavily depends on the
underlying model to generate potentially correct
code pieces. However, in 32% of the programs at
least one “hard” line has no generated code piece
that is functionally equivalent to the solution, thus
indicating plenty of room for improvement. To
help the readers understand the bottleneck for code
piece generation and point out important future
directions, we randomly sampled 200 “hard” lines
and manually analyzed why the generation fails by
looking at the top 1 candidate of the model. The
error analysis is available on our GitHub.

We group the failures into the following cate-
gories, giving a detailed breakdown and examples
in Figure 7. (a) The model generation is wrong
despite clear pseudocode; this typically happens
when the gold code piece is long or highly compo-
sitional. (b, c) The pseudocode contains ambigu-
ity; the model generation is reasonable but either
needs (b) variable type clarification or (c) syntac-
tic context. This requires incorporating contextual
information of the program into the code piece gen-
eration process. (d, e) The pseudocode either (d)
consists of variable name typos or (e) is completely
wrong.

References

Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986.
Compilers, principles, techniques. Addison wesley,
7(8):9.

Miltiadis Allamanis, Daniel Tarlow, Andrew D. Gor-
don, and Yi Wei. 2015. Bimodal modelling of
source code and natural language. In Proceedings

https://github.com/ruiqi-zhong/SemanticScaffold/blob/master/hard_lines_category.csv
http://dl.acm.org/citation.cfm?id=3045118.3045344
http://dl.acm.org/citation.cfm?id=3045118.3045344

2292

of the 32Nd International Conference on Interna-
tional Conference on Machine Learning - Volume 37,
ICML’15, pages 2123–2132. JMLR.org.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Xinyun Chen, Chang Liu, Richard Shin, Dawn Song,
and Mingcheng Chen. 2016. Latent attention for
if-then program synthesis. In Proceedings of the
30th International Conference on Neural Informa-
tion Processing Systems, NIPS’16, pages 4581–
4589, USA. Curran Associates Inc.

Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-
wei Wang. 2005. Regular expressions: New results
and open problems.

Carlo Ghezzi and Dino Mandrioli. 1979. Incremental
parsing. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 1(1):58–70.

Sumit Gulwani, Oleksandr Polozov, and Rishabh
Singh. 2017. Program synthesis. Foundations
and Trends R© in Programming Languages, 4(1-2):1–
119.

Shirley Anugrah Hayati, Raphael Olivier, Pravalika Av-
varu, Pengcheng Yin, Anthony Tomasic, and Gra-
ham Neubig. 2018. Retrieval-based neural code gen-
eration. arXiv preprint arXiv:1808.10025.

Srinivasan Iyer, Alvin Cheung, and Luke Zettlemoyer.
2019. Learning programmatic idioms for scalable
semantic parsing. arXiv preprint arXiv:1904.09086.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to
code in programmatic context. arXiv preprint
arXiv:1808.09588.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush.
2017. OpenNMT: Open-Source Toolkit for Neural
Machine Translation. ArXiv e-prints.

Sumith Kulal, Panupong Pasupat, Kartik Chandra,
Mina Lee, Oded Padon, Alex Aiken, and Percy
Liang. 2019. Spoc: Search-based pseudocode to
code. arXiv preprint arXiv:1906.04908.

Wang Ling, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, Andrew Senior, Fumin
Wang, and Phil Blunsom. 2016. Latent predic-
tor networks for code generation. arXiv preprint
arXiv:1603.06744.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017a. Abstract syntax networks for code gen-
eration and semantic parsing. arXiv preprint
arXiv:1704.07535.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017b. Abstract syntax networks for code genera-
tion and semantic parsing. In Proceedings of the

55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1139–1149, Vancouver, Canada. Association
for Computational Linguistics.

Armando Solar-Lezama. 2009. The sketching ap-
proach to program synthesis. In Proceedings of the
7th Asian Symposium on Programming Languages
and Systems, APLAS ’09, pages 4–13, Berlin, Hei-
delberg. Springer-Verlag.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems, pages 2692–2700.

Chenglong Wang, Po-Sen Huang, Alex Polozov,
Marc Brockschmidt, and Rishabh Singh. 2018.
Execution-guided neural program decoding. CoRR,
abs/1807.03100.

Pengcheng Yin and Graham Neubig. 2017. A syntac-
tic neural model for general-purpose code genera-
tion. In The 55th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), Vancou-
ver, Canada.

Maksym Zavershynskyi, Alex Skidanov, and Illia Polo-
sukhin. 2018. Naps: Natural program synthesis
dataset. arXiv preprint arXiv:1807.03168.

http://dl.acm.org/citation.cfm?id=3157382.3157609
http://dl.acm.org/citation.cfm?id=3157382.3157609
https://doi.org/10.1561/2500000010
http://arxiv.org/abs/1701.02810
http://arxiv.org/abs/1701.02810
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-10672-9_3
http://arxiv.org/abs/1807.03100
https://arxiv.org/abs/1704.01696
https://arxiv.org/abs/1704.01696
https://arxiv.org/abs/1704.01696

2293

A Appendices

A.1 Primary Expressions

Table 6 contains the grammar we use for the syn-
tactic constraint and Table 7 defines the generation
of terminal symbols.

A.2 CFG Description Size of SymTable

We show that we cannot specify the SymTable con-
straint in a context free grammar without expo-
nential description complexity w.r.t. the number
of variables declared. The intuition is that, since
repeated declarations of a variable are not allowed,
we need to keep track of all the variables that have
been declared every time when verifying whether
the next line is valid; however, a CFG, when trans-
formed into a pushdown automata, is only allowed
to peek at the top of the stack to decide the state
transition. This means the symbol on the top of the
stack, the state, or the transition rule need to have
full information of about whether each variable has
been declared, which contains exponentially many
possibilities w.r.t. the number of variables.

Our proof is an adaptation of Ellul et al. (2005),
which proves this property for the language that
accepts all the permutations of a fixed number of
variables. We refer the readers to this paper if
more details of the proof are needed. To formal-
ize, we consider a simple grammar of K charac-
ters {v1, . . . , vK}, where vi means, semantically,
declaring the variable vi, and the language L con-
sists of all the possible sequences of declarations
that have no repetition.

L = {concatkj=1vaj |aj1 6= aj2 if j1 6= j2, k ≤ K}
(5)

We prove that

Theorem 1 L has at least Ω̃(1.37K) description
complexity4 as a context free grammar.

Intuitively, it means if we want to use a CFG to
specify L, we need the sum of total length of the
production rules and number of symbols to be at
least exponential.

Proof: Since we can convert any CFG with size
B to Chomsky Normal Form (CNF) with size
O(B2), the above statement would be implied if
we prove that L needs Ω̃(1.372K) = Ω̃(1.89K)
description size in Chomsky Normal Form.

We use Lemma 31 from Ellul et al. (2005):

4Ω̃ ignores all the poly(K) multiplicative factors.

Lemma 2 Let S be the start symbol of the CFG.
Then for all w ∈ L, there exists a symbol A with

S =⇒∗ αAβ =⇒∗ w (6)

such that ifA yields y inw (i.e. w = αyβ), 1
3 |w| ≤

|y| ≤ 2
3 |w|.

In other words, for any member of the language,
we can find a symbol in the derivation responsible
for between 1/3 and 2/3 of the final yield.

Let PK be all sequences of permutations of the
K variables and thus PK ⊂ L. Then by Lemma 2,
for every permutation π ∈ PK we can find yield yπ
that is yielded by a single symbol such that 1

3K ≤
|yπ| ≤ 2

3K. Now we consider two permutations
π1 and π2. If yπ1 and yπ2 are yielded by the same
symbol, then they must have the same length (this
is the part where the proof is slightly different from
Ellul et al. (2005)): suppose the contrary, w.l.o.g.,
let |yπ1 | > |yπ2 |. By the definition of a context free
grammar, we can replace the sub-string yπ2 in π2
by yπ1 to create a new string y′π2 which is still a
member of L. We have |y′π2 | = K−|yπ2 |+|yπ1 | >
K by assumption. However, there are in total K
variables; by the pigeonhole principle there must be
a variable that is declared twice, and hence y′π2 /∈ L
and we obtain a contradiction.

Then all the assumption needed by Theorem 30
in Ellul et al. (2005) hold and L has description
complexity Ω̃(1.89K) in CNF and hence L has
description complexity Ω̃(1.89K/2) = Ω̃(1.37K).
�

A.3 Hardness of Satisfying SymTable

We show that combining code pieces from each
line under the SymTable constraint is NP-Hard in
general. We first remind the readers of the set
packing problem:

Definition 3 Assume the universe to be V , and sup-
pose we are given a family of subsets S from the
power set of V , i.e. P (V) = {S | S ⊆ V} and
S ⊆ P (V). We want to determine whether we can
find a packing K ⊆ S for which all sets in K are
pairwise disjoint and with size |K| ≥ L for some
fixed L > 0. This problem is called the set packing
problem, and is known to be NP-complete.

Following the notation in section A.2, for each
line l ∈ [L], we construct the C = |S| code piece
candidates ylS for S ∈ S as

ylS = concatv∈Sv. (7)

2294

Test Against Unseen Problems, Syntactic
Method, Width B=1 B=10 B=102

H, W=10 27.4% 35.3% 42.0%
H, W=25 27.5% 35.4% 42.1%
H, W=50 27.5% 35.4% 42.1%
R, W=200 27.1% 34.7% 41.0%

Test Against Unseen Problems, SymTable
Method, Width B=1 B=10 B=102

H, W=10 30.3% 38.1% 43.1%
H, W=25 30.9% 39.2% 45.7%
H, W=50 31.0% 39.2% 45.9%
R, W=200 30.7% 38.9% 45.4%

Table 4: Comparison of different beam size with Syn-
tactic and SymTable constraint when tested against un-
seen problems. H/R refers to hierarchical/regular beam
search and W is the beam width. This table is struc-
tured similarly as 2 .

Length L H 25 H 50 R 50 R 200
(0, 10] 40.7% 41.5% 39.4% 41.5%

(10, 20] 60.9% 59.8% 54.3% 61.3%
(20, 30] 62.2% 61.3% 54.2% 61.3%
(30, 40] 66.0% 66.1% 56.8% 66.1%
(40,∞) 69.0% 68.7% 57.9% 68.7%

Table 5: Fraction of divergence in the first half of
the program, grouped by program length L. In the
column headers, H/R represents Hierarchical/Regular
beam search under SymTable constraint, and the num-
ber represents beam width W .

We easily see that there is a set packing of size L if
and only if there is a valid code piece combination
under SymTable constraint (declarations need to
be disjoint for each line). Hence we finish our
reduction proof. �

A.4 Beam Search on Unseen Problems
Table 4 contains similar information as in Table
2, except that the results are obtained on testing
with unseen problems. The exact same conclusion
holds: for regular beam search, small beam size
hurts performance, but hierarchical beam search
can solve this problem.

A.5 Variation under SymTable Constraints
Table 5 contains similar information as Table 3, but
for SymTable constraints. The same trend holds:
regular beam search with small beam size have
fewer variations in the first half of the program.

2295

Symbol Production Rule
program stmt program

function program
stmt for stmt

if stmt
while stmt

dowhile stmt
terminal stmt ;

X∗ X∗X
X

〈 EMPTY 〉
function return type function name (args) {start stmt∗ }end

return type function name (type∗);
args 〈 EMPTY 〉

arg , args
arg type arg name

for stmt forstart terminal parentheses terminal stmtend;
forstart terminal parentheses {stmt∗}end

while stmt whilestart terminal parentheses terminal stmtend;
whilestart terminal parentheses {stmt∗}end

dowhile stmt dostart {stmt∗} while terminal parenthesesend;
dostart terminal stmt while terminal parenthesesend;

if stmt single if stmt elif stmt∗ else stmt
single if stmt elif stmt∗

single if stmt ifstart terminal parentheses terminal stmtend;
ifstart terminal parentheses {stmt∗}end

elif stmt elifstart terminal parentheses terminal stmtend;
elifstart terminal parentheses {stmt∗}end

else stmt elsestart terminal stmtend;
elsestart {stmt∗}end

Table 6: The full primary expression grammar we are using. Each line is a production rule. X is a generic symbol.

Terminal Implementation
terminal parentheses a string that has matching parentheses and starts with parentheses

terminal stmt a string that does not contain “;”, “for”, “if”, “else”, “while”, “do”
for, if, else, while, do reserved key words

function name, arg name function name and function argument name
return type, type type in C++

Table 7: The definition of the terminals appearing in Table 6

