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Abstract

Large-scale pre-trained language models such
as BERT have brought significant improve-
ments to NLP applications. However, they
are also notorious for being slow in inference,
which makes them difficult to deploy in real-
time applications. We propose a simple but ef-
fective method, DeeBERT, to accelerate BERT
inference. Our approach allows samples to
exit earlier without passing through the entire
model. Experiments show that DeeBERT is
able to save up to ∼40% inference time with
minimal degradation in model quality. Fur-
ther analyses show different behaviors in the
BERT transformer layers and also reveal their
redundancy. Our work provides new ideas
to efficiently apply deep transformer-based
models to downstream tasks. Code is avail-
able at https://github.com/castorini/
DeeBERT.

1 Introduction

Large-scale pre-trained language models such as
ELMo (Peters et al., 2018), GPT (Radford et al.,
2019), BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019), and RoBERTa (Liu et al., 2019) have
brought significant improvements to natural lan-
guage processing (NLP) applications. Despite their
power, they are notorious for being enormous in
size and slow in both training and inference. Their
long inference latencies present challenges to de-
ployment in real-time applications and hardware-
constrained edge devices such as mobile phones
and smart watches.

To accelerate inference for BERT, we propose
DeeBERT: Dynamic early exiting for BERT. The
inspiration comes from a well-known observa-
tion in the computer vision community: in deep
convolutional neural networks, higher layers typi-
cally produce more detailed and finer-grained fea-
tures (Zeiler and Fergus, 2014). Therefore, we

Figure 1: DeeBERT model overview. Grey blocks are
transformer layers, orange circles are classification lay-
ers (off-ramps), and blue arrows represent inference
samples exiting at different layers.

hypothesize that, for BERT, features provided by
the intermediate transformer layers may suffice to
classify some input samples.

DeeBERT accelerates BERT inference by insert-
ing extra classification layers (which we refer to
as off-ramps) between each transformer layer of
BERT (Figure 1). All transformer layers and off-
ramps are jointly fine-tuned on a given downstream
dataset. At inference time, after a sample goes
through a transformer layer, it is passed to the fol-
lowing off-ramp. If the off-ramp is confident of
the prediction, the result is returned; otherwise, the
sample is sent to the next transformer layer.

In this paper, we conduct experiments on BERT
and RoBERTa with six GLUE datasets, showing
that DeeBERT is capable of accelerating model in-
ference by up to∼40% with minimal model quality
degradation on downstream tasks. Further analy-
ses reveal interesting patterns in the models’ trans-
former layers, as well as redundancy in both BERT
and RoBERTa.

2 Related Work

BERT and RoBERTa are large-scale pre-trained
language models based on transformers (Vaswani
et al., 2017). Despite their groundbreaking power,
there have been many papers trying to examine and
exploit their over-parameterization. Michel et al.
(2019) and Voita et al. (2019) analyze redundancy

https://github.com/castorini/DeeBERT
https://github.com/castorini/DeeBERT
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in attention heads. Q-BERT (Shen et al., 2019)
uses quantization to compress BERT, and Layer-
Drop (Fan et al., 2019) uses group regularization
to enable structured pruning at inference time. On
the knowledge distillation side, TinyBERT (Jiao
et al., 2019) and DistilBERT (Sanh et al., 2019)
both distill BERT into a smaller transformer-based
model, and Tang et al. (2019) distill BERT into
even smaller non-transformer-based models.

Our work is inspired by Cambazoglu et al.
(2010), Teerapittayanon et al. (2017), and Huang
et al. (2018), but mainly differs from previous work
in that we focus on improving model efficiency
with minimal quality degradation.

3 Early Exit for BERT inference

DeeBERT modifies fine-tuning and inference of
BERT models, leaving pre-training unchanged. It
adds one off-ramp for each transformer layer. An
inference sample can exit earlier at an off-ramp,
without going through the rest of the transformer
layers. The last off-ramp is the classification layer
of the original BERT model.

3.1 DeeBERT at Fine-Tuning

We start with a pre-trained BERT model with n
transformer layers and add n off-ramps to it. For
fine-tuning on a downstream task, the loss function
of the ith off-ramp is

Li(D; θ) =
1

|D|
∑

(x,y)∈D

H(y, fi(x; θ)), (1)

where D is the fine-tuning training set, θ is the
collection of all parameters, (x, y) is the feature–
label pair of a sample, H is the cross-entropy loss
function, and fi is the output of the ith off-ramp.

The network is fine-tuned in two stages:

1. Update the embedding layer, all transformer lay-
ers, and the last off-ramp with the loss function
Ln. This stage is identical to BERT fine-tuning
in the original paper (Devlin et al., 2019).

2. Freeze all parameters fine-tuned in the first
stage, and then update all but the last off-
ramp with the loss function

∑n−1
i=1 Li. The rea-

son for freezing parameters of transformer lay-
ers is to keep the optimal output quality for the
last off-ramp; otherwise, transformer layers are
no longer optimized solely for the last off-ramp,
generally worsening its quality.

Algorithm 1 DeeBERT Inference (Input: x)
for i = 1 to n do
zi = fi(x; θ)
if entropy(zi) < S then

return zi
end if

end for
return zn

3.2 DeeBERT at Inference

The way DeeBERT works at inference time is
shown in Algorithm 1. We quantify an off-ramp’s
confidence in its prediction using the entropy of the
output probability distribution zi. When an input
sample x arrives at an off-ramp, the off-ramp com-
pares the entropy of its output distribution zi with a
preset threshold S to determine whether the sample
should be returned here or sent to the next trans-
former layer.

It is clear from both intuition and experimenta-
tion that a larger S leads to a faster but less accurate
model, and a smaller S leads to a more accurate
but slower one. In our experiments, we choose S
based on this principle.

We also explored using ensembles of multiple
layers instead of a single layer for the off-ramp,
but this does not bring significant improvements.
The reason is that predictions from different layers
are usually highly correlated, and a wrong predic-
tion is unlikely to be “fixed” by the other layers.
Therefore, we stick to the simple yet efficient single
output layer strategy.

4 Experiments

4.1 Experimental Setup

We apply DeeBERT to both BERT and RoBERTa,
and conduct experiments on six classification
datasets from the GLUE benchmark (Wang et al.,
2018): SST-2, MRPC, QNLI, RTE, QQP, and
MNLI. Our implementation of DeeBERT is
adapted from the HuggingFace Transformers Li-
brary (Wolf et al., 2019). Inference runtime mea-
surements are performed on a single NVIDIA Tesla
P100 graphics card. Hyperparameters such as
hidden-state size, learning rate, fine-tune epoch,
and batch size are kept unchanged from the library.
There is no early stopping and the checkpoint after
full fine-tuning is chosen.
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SST-2 MRPC QNLI RTE QQP MNLI-(m/mm)

Acc Time F1 Time Acc Time Acc Time F1 Time Acc Time

BERT-base

Baseline 93.6 36.72s 88.2 34.77s 91.0 111.44s 69.9 61.26s 71.4 145min 83.9/83.0 202.84s
DistilBERT −1.4 −40% −1.1 −40% −2.6 −40% −9.4 −40% −1.1 −40% −4.5 −40%

DeeBERT
−0.2 −21% −0.3 −14% −0.1 −15% −0.4 −9% −0.0 −24% −0.0/−0.1 −14%
−0.6 −40% −1.3 −31% −0.7 −29% −0.6 −11% −0.1 −39% −0.8/−0.7 −25%
−2.1 −47% −3.0 −44% −3.1 −44% −3.2 −33% −2.0 −49% −3.9/−3.8 −37%

RoBERTa-base

Baseline 94.3 36.73s 90.4 35.24s 92.4 112.96s 67.5 60.14s 71.8 152min 87.0/86.3 198.52s
LayerDrop −1.8 −50% - - - - - - - - −4.1 −50%

DeeBERT
+0.1 −26% +0.1 −25% −0.1 −25% −0.6 −32% +0.1 −32% −0.0/−0.0 −19%
−0.0 −33% +0.2 −28% −0.5 −30% −0.4 −33% −0.0 −39% −0.1/−0.3 −23%
−1.8 −44% −1.1 −38% −2.5 −39% −1.1 −35% −0.6 −44% −3.9/−4.1 −29%

Table 1: Comparison between baseline (original BERT/RoBERTa), DeeBERT, and other acceleration methods.
LayerDrop only reports results on SST-2 and MNLI. Time savings of DistilBERT and LayerDrop are estimated by
reported model size reduction.

4.2 Main Results
We vary DeeBERT’s quality–efficiency trade-off
by setting different entropy thresholds S, and com-
pare the results with other baselines in Table 1.
Model quality is measured on the test set, and the
results are provided by the GLUE evaluation server.
Efficiency is quantified with wall-clock inference
runtime1 on the entire test set, where samples are
fed into the model one by one. For each run of Dee-
BERT on a dataset, we choose three entropy thresh-
olds S based on quality–efficiency trade-offs on the
development set, aiming to demonstrate two cases:
(1) the maximum runtime savings with minimal per-
formance drop (< 0.5%), and (2) the runtime sav-
ings with moderate performance drop (2%− 4%).
Chosen S values differ for each dataset.

We also visualize the trade-off in Figure 2. Each
curve is drawn by interpolating a number of points,
each of which corresponds to a different threshold
S. Since this only involves a comparison between
different settings of DeeBERT, runtime is measured
on the development set.

From Table 1 and Figure 2, we observe the fol-
lowing patterns:

• Despite differences in baseline performance,
both models show similar patterns on all
datasets: the performance (accuracy/F1 score)
stays (mostly) the same until runtime saving
reaches a certain turning point, and then starts
1This includes both CPU and GPU runtime.

to drop gradually. The turning point typically
comes earlier for BERT than for RoBERTa,
but after the turning point, the performance of
RoBERTa drops faster than for BERT. The rea-
son for this will be discussed in Section 4.4.

• Occasionally, we observe spikes in the curves,
e.g., RoBERTa in SST-2, and both BERT and
RoBERTa in RTE. We attribute this to possible
regularization brought by early exiting and thus
smaller effective model sizes, i.e., in some cases,
using all transformer layers may not be as good
as using only some of them.

Compared with other BERT acceleration methods,
DeeBERT has the following two advantages:

• Instead of producing a fixed-size smaller model
like DistilBERT (Sanh et al., 2019), Dee-
BERT produces a series of options for faster
inference, which users have the flexibility to
choose from, according to their demands.

• Unlike DistilBERT and LayerDrop (Fan et al.,
2019), DeeBERT does not require further pre-
training of the transformer model, which is much
more time-consuming than fine-tuning.

4.3 Expected Savings

As the measurement of runtime might not be stable,
we propose another metric to capture efficiency,
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Figure 2: DeeBERT quality and efficiency trade-offs
for BERT-base and RoBERTa-base models.
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Figure 3: Comparison between expected saving (x-
axis) and actual measured saving (y-axis), using BERT-
base and RoBERTa-base models.

called expected saving, defined as

1−
∑n

i=1 i×Ni∑n
i=1 n×Ni

, (2)

where n is the number of layers and Ni is the num-
ber of samples exiting at layer i. Intuitively, ex-
pected saving is the fraction of transformer layer
execution saved by using early exiting. The ad-
vantage of this metric is that it remains invariant
between different runs and can be analytically com-
puted. For validation, we compare this metric with
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Figure 4: Accuracy of each off-ramp for BERT-base
and RoBERTa-base.

measured saving in Figure 3. Overall, the curves
show a linear relationship between expected sav-
ings and measured savings, indicating that our re-
ported runtime is a stable measurement of Dee-
BERT’s efficiency.

4.4 Layerwise Analyses

In order to understand the effect of applying Dee-
BERT to both models, we conduct further analyses
on each off-ramp layer. Experiments in this section
are also performed on the development set.

Output Performance by Layer. For each off-
ramp, we force all samples in the development
set to exit here, measure the output quality, and
visualize the results in Figure 4.

From the figure, we notice the difference be-
tween BERT and RoBERTa. The output quality of
BERT improves at a relatively stable rate as the in-
dex of the exit off-ramp increases. The output qual-
ity of RoBERTa, on the other hand, stays almost
unchanged (or even worsens) for a few layers, then
rapidly improves, and reaches a saturation point be-
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Figure 5: Results for BERT-large and RoBERTa-large.

fore BERT does. This provides an explanation for
the phenomenon mentioned in Section 4.2: on the
same dataset, RoBERTa often achieves more run-
time savings while maintaining roughly the same
output quality, but then quality drops faster after
reaching the turning point.

We also show the results for BERT-large and
RoBERTa-large in Figure 5. From the two plots
on the right, we observe signs of redundancy that
both BERT-large and RoBERTa-large share: the
last several layers do not show much improvement
compared with the previous layers (performance
even drops slightly in some cases). Such redun-
dancy can also be seen in Figure 4.

Number of Exiting Samples by Layer. We fur-
ther show the fraction of samples exiting at each
off-ramp for a given entropy threshold in Figure 6.

Entropy threshold S = 0 is the baseline, and
all samples exit at the last layer; as S increases,
gradually more samples exit earlier. Apart from
the obvious, we observe additional, interesting pat-
terns: if a layer does not provide better-quality
output than previous layers, such as layer 11 in
BERT-base and layers 2–4 and 6 in RoBERTa-base
(which can be seen in Figure 4, top left), it is typi-
cally chosen by very few samples; popular layers
are typically those that substantially improve over
previous layers, such as layer 7 and 9 in RoBERTa-
base. This shows that an entropy threshold is able
to choose the fastest off-ramp among those with
comparable quality, and achieves a good trade-off
between quality and efficiency.
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Figure 6: Number of output samples by layer for BERT-
base and RoBERTa-base. Each plot represents a sepa-
rate entropy threshold S.

5 Conclusions and Future Work

We propose DeeBERT, an effective method that
exploits redundancy in BERT models to achieve
better quality–efficiency trade-offs. Experiments
demonstrate its ability to accelerate BERT’s and
RoBERTa’s inference by up to ∼40%, and also
reveal interesting patterns of different transformer
layers in BERT models.

There are a few interesting questions left unan-
swered in this paper, which would provide inter-
esting future research directions: (1) DeeBERT’s
training method, while maintaining good quality in
the last off-ramp, reduces model capacity available
for intermediate off-ramps; it would be important
to look for a method that achieves a better balance
between all off-ramps. (2) The reasons why some
transformer layers appear redundant2 and why Dee-
BERT considers some samples easier than others
remain unknown; it would be interesting to fur-
ther explore relationships between pre-training and
layer redundancy, sample complexity and exit layer,
and related characteristics.
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