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Abstract

Language models that use additional latent
structures (e.g., syntax trees, coreference
chains, and knowledge graph links) provide
several advantages over traditional language
models. However, likelihood-based evaluation
of these models is often intractable as it re-
quires marginalizing over the latent space. Ex-
isting methods avoid this issue by using im-
portance sampling. Although this approach
has asymptotic guarantees, analysis is rarely
conducted on the effect of decisions such as
sample size, granularity of sample aggregation,
and the proposal distribution on the reported
estimates. In this paper, we measure the effect
these factors have on perplexity estimates for
three different latent language models. In addi-
tion, we elucidate subtle differences in how im-
portance sampling is applied, which can have
substantial effects on the final estimates, as
well as provide theoretical results that rein-
force the validity of importance sampling for
evaluating latent language models.

1 Introduction

Latent language models are generative models of
text that jointly represent the text and the latent
structure underlying it, such as: the syntactic parse,
coreference chains between entity mentions, or
links of entities and relations mentioned in the
text to an external knowledge graph. The benefits
of modeling such structure include interpretabil-
ity (Hayashi et al., 2020), better performance on
tasks requiring structure (Dyer et al., 2016; Ji et al.,
2017), and improved ability to generate consistent
mentions of entities (Clark et al., 2018) and fac-
tually accurate text (Logan et al., 2019). Unfor-
tunately, demonstrating that these models provide
better performance than traditional language mod-
els by evaluating their likelihood on benchmark
data can be difficult, as exact computation requires
marginalizing over all possible latent structures.

Existing approaches evaluate their models by es-
timating likelihoods using importance sampling, i.e.
a weighted average over latent states sampled from
a proposal distribution. Although convergence of
importance sampled estimates is asymptotically
guaranteed, results are typically produced using a
small number of samples for which this guaran-
tee does not necessarily apply. Furthermore, these
works employ a variety of heuristics—such as sam-
pling from proposal distributions that are condi-
tioned on future gold tokens the model is being
evaluated on, and changing the temperature of the
proposal distribution—without providing measure-
ments of the effect these decisions have on esti-
mated perplexity, and often omitting details crucial
to replicating their results.

In this paper, we seek to fill in this missing
knowledge, and put this practice on more rigorous
footing. First, we review the theory of importance
sampling, providing proof that importance sampled
perplexity estimates are stochastic upper bounds of
the true perplexity—a previously unnoted justifica-
tion for this evaluation technique. In addition, we
compile a list of common practices used in three
previous works—RNNG (Dyer et al., 2016), Enti-
tyNLM (Ji et al., 2017) and KGLM (Logan et al.,
2019)—and uncover a difference in the granular-
ity at which importance samples are aggregated in
these works that has a substantial effect on the final
estimates. We also investigate a direct marginal-
ization alternative to importance sampling based
on beam search that produces strict bounds, and
in some cases, has similar performance. Last, we
perform experiments to measure the effect of vary-
ing sample size, aggregation method, and choice of
proposal distribution for these models, an analysis
that is missing from previous work. From these
results we conclude a set of best practices to be
used in future work.

mailto:rlogan@uci.edu
mailto:mattg@allenai.org
mailto:sameer@uci.edu


2172

x Kawhi to join L.A. Clippers . He . . .

EntityNLM t 1 0 0 1 1 0 1 . . .
e 1 ∅ ∅ 2 2 ∅ 1 . . .
l 1 1 1 2 1 1 1 . . .

KGLM t new ∅ ∅ related ∅ related . . .
s ∅ ∅ ∅ kawhi_leonard ∅ kawhi_leonard . . .
r ∅ ∅ ∅ playerFor ∅ reflexive . . .
o kawhi_leonard ∅ ∅ la_clippers ∅ kawhi_leonard . . .

Figure 1: EntityNLM and KGLM latent states. For EntityNLM, z = (t, e, l), where t denotes whether the token
is part of a mention, e denotes the coreference cluster, and l denotes the remaining mention length. For KGLM,
z = (t, s, r,o), where t has the same meaning, and s, r and o associate tokens to edges in a knowledge graph.

2 Inference in Latent LMs

In this section, we provide an overview of impor-
tance sampling-based inference in latent language
models, as well as some key theoretical results.
Latent LMs A latent language model is a gener-
ative model which estimates the joint distribution
p(x, z) of a sequence of text x = (x1, . . . , xT ) and
its underlying latent structure z.

In this paper, we focus on three models:
• RNNG (Dyer et al., 2016) which models syn-

tactic structure,
• EntityNLM (Ji et al., 2017) which models

coreference chains, and
• KGLM (Logan et al., 2019) which models

links to an external knowledge graph.
Example latent states for EntityNLM and

KGLM are depicted in Figure 1, showing la-
tent coreference chains and links to the knowl-
edge graph. Other notable latent language mod-
els include the NKLM (Ahn et al., 2016) and
LRLM (Hayashi et al., 2020); we do not study them
since they use alternatives to importance sampling
(e.g., the forward-backward algorithm).
Perplexity The standard evaluation metric for
language models is perplexity:

PPL = exp

− 1
T

T∑
t=1

log p(xt|x<t)

 , (1)

where p(xt|x<t) is the marginal likelihood of
the token xt conditioned on the previous tokens
x<t. By the chain rule of probabilities p(x) =∏T

t=1 p(xt|x<t). Perplexity can be intractable to
compute for latent language models since it re-
quires marginalizing out the latent variable (e.g.,
p(x) =

∑
z p(x, z)) whose state space is often ex-

ponential in the length of the text.

Importance Sampling Existing approaches in-
stead use importance sampling (Kahn, 1950) to
estimate an approximate marginal probability:

p̂(x) =
1
K

K∑
k=1

p(x, zk)
q(zk)

, (2)

where q(z) is an arbitrary proposal distribution and
z1, . . . ,zK ∼ q(z). It is well known that p̂(x) is an
unbiased estimator:

Ezk∼q(z)
[
p̂(x)

]
= p(x), (3)

provided that q(z) > 0 whenever p(z) > 0. For
proof and further details on importance sampling,
we refer the reader to Owen (2013).

Stochastic Upper Bound A consequence of
Eqn (3) is that, due to Jensen’s inequality:

Ezk∼q(z)
[
log p̂(x)

]
≤ log p(x). (4)

In other words, importance sampled estimates of
a model’s perplexity are stochastic upper bounds
of the true perplexity. This property has not been
stated in prior work on latent language modeling,
yet is an important consideration since it implies
that importance sampled perplexities can be reli-
ably used to compare against existing baselines.

Limiting Behavior Another important observa-
tion is that importance sampled estimates of per-
plexity are consistent, e.g., will converge as the
number of samples approaches infinity. To prove
this, we first observe that p̂(x) is consistent, which
is a well-known consequence of the strong law
of large numbers (Geweke, 1989). Accordingly,
log p̂(x) is also consistent due to the continuous
mapping theorem (Van der Vaart, 2000).
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3 Common Practices

Implementing importance sampling for evaluating
latent language models involves a number of deci-
sions that need to be made. We need to select the
number of samples, choose the proposal distribu-
tion, and decide whether to aggregate importance
sampled estimates at the instance or corpus level.
We list the practices used in previous work.1

Sample Size Typically, only 100 samples are used
for computing the perplexity. A notable exception
is Kim et al. (2019)’s follow-up to RNNG that uses
1000 samples.
Proposal Distribution Previous work uses pro-
posal distributions q(z|x) that are essentially dis-
criminative versions of the generative model (e.g.,
they are models that predict the latent state condi-
tioned on the text), with one key distinction: they
are conditioned not only on the sequence of tokens
that have been observed so far, but also on future
tokens that the model will be evaluated on (a trait
we will refer to as peeking). This conditioning be-
havior does not contradict any of the assumptions
in Eqn’s (3) and (4), and is useful in preventing
generation of invalid structures (for instance, parse
trees with more leaves then there are words in the
text), or ones that are inconsistent with future to-
kens. Dyer et al. (2016) and Kim et al. (2019) also
increase the entropy of the proposal distribution
by dividing logits by a temperature parameter τ
(respectively using τ = 1.25 and τ = 2.0).
Aggregation An oft-overlooked fact (unnoted
in previous work) is that Eqn (2) can be sub-
stituted into Eqn (1) in multiple ways. Letting
xC = {x1, . . .xN} denote a corpus of evaluation
data comprised of instances (token sequences) xn,
estimates can be formed at the instance level:

P̂PLI = exp

− 1
T

N∑
n=1

log p̂(xn)

 , (5)

or at the corpus level:

P̂PLC = exp
(
−

1
T

log p̂(xC)
)
, (6)

i.e., average is either over each instance or the
whole corpus.2 RNNG and EntityNLM perform
instance-level aggregation, whereas KGLM per-
forms corpus-level aggregation. Note that these

1Based both on the cited papers and available source code.
2 One could also consider token-level estimates. To our

knowledge, these have been unused by existing work.
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Figure 2: Effect of increasing the number of samples
on instance-level perplexity estimates for different pro-
posal distributions.

formulations are equivalent when not aggregating
over samples, i.e. for non-latent language models.

4 Critical Evaluation

Thus far, research has neglected to measure the
effectiveness of the practices detailed in Section 3.
In the following section, we perform experiments
to determine whether reporting estimates obtained
from small sample sizes is warranted, as well as
better understand the consequences of peeking and
scaling the temperature of the proposal distribution.

Setup For our experiments, we use Kim et al.
(2019)’s RNNG implementation3, and Logan et al.
(2019)’s EntityNLM and KGLM implementa-
tions4. For RNNG and KGLM we use the pre-

3https://github.com/harvardnlp/urnng
4https://github.com/rloganiv/kglm-model

https://github.com/harvardnlp/urnng
https://github.com/rloganiv/kglm-model
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trained model weights. For EntityNLM we train
the model from scratch following the procedure
described by Ji et al. (2017); results may not be di-
rectly comparable due to differences in data prepro-
cessing and hyperparameters. We evaluate models
on the datasets used in their original papers: RNNG
is evaluated on the Penn Treebank corpus (Marcus
et al., 1993), EntityNLM is evaluated on English
data from the CoNLL 2012 shared task (Pradhan
et al., 2014), and KGLM is evaluated on the Linked
WikiText-2 corpus (Logan et al., 2019).

Experiments For EntityNLM and KGLM, we
experiment with two kinds of proposal distribu-
tions: (1) the standard peeking proposal distribu-
tion that conditions on future evaluation data, and
(2) a non-peeking variant that is conditioned only
on the data observed by the model (this is akin to
estimating perplexity by ancestral sampling). For
RNNG we only experiment with peeking propos-
als, since a non-peeking variant generates invalid
parse trees. For the peeking proposal distribu-
tion, we experiment with applying temperatures
τ ∈ [0.5, 0.9, 1.0, 1.1, 2.0, 5.0]. We report both
corpus-level and instance-level estimates, as well
as bounds produced using a direct, beam marginal-
ization method we describe later.

Sample Size We plot instance-level perplexity
estimates as sample size is varied in Figures 2
and 3. We observe that the curves are monoton-
ically decreasing in all settings. Consistent with
our observation that importance sampled estimates
of perplexity are a stochastic upper bound, this
demonstrates that the bound is improved as sample
size increases. Furthermore, none of the curves ex-
hibit any signs of convergence even after drawing
orders of magnitude more samples (Figure 3); the
estimated model perplexities continue to improve.
Thus, the performance of these models is likely
better than the originally reported estimates.

Aggregation Final estimates of perplexity com-
puted using both corpus- and instance-level es-
timates are provided in Table 1. We note that
instance-level estimates are uniformly lower by a
wide margin. For example, using a temperature of
τ = 1.1 the estimated KGLM perplexity is approxi-
mately 10 nats lower using instance-level estimates.
This is substantially better than the perplexity of
43 nats reported by Logan et al. (2019).

Proposal Distribution These results also appear
to indicate that choice of proposal distribution has a
substantial effect on estimated perplexity. However,

RNNG Ent KGLM

Corpus-level
τ = 0.5 94.4 122.6 101.9
τ = 0.9 96.0 122.7 59.3
τ = 1.0 96.7 120.8 48.2
τ = 1.1 97.9 120.7 41.7
τ = 2.0 121.6 120.5 170.0
τ = 5.0 734.0 152.5 7,468.7
No Peeking - 131.7 86.8

Instance-level
τ = 0.5 85.3 113.5 99.3
τ = 0.9 84.4 110.6 48.1
τ = 1.0 84.2 110.0 36.6
τ = 1.1 84.0 109.9 29.6
τ = 2.0 83.8 109.0 90.7
τ = 5.0 97.2 129.6 3,756.1
No Peeking - 113.9 71.9

Table 1: Final perplexity estimates using different pro-
posal distributions, estimated at both the instance and
corpus level. τ is temperature, and No Peeking refers to
proposal distributions that are not conditioned on future
outputs.

RNNG Ent KGLM

k = 1 96.3 150.2 153.7
k = 10 87.0 147.1 152.6
k = 100 84.3 144.5 -

Table 2: Strict perplexity upper bounds obtained by
marginalizing over the top-k states predicted by q(z|x)
using beam search.

it could also be the case that the observed differ-
ences in performance across proposal distributions
are due to random chance. We investigate whether
this is the case for EntityNLM by examining the
approximate density of perplexity estimates after
drawing 100 importance samples (shown in Fig-
ure 4).5 Our results illustrate that the estimates are
relatively stable; although there is some overlap
between the better performing temperature values,
the order of the modes matches the order reported
in Table 1, and there is clear separation from the
estimates produced when τ = 0.5 or by the non-
peeking proposal distribution. Due to the relative
cost of sampling we did not replicate this experi-
ment for RNNG and KGLM.6

5Obtained by Monte Carlo sampling 100 times.
6 Figs 3 & 4 took 1 week on a cluster of 15 NVidia 1080Tis.
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Figure 3: EntityNLM instance-level perplexity esti-
mates as the number of samples is increased to 10K.

In general, we observe the peeking proposal dis-
tributions produce better estimates, and that better
performance is obtained using temperatures that
slightly increase the entropy of the proposal dis-
tribution (e.g., τ ∈ [1.1, 2.0]), although the ideal
amount varies across models. We also observe that
the relative performance of proposal distributions
is mostly preserved as the number of samples is
increased. This suggests that good temperature pa-
rameters can be quickly identified by running many
experiments with a small number of samples.

Beam Marginalization
An alternative to importance sampling is to di-

rectly marginalize over a subset of z values where
we expect p(x|z) is large. Specifically, we propose
using the top-k most likely values of z identified
by performing beam search using the proposal dis-
tribution q(z|x). We will refer to this as beam
marginalization. Because marginalization is only
performed over a subset of the space, this method
produces a strict upper bound of the true perplexity.

Perplexity bounds obtained using beam
marginalization are reported in Table 2. This
method produces bounds close to the instance-level
importance sampled estimates for RNNG, but does
not perform well for the other models. This is
likely due to the fact that latent space of RNNG
(which operates on sentences and parse trees)
is much smaller than EntityNLM and KGLM
(which operate on documents and coreference
chains/knowledge graphs).

Best Practices From these results we recommend
the following practices for future work utilizing im-
portance sampling: (1) aggregate importance sam-
ples at the instance level, (2) condition on all avail-

111 113 115 117 119

Perplexity (100 Samples)

ENTITYNLM

Figure 4: Approximate density of EntityNLM perplex-
ity estimates after drawing 100 importance samples
(colors same as Figure 3).

able information when designing proposals, (3) try
increased temperatures when generating samples
from the proposal distribution, good temperatures
can be identified using relatively few samples, and
(4) utilize as many samples as possible. In addition,
consider using beam marginalization in applica-
tions where strict upper bounds are needed.

5 Conclusion

We investigate the application of importance sam-
pling to evaluating latent language models. Our
contributions include: (1) showing that importance
sampling produces stochastic upper bounds of per-
plexity, thereby justifying the use of such estimates
for comparing language model performance, (2) a
concise description of (sometimes unstated) com-
mon practices used in applying this technique, (3)
a simple direct marginalization-based alternative to
importance sampling, and (4) experimental results
demonstrating the effect of sample size, sampling
distribution, and granularity on estimates.

While this work helps clarify and validate exist-
ing results, we also observe that none of the esti-
mates appear to converge even after drawing large
numbers of samples. Thus, we encourage future
research into obtaining tighter bounds on latent LM
perplexity, possibly by using more powerful pro-
posal distributions that consider entire documents
as context, or by considering methods such as an-
nealed importance sampling.
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