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Abstract

Natural Language Processing (NLP) has re-
cently achieved great success by using huge
pre-trained models with hundreds of millions
of parameters. However, these models suf-
fer from heavy model sizes and high latency
such that they cannot be deployed to resource-
limited mobile devices. In this paper, we pro-
pose MobileBERT for compressing and accel-
erating the popular BERT model. Like the
original BERT, MobileBERT is task-agnostic,
that is, it can be generically applied to various
downstream NLP tasks via simple fine-tuning.
Basically, MobileBERT is a thin version of
BERTLARGE, while equipped with bottleneck
structures and a carefully designed balance
between self-attentions and feed-forward net-
works. To train MobileBERT, we first train a
specially designed teacher model, an inverted-
bottleneck incorporated BERTLARGE model.
Then, we conduct knowledge transfer from
this teacher to MobileBERT. Empirical stud-
ies show that MobileBERT is 4.3× smaller
and 5.5× faster than BERTBASE while achiev-
ing competitive results on well-known bench-
marks. On the natural language inference tasks
of GLUE, MobileBERT achieves a GLUE
score of 77.7 (0.6 lower than BERTBASE), and
62 ms latency on a Pixel 4 phone. On the
SQuAD v1.1/v2.0 question answering task,
MobileBERT achieves a dev F1 score of
90.0/79.2 (1.5/2.1 higher than BERTBASE).

1 Introduction

The NLP community has witnessed a revolution of
pre-training self-supervised models. These models
usually have hundreds of millions of parameters
(Peters et al., 2018; Radford et al., 2018; Devlin
et al., 2018; Radford et al., 2019; Yang et al., 2019).
Among these models, BERT (Devlin et al., 2018)

∗This work was done when the first author was an intern
at Google Brain.

shows substantial accuracy improvements. How-
ever, as one of the largest models ever in NLP,
BERT suffers from the heavy model size and high
latency, making it impractical for resource-limited
mobile devices to deploy the power of BERT in
mobile-based machine translation, dialogue model-
ing, and the like.

There have been some efforts that task-
specifically distill BERT into compact models
(Turc et al., 2019; Tang et al., 2019; Sun et al.,
2019; Tsai et al., 2019). To the best of our knowl-
edge, there is not yet any work for building a task-
agnostic lightweight pre-trained model, that is, a
model that can be generically fine-tuned on differ-
ent downstream NLP tasks as the original BERT
does. In this paper, we propose MobileBERT to
fill this gap. In practice, task-agnostic compression
of BERT is desirable. Task-specific compression
needs to first fine-tune the original large BERT
model into a task-specific teacher and then distill.
Such a process is much more complicated (Wu
et al., 2019) and costly than directly fine-tuning a
task-agnostic compact model.

At first glance, it may seem straightforward to
obtain a task-agnostic compact BERT. For example,
one may just take a narrower or shallower version
of BERT, and train it until convergence by mini-
mizing a convex combination of the prediction loss
and distillation loss (Turc et al., 2019; Sun et al.,
2019). Unfortunately, empirical results show that
such a straightforward approach results in signifi-
cant accuracy loss (Turc et al., 2019). This may not
be that surprising. It is well-known that shallow
networks usually do not have enough representa-
tion power while narrow and deep networks are
difficult to train.

Our MobileBERT is designed to be as deep as
BERTLARGE while each layer is made much nar-
rower via adopting bottleneck structures and bal-
ancing between self-attentions and feed-forward
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Figure 1: Illustration of three models: (a) BERT; (b) Inverted-Bottleneck BERT (IB-BERT); and (c) MobileBERT.
In (b) and (c), red lines denote inter-block flows while blue lines intra-block flows. MobileBERT is trained by
layer-to-layer imitating IB-BERT.

networks (Figure 1). To train MobileBERT, a deep
and thin model, we first train a specially designed
teacher model, an inverted-bottleneck incorporated
BERTLARGE model (IB-BERT). Then, we conduct
knowledge transfer from IB-BERT to MobileBERT.
A variety of knowledge transfer strategies are care-
fully investigated in our empirical studies.

Empirical evaluations1 show that MobileBERT
is 4.3× smaller and 5.5× faster than BERTBASE,
while it can still achieve competitive results on
well-known NLP benchmarks. On the natural lan-
guage inference tasks of GLUE, MobileBERT can
achieve a GLUE score of 77.7, which is only 0.6
lower than BERTBASE, with a latency of 62 ms on
a Pixel 4 phone. On the SQuAD v1.1/v2.0 question
answering task, MobileBER obtains a dev F1 score
of 90.3/80.2, which is even 1.5/2.1 higher than
BERTBASE.

2 Related Work

Recently, compression of BERT has attracted much
attention. Turc et al. (2019) propose to pre-train
the smaller BERT models to improve task-specific
knowledge distillation. Tang et al. (2019) dis-
till BERT into an extremely small LSTM model.
Tsai et al. (2019) distill a multilingual BERT into
smaller BERT models on sequence labeling tasks.
Clark et al. (2019b) use several single-task BERT

1The code and pre-trained models will be avail-
able at https://github.com/google-research/
google-research/tree/master/mobilebert.

models to teach a multi-task BERT. Liu et al.
(2019a) distill knowledge from an ensemble of
BERT models into a single BERT.

Concurrently to our work, Sun et al. (2019) dis-
till BERT into shallower students through knowl-
edge distillation and an additional knowledge trans-
fer of hidden states on multiple intermediate layers.
Jiao et al. (2019) propose TinyBERT, which also
uses a layer-wise distillation strategy for BERT but
in both pre-training and fine-tuning stages. Sanh
et al. (2019) propose DistilBERT, which success-
fully halves the depth of BERT model by knowl-
edge distillation in the pre-training stage and an
optional fine-tuning stage.

In contrast to these existing literature, we only
use knowledge transfer in the pre-training stage and
do not require a fine-tuned teacher or data augmen-
tation (Wu et al., 2019) in the down-stream tasks.
Another key difference is that these previous work
try to compress BERT by reducing its depth, while
we focus on compressing BERT by reducing its
width, which has been shown to be more effective
(Turc et al., 2019).

3 MobileBERT

In this section, we present the detailed architecture
design of MobileBERT and training strategies to
efficiently train MobileBERT. The specific model
settings are summarized in Table 1. These settings
are obtained by extensive architecture search exper-
iments which will be presented in Section 4.1.

https://github.com/google-research/google-research/tree/master/mobilebert
https://github.com/google-research/google-research/tree/master/mobilebert
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hinput

#Head

houtput

FFN
hinput

hFFN

houtput

Linear
hinput

houtput

#Params 334M 109M 293M 25.3M 15.1M

Table 1: The detailed model settings of a few models. hinter, hFFN, hembedding, #Head and #Params denote the
inter-block hidden size (feature map size), FFN intermediate size, embedding table size, the number of heads in
multi-head attention, and the number of parameters, respectively.

3.1 Bottleneck and Inverted-Bottleneck

The architecture of MobileBERT is illustrated in
Figure 1(c). It is as deep as BERTLARGE, but each
building block is made much smaller. As shown
in Table 1, the hidden dimension of each building
block is only 128. On the other hand, we introduce
two linear transformations for each building block
to adjust its input and output dimensions to 512.
Following the terminology in (He et al., 2016), we
refer to such an architecture as bottleneck.

It is challenging to train such a deep and thin
network. To overcome the training issue, we first
construct a teacher network and train it until conver-
gence, and then conduct knowledge transfer from
this teacher network to MobileBERT. We find that
this is much better than directly training Mobile-
BERT from scratch. Various training strategies
will be discussed in a later section. Here, we in-
troduce the architecture design of the teacher net-
work which is illustrated in Figure 1(b). In fact,
the teacher network is just BERTLARGE while aug-
mented with inverted-bottleneck structures (San-
dler et al., 2018) to adjust its feature map size to
512. In what follows, we refer to the teacher net-
work as IB-BERTLARGE. Note that IB-BERT and
MobileBERT have the same feature map size which
is 512. Thus, we can directly compare the layer-
wise output difference between IB-BERT and Mo-
bileBERT. Such a direct comparison is needed in
our knowledge transfer strategy.

It is worth pointing out that the simultaneously
introduced bottleneck and inverted-bottleneck
structures result in a fairly flexible architec-
ture design. One may either only use the bot-
tlenecks for MobileBERT (correspondingly the

teacher becomes BERTLARGE) or only the inverted-
bottlenecks for IB-BERT (then there is no bottle-
neck in MobileBERT) to align their feature maps.
However, when using both of them, we can al-
low IB-BERTLARGE to preserve the performance
of BERTLARGE while having MobileBERT suffi-
ciently compact.

3.2 Stacked Feed-Forward Networks

A problem introduced by the bottleneck structure
of MobileBERT is that the balance between the
Multi-Head Attention (MHA) module and the Feed-
Forward Network (FFN) module is broken. MHA
and FFN play different roles in the Transformer ar-
chitecture: The former allows the model to jointly
attend to information from different subspaces,
while the latter increases the non-linearity of the
model. In original BERT, the ratio of the parameter
numbers in MHA and FFN is always 1:2. But in
the bottleneck structure, the inputs to the MHA are
from wider feature maps (of inter-block size), while
the inputs to the FFN are from narrower bottlenecks
(of intra-block size). This results in that the MHA
modules in MobileBERT relatively contain more
parameters.

To fix this issue, we propose to use stacked feed-
forward networks in MobileBERT to re-balance
the relative size between MHA and FFN. As il-
lustrated in Figure 1(c), each MobileBERT layer
contains one MHA but several stacked FFN. In Mo-
bileBERT, we use 4 stacked FFN after each MHA.
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3.3 Operational Optimizations

By model latency analysis2, we find that layer nor-
malization (Ba et al., 2016) and gelu activation
(Hendrycks and Gimpel, 2016) accounted for a
considerable proportion of total latency. Therefore,
we propose to replace them with new operations in
our MobileBERT.

Remove layer normalization We replace the
layer normalization of a n-channel hidden state
h with an element-wise linear transformation:

NoNorm(h) = γ ◦ h+ β, (1)

where γ,β ∈ Rn and ◦ denotes the Hadamard
product. Please note that NoNorm has different
properties from LayerNorm even in test mode since
the original layer normalization is not a linear op-
eration for a batch of vectors.

Use relu activation We replace the gelu activa-
tion with simpler relu activation (Nair and Hinton,
2010).

3.4 Embedding Factorization

The embedding table in BERT models accounts for
a substantial proportion of model size. To com-
press the embedding layer, as shown in Table 1,
we reduce the embedding dimension to 128 in Mo-
bileBERT. Then, we apply a 1D convolution with
kernel size 3 on the raw token embedding to pro-
duce a 512 dimensional output.

3.5 Training Objectives

We propose to use the following two knowledge
transfer objectives, i.e., feature map transfer and
attention transfer, to train MobileBERT. Figure
1 illustrates the proposed layer-wise knowledge
transfer objectives. Our final layer-wise knowledge
transfer loss L`KT for the `th layer is a linear com-
bination of the two objectives stated below:

Feature Map Transfer (FMT) Since each layer
in BERT merely takes the output of the previous
layer as input, the most important thing in layer-
wise knowledge transfer is that the feature maps of
each layer should be as close as possible to those
of the teacher. In particular, the mean squared
error between the feature maps of the MobileBERT

2A detailed analysis of effectiveness of operational opti-
mizations on real-world inference latency can be found in
Section 4.6.1.

student and the IB-BERT teacher is used as the
knowledge transfer objective:

L`FMT =
1

TN

T∑
t=1

N∑
n=1

(Htr
t,`,n −Hst

t,`,n)
2, (2)

where ` is the index of layers, T is the sequence
length, and N is the feature map size. In practice,
we find that decomposing this loss term into nor-
malized feature map discrepancy and feature map
statistics discrepancy can help stabilize training.

Attention Transfer (AT) The attention mecha-
nism greatly boosts the performance of NLP and
becomes a crucial building block in Transformer
and BERT (Clark et al., 2019a; Jawahar et al.,
2019). This motivates us to use self-attention maps
from the well-optimized teacher to help the train-
ing of MobileBERT in augmentation to the fea-
ture map transfer. In particular, we minimize the
KL-divergence between the per-head self-attention
distributions of the MobileBERT student and the
IB-BERT teacher:

L`AT =
1

TA

T∑
t=1

A∑
a=1

DKL(a
tr
t,`,a||astt,`,a), (3)

where A is the number of attention heads.

Pre-training Distillation (PD) Besides layer-
wise knowledge transfer, we can also use a knowl-
edge distillation loss when pre-training Mobile-
BERT. We use a linear combination of the original
masked language modeling (MLM) loss, next sen-
tence prediction (NSP) loss, and the new MLM
Knowledge Distillation (KD) loss as our pre-
training distillation loss:

LPD = αLMLM + (1− α)LKD + LNSP , (4)

where α is a hyperparameter in (0, 1).

3.6 Training Strategies

Given the objectives defined above, there can be
various combination strategies in training. We dis-
cuss three strategies in this paper.

Auxiliary Knowledge Transfer In this strategy,
we regard intermediate knowledge transfer as an
auxiliary task for knowledge distillation. We use a
single loss, which is a linear combination of knowl-
edge transfer losses from all layers as well as the
pre-training distillation loss.
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Figure 2: Diagrams of (a) auxiliary knowledge transfer (AKT), (b) joint knowledge transfer (JKT), and (c) pro-
gressive knowledge transfer (PKT). Lighter colored blocks represent that they are frozen in that stage.

Joint Knowledge Transfer However, the inter-
mediate knowledge of the IB-BERT teacher (i.e.
attention maps and feature maps) may not be an op-
timal solution for the MobileBERT student. There-
fore, we propose to separate these two loss terms,
where we first train MobileBERT with all layer-
wise knowledge transfer losses jointly, and then
further train it by pre-training distillation.

Progressive Knowledge Transfer One may
also concern that if MobileBERT cannot perfectly
mimic the IB-BERT teacher, the errors from the
lower layers may affect the knowledge transfer in
the higher layers. Therefore, we propose to progres-
sively train each layer in the knowledge transfer.
The progressive knowledge transfer is divided into
L stages, where L is the number of layers.

Diagram of three strategies Figure 2 illustrates
the diagram of the three strategies. For joint knowl-
edge transfer and progressive knowledge transfer,
there is no knowledge transfer for the beginning
embedding layer and the final classifier in the layer-
wise knowledge transfer stage. They are copied
from the IB-BERT teacher to the MobileBERT stu-
dent. Moreover, for progressive knowledge trans-
fer, when we train the `th layer, we freeze all the
trainable parameters in the layers below. In prac-
tice, we can soften the training process as follows.
When training a layer, we further tune the lower
layers with a small learning rate rather than entirely
freezing them.

4 Experiments

In this section, we first present our architecture
search experiments which lead to the model set-
tings in Table 1, and then present the empirical

#Params hinter hintra #Head SQuAD
(a) 356M 1024 1024 16 88.2
(b) 325M 768 1024 16 88.6
(c) 293M 512 1024 16 88.1
(d) 276M 384 1024 16 87.6
(e) 262M 256 1024 16 87.0
(f) 293M 512 1024 4 88.3
(g) 92M 512 512 4 85.8
(h) 33M 512 256 4 84.8
(i) 15M 512 128 4 82.0

Table 2: Experimental results on SQuAD v1.1 dev
F1 score in search of good model settings for the
IB-BERTLARGE teacher. The number of layers is set
to 24 for all models.

results on benchmarks from MobileBERT and vari-
ous baselines.

4.1 Model Settings

We conduct extensive experiments to search good
model settings for the IB-BERT teacher and the
MobileBERT student. We start with SQuAD v1.1
dev F1 score as the performance metric in the
search of model settings. In this section, we only
train each model for 125k steps with 2048 batch
size, which halves the training schedule of original
BERT (Devlin et al., 2018; You et al., 2019).

Architecture Search for IB-BERT Our design
philosophy for the teacher model is to use as small
inter-block hidden size (feature map size) as pos-
sible, as long as there is no accuracy loss. Under
this guideline, we design experiments to manip-
ulate the inter-block size of a BERTLARGE-sized
IB-BERT, and the results are shown in Table 2 with
labels (a)-(e). We can see that reducing the inter-
block hidden size doesn’t damage the performance
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hintra #Head (#Params) #FFN (#Params) SQuAD
192 6 (8M) 1 (7M) 82.6
160 5 (6.5M) 2 (10M) 83.4
128 4 (5M) 4 (12.5M) 83.4
96 3 (4M) 8 (14M) 81.6

Table 3: Experimental results on SQuAD v1.1 dev F1
score in search of good model settings for the Mobile-
BERT student. The number of layers is set to 24 and
the inter-block hidden size is set to 512 for all models.

of BERT until it is smaller than 512. Hence, we
choose IB-BERTLARGE with its inter-block hidden
size being 512 as the teacher model.

One may wonder whether we can also shrink the
intra-block hidden size of the teacher. We conduct
experiments and the results are shown in Table
2 with labels (f)-(i). We can see that when the
intra-block hidden size is reduced, the model per-
formance is dramatically worse. This means that
the intra-block hidden size, which represents the
representation power of non-linear modules, plays
a crucial role in BERT. Therefore, unlike the inter-
block hidden size, we do not shrink the intra-block
hidden size of our teacher model.

Architecture Search for MobileBERT We
seek a compression ratio of 4× for BERTBASE, so
we design a set of MobileBERT models all with ap-
proximately 25M parameters but different ratios of
the parameter numbers in MHA and FFN to select
a good MobileBERT student model. Table 3 shows
our experimental results. They have different bal-
ances between MHA and FFN. From the table, we
can see that the model performance reaches the
peak when the ratio of parameters in MHA and
FFN is 0.4 ∼ 0.6. This may justify why the orig-
inal Transformer chooses the parameter ratio of
MHA and FFN to 0.5.

We choose the architecture with 128 intra-block
hidden size and 4 stacked FFNs as the MobileBERT
student model in consideration of model accuracy
and training efficiency. We also accordingly set
the number of attention heads in the teacher model
to 4 in preparation for the layer-wise knowledge
transfer. Table 1 demonstrates the model settings
of our IB-BERTLARGE teacher and MobileBERT
student.

One may wonder whether reducing the number
of heads will harm the performance of the teacher
model. By comparing (a) and (f) in Table 2, we can
see that reducing the number of heads from 16 to 4

does not affect the performance of IB-BERTLARGE.

4.2 Implementation Details

Following BERT (Devlin et al., 2018), we use
the BooksCorpus (Zhu et al., 2015) and English
Wikipedia as our pre-training data. To make the
IB-BERTLARGE teacher reach the same accuracy as
original BERTLARGE, we train IB-BERTLARGE on
256 TPU v3 chips for 500k steps with a batch size
of 4096 and LAMB optimizer (You et al., 2019).
For a fair comparison with the original BERT, we
do not use training tricks in other BERT variants
(Liu et al., 2019b; Joshi et al., 2019). For Mo-
bileBERT, we use the same training schedule in
the pre-training distillation stage. Additionally, we
use progressive knowledge transfer to train Mo-
bileBERT, which takes additional 240k steps over
24 layers. In ablation studies, we halve the pre-
training distillation schedule of MobileBERT to
accelerate experiments. Moreover, in the ablation
study of knowledge transfer strategies, for a fair
comparison, joint knowledge transfer and auxiliary
knowledge transfer also take additional 240k steps.

For the downstream tasks, all reported results
are obtained by simply fine-tuning MobileBERT
just like what the original BERT does. To fine-
tune the pre-trained models, we search the opti-
mization hyperparameters in a search space in-
cluding different batch sizes (16/32/48), learning
rates ((1-10) * e-5), and the number of epochs (2-
10). The search space is different from the origi-
nal BERT because we find that MobileBERT usu-
ally needs a larger learning rate and more training
epochs in fine-tuning. We select the model for
testing according to their performance on the de-
velopment (dev) set.

4.3 Results on GLUE

The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018) is a collec-
tion of 9 natural language understanding tasks. We
compare MobileBERT with BERTBASE and a few
state-of-the-art pre-BERT models on the GLUE
leaderboard3: OpenAI GPT (Radford et al., 2018)
and ELMo (Peters et al., 2018). We also compare
with three recently proposed compressed BERT
models: BERT-PKD (Sun et al., 2019), and Dis-
tilBERT (Sanh et al., 2019). To further show the
advantage of MobileBERT over recent small BERT
models, we also evaluate a smaller variant of our

3https://gluebenchmark.com/leaderboard

https://gluebenchmark.com/leaderboard
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#Params #FLOPS Latency CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE GLUE
8.5k 67k 3.7k 5.7k 364k 393k 108k 2.5k

ELMo-BiLSTM-Attn - - - 33.6 90.4 84.4 72.3 63.1 74.1/74.5 79.8 58.9 70.0
OpenAI GPT 109M - - 47.2 93.1 87.7 84.8 70.1 80.7/80.6 87.2 69.1 76.9
BERTBASE 109M 22.5B 342 ms 52.1 93.5 88.9 85.8 71.2 84.6/83.4 90.5 66.4 78.3
BERTBASE-6L-PKD* 66.5M 11.3B - - 92.0 85.0 - 70.7 81.5/81.0 89.0 65.5 -
BERTBASE-4L-PKD†* 52.2M 7.6B - 24.8 89.4 82.6 79.8 70.2 79.9/79.3 85.1 62.3 -
BERTBASE-3L-PKD* 45.3M 5.7B - - 87.5 80.7 - 68.1 76.7/76.3 84.7 58.2 -
DistilBERTBASE-6L† 62.2M 11.3B - - 92.0 85.0 70.7 81.5/81.0 89.0 65.5 -
DistilBERTBASE-4L† 52.2M 7.6B - 32.8 91.4 82.4 76.1 68.5 78.9/78.0 85.2 54.1 -
TinyBERT* 14.5M 1.2B - 43.3 92.6 86.4 79.9 71.3 82.5/81.8 87.7 62.9 75.4
MobileBERTTINY 15.1M 3.1B 40 ms 46.7 91.7 87.9 80.1 68.9 81.5/81.6 89.5 65.1 75.8
MobileBERT 25.3M 5.7B 62 ms 50.5 92.8 88.8 84.4 70.2 83.3/82.6 90.6 66.2 77.7
MobileBERT w/o OPT 25.3M 5.7B 192 ms 51.1 92.6 88.8 84.8 70.5 84.3/83.4 91.6 70.4 78.5

Table 4: The test results on the GLUE benchmark (except WNLI). The number below each task denotes the number
of training examples. The metrics for these tasks can be found in the GLUE paper (Wang et al., 2018). “OPT”
denotes the operational optimizations introduced in Section 3.3. †denotes that the results are taken from (Jiao et al.,
2019). *denotes that it can be unfair to directly compare MobileBERT with these models since MobileBERT is
task-agnosticly compressed while these models use the teacher model in the fine-tuning stage.

#Params SQuAD v1.1 SQuAD v2.0
EM F1 EM F1

DocQA + ELMo - - - 65.1 67.6
BERTBASE 109M 80.8 88.5 74.2† 77.1†
DistilBERTBASE-6L 66.6M 79.1 86.9 - -
DistilBERTBASE-6L‡ 66.6M 78.1 86.2 66.0 69.5
DistilBERTBASE-4L‡ 52.2M 71.8 81.2 60.6 64.1
TinyBERT 14.5M 72.7 82.1 65.3 68.8
MobileBERTTINY 15.1M 81.4 88.6 74.4 77.1
MobileBERT 25.3M 82.9 90.0 76.2 79.2
MobileBERT w/o OPT 25.3M 83.4 90.3 77.6 80.2

Table 5: The results on the SQuAD dev datasets.
†marks our runs with the official code. ‡denotes that
the results are taken from (Jiao et al., 2019).

model with approximately 15M parameters called
MobileBERTTINY

4, which reduces the number of
FFNs in each layer and uses a lighter MHA struc-
ture. Besides, to verify the performance of Mobile-
BERT on real-world mobile devices, we export the
models with TensorFlow Lite5 APIs and measure
the inference latencies on a 4-thread Pixel 4 phone
with a fixed sequence length of 128. The results
are listed in Table 4. 6

From the table, we can see that MobileBERT is
very competitive on the GLUE benchmark. Mo-
bileBERT achieves an overall GLUE score of 77.7,
which is only 0.6 lower than BERTBASE, while be-

4The detailed model setting of MobileBERTTINY can be
found in Table 1 and in the appendix.

5https://www.tensorflow.org/lite
6We follow Devlin et al. (2018) to skip the WNLI task.

MNLI-m QNLI MRPC SST-2 SQuAD
MobileBERTTINY 82.0 89.9 86.7 91.6 88.6

+ Quantization 82.0 89.8 86.3 91.6 88.4
MobileBERT 83.9 91.0 87.5 92.1 90.0

+ Quantization 83.9 90.8 87.0 91.9 90.0

Table 6: Results of MobileBERT on GLUE dev accu-
racy and SQuAD v1.1 dev F1 score with 8-bit Quanti-
zation.

ing 4.3× smaller and 5.5× faster than BERTBASE.
Moreover, It outperforms the strong OpenAI GPT
baseline by 0.8 GLUE score with 4.3× smaller
model size. It also outperforms all the other
compressed BERT models with smaller or similar
model sizes. Finally, we find that the introduced op-
erational optimizations hurt the model performance
a bit. Without these optimizations, MobileBERT
can even outperforms BERTBASE by 0.2 GLUE
score.

4.4 Results on SQuAD

SQuAD is a large-scale reading comprehension
datasets. SQuAD1.1 (Rajpurkar et al., 2016) only
contains questions that always have an answer in
the given context, while SQuAD2.0 (Rajpurkar
et al., 2018) contains unanswerable questions. We
evaluate MobileBERT only on the SQuAD dev
datasets, as there is nearly no single model submis-
sion on SQuAD test leaderboard. We compare our
MobileBERT with BERTBASE, DistilBERT, and a
strong baseline DocQA (Clark and Gardner, 2017).

https://www.tensorflow.org/lite
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Setting #FLOPS Latency
LayerNorm & gelu 5.7B 192 ms
LayerNorm & relu 5.7B 167 ms
NoNorm & gelu 5.7B 92 ms
NoNorm & relu 5.7B 62 ms

Table 7: The effectiveness of operational optimizations
on real-world inference latency for MobileBERT.

MNLI-m QNLI MRPC SST-2 SQuAD
AKT 83.0 90.3 86.8 91.9 88.2
JKT 83.5 90.5 87.5 92.0 89.7
PKT 83.9 91.0 87.5 92.1 90.0

Table 8: Ablation study of MobileBERT on GLUE dev
accuracy and SQuAD v1.1 dev F1 score with Auxiliary
Knowledge Transfer (AKT), Joint Knowledge Transfer
(JKT), and Progressive Knowledge Transfer (PKT).

As shown in Table 5, MobileBERT outperforms a
large margin over all the other models with smaller
or similar model sizes.

4.5 Quantization

We apply the standard post-training quantization
in TensorFlow Lite to MobileBERT. The results
are shown in Table 6. We find that while quanti-
zation can further compress MobileBERT by 4×,
there is nearly no performance degradation from it.
This indicates that there is still a big room in the
compression of MobileBERT.

4.6 Ablation Studies

4.6.1 Operational Optimizations
We evaluate the effectiveness of the two operational
optimizations introduced in Section 3.3, i.e., replac-
ing layer normalization (LayerNorm) with NoNorm
and replacing gelu activation with relu activation.
We report the inference latencies using the same
experimental setting as in Section 4.6.1. From Ta-
ble 7, we can see that both NoNorm and relu are
very effective in reducing the latency of Mobile-
BERT, while the two operational optimizations do
not reduce FLOPS. This reveals the gap between
the real-world inference latency and the theoretical
computation overhead (i.e., FLOPS).

4.6.2 Training Strategies
We also study how the choice of training strategy,
i.e., auxiliary knowledge transfer, joint knowledge
transfer, and progressive knowledge transfer, can
affect the performance of MobileBERT. As shown

MNLI-m QNLI MRPC SST-2
BERTLARGE 86.6 92.1† 87.8 93.7
IB-BERTLARGE 87.0 93.2 87.3 94.1
BERTBASE 84.4 91.1† 86.7 92.9
MobileBERT (bare) 80.8 88.2 84.3 90.1

+ PD 81.1 88.9 85.5 91.7
+ PD + FMT 83.8 91.1 87.0 92.2
+ PD + FMT + AT 84.4 91.5 87.0 92.5

Table 9: Ablation on the dev sets of GLUE benchmark.
BERTBASE and the bare MobileBERT (i.e., w/o PD,
FMT, AT, FMT & OPT) use the standard BERT pre-
training scheme. PD, AT, FMT, and OPT denote Pre-
training Distillation, Attention Transfer, Feature Map
Transfer, and operational OPTimizations respectively.
†marks our runs with the official code.

in Table 8, progressive knowledge transfer consis-
tently outperforms the other two strategies. We
notice that there is a significant performance gap
between auxiliary knowledge transfer and the other
two strategies. We think the reason is that the inter-
mediate layer-wise knowledge (i.e., attention maps
and feature maps) from the teacher may not be
optimal for the student, so the student needs an ad-
ditional pre-training distillation stage to fine-tune
its parameters.

4.6.3 Training Objectives
We finally conduct a set of ablation experiments
with regard to Attention Transfer (AT), Feature
Map Transfer (FMT) and Pre-training Distillation
(PD). The operational OPTimizations (OPT) are re-
moved in these experiments to make a fair compar-
ison between MobileBERT and the original BERT.
The results are listed in Table 9.

We can see that the proposed Feature Map Trans-
fer contributes most to the performance improve-
ment of MobileBERT, while Attention Transfer and
Pre-training Distillation also play positive roles.
We can also find that our IB-BERTLARGE teacher
is as powerful as the original IB-BERTLARGE while
MobileBERT degrades greatly when compared to
its teacher. So we believe that there is still a big
room in the improvement of MobileBERT.

5 Conclusion

We have presented MobileBERT which is a task-
agnostic compact variant of BERT. Empirical re-
sults on popular NLP benchmarks show that Mo-
bileBERT is comparable with BERTBASE while be-
ing much smaller and faster. MobileBERT can
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enable various NLP applications7 to be easily de-
ployed on mobile devices.

In this paper, we show that 1) it is crucial to keep
MobileBERT deep and thin, 2) bottleneck/inverted-
bottleneck structures enable effective layer-wise
knowledge transfer, and 3) progressive knowledge
transfer can efficiently train MobileBERT. We be-
lieve our findings are generic and can be applied to
other model compression problems.
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Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 535–541. ACM.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Z. Chen, H. Zhang, X. Zhang, and L. Zhao. 2018.
Quora question pairs. Quora.

Christopher Clark and Matt Gardner. 2017. Simple
and effective multi-paragraph reading comprehen-
sion. arXiv preprint arXiv:1710.10723.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019a. What does bert
look at? an analysis of bert’s attention. arXiv
preprint arXiv:1906.04341.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D Manning, and Quoc V Le.
2019b. Bam! born-again multi-task networks for
natural language understanding. arXiv preprint
arXiv:1907.04829.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William B Dolan and Chris. Brockett. 2005. Auto-
matically constructing a corpus of sentential para-
phrases. In Proceedings of the International Work-
shop on Paraphrasing.

7https://tensorflow.org/lite/models/
bert_qa/overview

Fei Gao, Lijun Wu, Li Zhao, Tao Qin, Xueqi Cheng,
and Tie-Yan Liu. 2018. Efficient sequence learning
with group recurrent networks. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 799–808.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units. arXiv.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Andrew Howard, Mark Sandler, Grace Chu, Liang-
Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al.
2019. Searching for mobilenetv3. arXiv preprint
arXiv:1905.02244.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. 2017. Mo-
bilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint
arXiv:1704.04861.

Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
2016. Squeezenet: Alexnet-level accuracy with 50x
fewer parameters and¡ 0.5 mb model size. arXiv
preprint arXiv:1602.07360.

Ganesh Jawahar, Benoı̂t Sagot, Djamé Seddah, Samuel
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Appendix for “MobileBERT: a Compact
Task-Agnostic BERT for

Resource-Limited Devices”

A Extra Related Work on Knowledge
Transfer

Exploiting knowledge transfer to compress model
size was first proposed by Buciluǎ et al. (2006).
The idea was then adopted in knowledge distillation
(Hinton et al., 2015), which requires the smaller
student network to mimic the class distribution out-
put of the larger teacher network. Fitnets (Romero
et al., 2014) make the student mimic the interme-
diate hidden layers of the teacher to train narrow

and deep networks. Luo et al. (2016) show that the
knowledge of the teacher can also be obtained from
the neurons in the top hidden layer. Similar to our
proposed progressive knowledge transfer scheme,
Yeo et al. (2018) proposed a sequential knowl-
edge transfer scheme to distill knowledge from
a deep teacher into a shallow student in a sequen-
tial way. Zagoruyko and Komodakis (2016) pro-
posed to transfer the attention maps of the teacher
on images. Li et al. (2019) proposed to transfer
the similarity of hidden states and word alignment
from an autoregressive Transformer teacher to a
non-autoregressive student.

B Extra Related Work on Compact
Architecture Design

While much recent research has focused on im-
proving efficient Convolutional Neural Networks
(CNN) for mobile vision applications (Iandola
et al., 2016; Howard et al., 2017; Zhang et al., 2017,
2018; Sandler et al., 2018; Tan et al., 2019; Howard
et al., 2019), they are usually tailored for CNN.
Popular lightweight operations such as depth-wise
convolution (Howard et al., 2017) cannot be di-
rectly applied to Transformer or BERT. In the NLP
literature, the most relevant work can be group
LSTMs (Kuchaiev and Ginsburg, 2017; Gao et al.,
2018), which employs the idea of group convo-
lution (Zhang et al., 2017, 2018) into Recurrent
Neural Networks (RNN).

C Visualization of Attention
Distributions

We visualize the attention distributions of the
1st and the 12th layers of a few models in the
ablation study for further investigation. They
are shown in Figure 3. We find that the pro-
posed attention transfer can help the student mimic
the attention distributions of the teacher very
well. Surprisingly, we find that the attention
distributions in the attention heads of ”Mobile-
BERT(bare)+PD+FMT” are exactly a re-order of
those of ”MobileBERT(bare)+PD+FMT+AT” (also
the teacher model), even if it has not been trained by
the attention transfer objective. This phenomenon
indicates that multi-head attention is a crucial and
unique part of the non-linearity of BERT. Moreover,
it can explain the minor improvements of Atten-
tion Transfer in the ablation study table, since the
alignment of feature maps lead to the alignment
of attention distributions.
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L1 H1 L1 H2 L1 H3 L1 H4 L12 H1 L12 H2 L12 H3 L12 H4

MobileBERT (bare)
+ PD + FMT + AT

IB-BERT
Teacher

MobileBERT (bare)

MobileBERT (bare)
+ PD + FMT

MobileBERT (bare)
+ PD

Figure 3: The visualization of the attention distributions in some attention heads of the IB-BERT teacher and
different MobileBERT models.

D Extra Experimental Settings

For a fair comparison with original BERT, we
follow the same pre-processing scheme as BERT,
where we mask 15% of all WordPiece (Kudo and
Richardson, 2018) tokens in each sequence at ran-
dom and use next sentence prediction. Please note
that MobileBERT can be potentially further im-
proved by several training techniques recently intro-
duced, such as span prediction (Joshi et al., 2019)
or removing next sentence prediction objective (Liu
et al., 2019b). We leave it for future work.

In pre-training distillation, the hyperparameter
α is used to balance the original masked language
modeling loss and the distillation loss. Following
(Kim and Rush, 2016), we set α to 0.5.

E Architecture of MobileBERTTINY

We use a lighter MHA structure for
MobileBERTTINY. As illustrated in Figure
4, in stead of using hidden states from the
inter-block feature maps as inputs to MHA, we
use the reduced intra-block feature maps as key,
query, and values in MHA for MobileBERTTINY.
This can effectively reduce the parameters in MHA
modules, but might harm the model capacity.

F GLUE Dataset

In this section, we provide a brief description of the
tasks in the GLUE benchmark (Wang et al., 2018).

CoLA The Corpus of Linguistic Acceptability
(Warstadt et al., 2018) is a collection of English ac-

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Add & Norm

Linear

Linear

xF

(c)
Embedding

Classifier

Figure 4: Illustration of MobileBERTTINY. red lines
denote inter-block flows while blue lines intra-block
flows.

ceptability judgments drawn from books and jour-
nal articles on linguistic theory. The task is to pre-
dict whether an example is a grammatical English
sentence and is evaluated by Matthews correlation
coefficient (Matthews, 1975).

SST-2 The Stanford Sentiment Treebank (Socher
et al., 2013) is a collection of sentences from movie
reviews and human annotations of their sentiment.
The task is to predict the sentiment of a given sen-
tence and is evaluated by accuracy.
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MRPC The Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) is a collection of
sentence pairs automatically extracted from online
news sources. They are labeled by human anno-
tations for whether the sentences in the pair are
semantically equivalent. The performance is evalu-
ated by both accuracy and F1 score.

STS-B The Semantic Textual Similarity Bench-
mark (Cer et al., 2017) is a collection of sentence
pairs drawn from news headlines, video and image
captions, and natural language inference data. Each
pair is human-annotated with a similarity score
from 1 to 5. The task is to predict these scores and
is evaluated by Pearson and Spearman correlation
coefficients.

QQP The Quora Question Pairs8 (Chen et al.,
2018) dataset is a collection of question pairs from
the community question-answering website Quora.
The task is to determine whether a pair of ques-
tions are semantically equivalent and is evaluated
by both accuracy and F1 score.

MNLI The Multi-Genre Natural Language Infer-
ence Corpus (Williams et al., 2018) is a collection
of sentence pairs with textual entailment annota-
tions. Given a premise sentence and a hypothesis
sentence, the task is to predict whether the premise
entails the hypothesis (entailment ), contradicts
the hypothesis (contradiction), or neither (neutral)
and is evaluated by accuracy on both matched (in-
domain) and mismatched (cross-domain) sections
of the test data.

QNLI The Question-answering NLI dataset is
converted from the Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016). The
task is to determine whether the context sentence
contains the answer to the question and is evaluated
by the test accuracy.

RTE The Recognizing Textual Entailment (RTE)
datasets come from a series of annual textual en-
tailment challenges (Bentivogli et al., 2009). The
task is to predict whether sentences in a sentence
pair are entailment and is evaluated by accuracy.

WNLI The Winograd Schema Challenge
(Levesque et al., 2011) is a reading comprehension
task in which a system must read a sentence with
a pronoun and select the referent of that pronoun

8https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs

from a list of choices. We follow Devlin et al.
(2018) to skip this task in our experiments, because
few previous works do better than predicting the
majority class for this task.

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

