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Abstract

Suppose we want to specify the inductive
bias that married couples typically go on hon-
eymoons for the task of extracting pairs of
spouses from text. In this paper, we allow
model developers to specify these types of
inductive biases as natural language explana-
tions. We use BERT fine-tuned on MultiNLI
to “interpret” these explanations with respect
to the input sentence, producing explanation-
guided representations of the input. Across
three relation extraction tasks, our method,
ExpBERT, matches a BERT baseline but with
3–20× less labeled data and improves on the
baseline by 3–10 F1 points with the same
amount of labeled data.

1 Introduction

Consider the relation extraction task of finding
spouses in text, and suppose we wanted to specify
the inductive bias that married couples typically
go on honeymoons. In a traditional feature en-
gineering approach, we might try to construct a
“did they go on a honeymoon?” feature and add
that to the model. In a modern neural network set-
ting, however, it is not obvious how to use standard
approaches like careful neural architecture design
or data augmentation to induce such an inductive
bias. In a way, while the shift from feature engi-
neering towards end-to-end neural networks and
representation learning has alleviated the burden of
manual feature engineering and increased model
expressivity, it has also reduced our control over
the inductive biases of a model.

In this paper, we explore using natural language
explanations (Figure 1) to generate features that
can augment modern neural representations. This
imbues representations with inductive biases cor-
responding to the explanations, thereby restoring
some degree of control while maintaining their ex-
pressive power.
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Figure 1: Sample data points and explanations from
Spouse, one of our relation extraction tasks. The ex-
planations provide relevant features for classification.

Prior work on training models with explanations
use semantic parsers to interpret explanations: the
parser converts each explanation into an executable
logical form that is executable over the input sen-
tence and uses the resulting outputs as features
(Srivastava et al., 2017) or as noisy labels on un-
labeled data (Hancock et al., 2018). However, se-
mantic parsers can typically only parse low-level
statements like “‘wife’ appears between {o1} and
{o2} and the last word of {o1} is the same as the
last word of {o2}” (Hancock et al., 2018).

We remove these limitations by using modern
distributed language representations, instead of se-
mantic parsers, to interpret language explanations.
Our approach, ExpBERT (Figure 2), uses BERT
(Devlin et al., 2019) fine-tuned on the MultiNLI
natural language inference dataset (Williams et al.,
2018) to produce features that “interpret” each ex-
planation on an input. We then use these features to
augment the input representation. Just as a seman-
tic parser grounds an explanation by converting
it into a logical form and then executing it, the
features produced by BERT can be seen as a soft
“execution” of the explanation on the input.
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Figure 2: Overview of our approach. Explanations as
well as textual descriptions of relations are interpreted
using BERT for a given x to produce a representation
which form inputs to our classifier.

On three benchmark relation extraction tasks,
ExpBERT improves over a BERT baseline with no
explanations: it achieves an F1 score of 3–10 points
higher with the same amount of labeled data, and a
similar F1 score as the full-data baseline but with 3–
20x less labeled data. ExpBERT also improves on
a semantic parsing baseline (+3 to 5 points F1), sug-
gesting that natural language explanations can be
richer than low-level, programmatic explanations.

2 Setup

Problem. We consider the task of relation extrac-
tion: Given x = (s, o1, o2), where s is a sequence
of words and o1 and o2 are two entities that are
substrings within s, our goal is to classify the re-
lation y ∈ Y between o1 and o2. The label space
Y includes a NO-RELATION label if no relation
applies. Additionally, we are given a set of nat-
ural language explanations E = {e1, e2, . . . , en}
designed to capture relevant features of the input
for classification. These explanations are used to
define a global collection of features and are not
tied to individual examples.

Approach. Our approach (Figure 2) uses pre-
trained neural models to interpret the explanations
E in the context of a given input x. Formally,
we define an interpreter I as any function that
takes an input x and explanation ej and produces
a feature vector in Rd. In our ExpBERT imple-
mentation, we choose I to capture whether the
explanation ej is entailed by the input x. Con-
cretely, we use BERT (Devlin et al., 2019) fine-
tuned on MultiNLI (Williams et al., 2018): we feed

wordpiece-tokenized versions of the explanation
ej (hypothesis) and the instance x (premise), sepa-
rated by a [SEP] token, to BERT. Following stan-
dard practice, we use the vector at the [CLS] token
to represent the entire input as a 768-dimensional
feature vector:

I(x, ej) = BERT
(

[CLS], s, [SEP], ej
)
. (1)

These vectors, one for each of the n explanations,
are concatenated to form the explanation represen-
tation v(x) ∈ R768n,

v(x) =
[
I(x, e1), I(x, e2), . . . , I(x, en)

]
. (2)

In addition to v(x), we also map x into an input
representation u(x) ∈ R768|Y| by using the same
interpreter over textual descriptions of each poten-
tial relation. Specifically, we map each potential re-
lation yi in the label spaceY to a textual description
ri (Figure 2), apply I(x, ·) to ri, and concatenate
the resulting feature vectors:

u(x) =
[
I(x, r1), I(x, r2), . . . , I(x, r|Y|)

]
. (3)

Finally, we train a classifier over u(x) and v(x):

fθ(x) = MLP
[
u(x), v(x)

]
. (4)

Note that u(x) and v(x) can be obtained in a pre-
processing step since I(·, ·) is fixed (i.e., we do not
additionally fine-tune BERT on our tasks). For
more model details, please refer to Appendix A.1.

Baselines. We compare ExpBERT against sev-
eral baselines that train a classifier over the same
input representation u(x). NoExp trains a classi-
fier only on u(x). The other baselines augment
u(x) with variants of the explanation representa-
tion v(x). BERT+SemParser uses the semantic
parser from Hancock et al. (2018) to convert expla-
nations into executable logical forms. The resulting
denotations over the input x (a single bit for each
explanation) are used as the explanation represen-
tation, i.e., v(x) ∈ {0, 1}n. We use two different
sets of explanations for this baseline: our natural
language explanations (LangExp) and the low-level
explanations from Hancock et al. (2018) that are
more suitable for the semantic parser (ProgExp).
BERT+Patterns converts explanations into a col-
lection of unigram, bigram, and trigram patterns
and creates a binary feature for each pattern based
on whether it is contained in s or not. This gives
v(x) ∈ {0, 1}n′

, where n′ is the number of pat-
terns. Finally, we compare ExpBERT against a
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Table 1: Dataset statistics.

Dataset Train Val Test Explanations
Spouse 22055 2784 2680 40
Disease 6667 773 4101 28
TACRED 68124 22631 15509 128

variant called ExpBERT-Prob, where we directly
use entailment probabilities obtained by BERT (in-
stead of the feature vector at the [CLS] token) as
the explanation representation v(x) ∈ [0, 1]n.

3 Experiments

Datasets. We consider 3 relation extraction
datasets from various domains—Spouse and
Disease (Hancock et al., 2018), and TACRED
(Zhang et al., 2017). Spouse involves classify-
ing if two entities are married; Disease involves
classifying whether the first entity (a chemical) is a
cause of the second entity (a disease); and TACRED
involves classifying the relation between the two
entities into one of 41 categories. Dataset statistics
are in Table 1; for more details, see Appendix A.2.

Explanations. To construct explanations, we ran-
domly sampled 50 training examples for each
y ∈ Y and wrote a collection of natural language
statements explaining the gold label for each ex-
ample. For Spouse and Disease, we addition-
ally wrote some negative explanations for the NO-
RELATION category. To interpret explanations for
Disease, we use SciBERT, a variant of BERT that
is better suited for scientific text (Beltagy et al.,
2019). A list of explanations can be found in Ap-
pendix A.3.

Benchmarks. We find that explanations im-
prove model performance across all three datasets:
ExpBERT improves on the NoExp baseline by
+10.6 F1 points on Spouse, +2.7 points on
Disease, and +3.2 points on TACRED (Table 2).1

On TACRED, which is the most well-established
of our benchmarks and on which there is signifi-
cant prior work, ExpBERT (which uses a smaller
BERT-base model that is not fine-tuned on our task)
outperforms the standard, fine-tuned BERT-large
model by +1.5 F1 points (Joshi et al., 2019). Prior
work on Spouse and Disease used a simple logis-
tic classifier over traditional features created from

1We measure performance using F1 scores due to the class
imbalance in the datasets (Spouse: 8% positive, Disease:
20.8% positive, and TACRED: 20.5% examples with a relation).

dependency paths of the input sentence. This per-
forms poorly compared to neural models, and our
models attain significantly higher accuracies (Han-
cock et al., 2018).

Using BERT to interpret natural language ex-
planations improves on using semantic parsers to
evaluate programmatic explanations (+5.5 and +2.7
over BERT+SemParser (ProgExp) on Spouse and
Disease, respectively). ExpBERT also outper-
forms the BERT+SemParser (LangExp) model by
+9.9 and +3.3 points on Spouse and Disease. We
exclude these results on TACRED as it was not stud-
ied in Hancock et al. (2018), so we did not have a
corresponding semantic parser and set of program-
matic explanations.

We note that ExpBERT—which uses the
full 768-dimensional feature vector from each
explanation—outperforms ExpBERT (Prob),
which summarizes these vectors into one number
per explanation, by +2–5 F1 points across all three
datasets.

Data efficiency. Collecting a set of explanations
E requires additional effort—it took the authors
about 1 minute or less to construct each expla-
nation, though we note that it only needs to be
done once per dataset (not per example). How-
ever, collecting a small number of explanations
can significantly and disproportionately reduce the
number of labeled examples required. We trained
ExpBERT and the NoExp baseline with varying
fractions of Spouse and TACRED training data (Fig-
ure 3). ExpBERT matches the NoExp baseline
with 20x less data on Spouse; i.e., we obtain the
same performance with ExpBERT with 40 expla-
nations and 2k labeled training examples as with
NoExp with 22k examples. On TACRED, ExpBERT
requires 3x less data, obtaining the same perfor-
mance with 128 explanations and 23k training ex-
amples as compared to NoExp with 68k examples.
These results suggest that the higher-bandwidth
signal in language can help models be more data-
efficient.

4 Analysis

4.1 Which explanations are important?

To understand which explanations are important,
we group explanations into a few semantic cate-
gories (details in Appendix A.3) and cumulatively
add them to the NoExp baseline. In particular,
we break down explanations for Spouse into the
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Table 2: Results on relation extraction datasets. For Spouse and Disease, we report 95% confidence intervals and
for TACRED, we follow the evaluation protocol from Zhang et al. (2017). More details in Appendix A.

Model Spouse Disease TACRED
NoExp 52.9 ± 0.97 49.7 ± 1.01 64.7
BERT+Patterns 53.3 ± 1.24 49.0 ± 1.15 64.4
BERT+SemParse (LangExp) 53.6 ± 0.38 49.1 ± 0.47 -
BERT+SemParse (ProgExp) 58.3 ± 1.10 49.7 ± 0.54 -
ExpBERT-Prob 58.4 ± 1.22 49.7 ± 1.21 65.3
ExpBERT 63.5 ± 1.40 52.4 ± 1.23 67.9

20 40 60 80 100
% of Spouse Training Data

35

40

45

50

55

60

65

F1
 S

co
re

NoExp
ExpBERT

20 40 60 80 100
% of TACRED Training Data

54
56
58
60
62
64
66
68

F1
 S

co
re

NoExp
ExpBERT

Figure 3: ExpBERT matches the performance of the
NoExp baseline with 20x less data on Spouse (Left),
and with 3x less data on TACRED (Right).

Table 3: Importance of various explanation groups.

Model Spouse
NoExp 52.9 ± 0.97
+ MARRIED 55.2 ± 0.43
+ CHILDREN 55.9 ± 0.98
+ ENGAGED 57.0 ± 2.57
+ NEGATIVES 60.1 ± 0.87
+ MISC (full ExpBERT) 63.5 ± 1.40

groups MARRIED (10 explanations), CHILDREN (5
explanations), ENGAGED (3 explanations), NEGA-
TIVES (13 explanations) and MISC (9 explanations).
We find that adding new explanation groups helps
performance (Table 3), which suggests that a broad
coverage of various explanatory factors could be
helpful for performance. We also observe that the
MARRIED group (which contains paraphrases of
{o1} is married to {o2}) alone boosts performance
over NoExp, which suggests that a variety of para-
phrases of the same explanation can improve per-
formance.

4.2 Quality vs. quantity of explanations

We now test whether ExpBERT can do equally well
with the same number of random explanations, ob-
tained by replacing words in the explanation with
random words. The results are dataset-specific:
random explanations help on Spouse but not on
Disease. However, in both cases, random expla-
nations do significantly worse than the original ex-
planations (Table 4). Separately adding 10 random

Table 4: ExpBERT accuracy is significantly lower
when we replace words in the original explanations
with random words.

Model Spouse Disease
NoExp 52.9 ± 0.97 49.7 ± 1.01
ExpBERT (random) 56.4 ± 1.20 49.6 ± 1.22
ExpBERT (orig) 63.5 ± 1.40 52.4 ± 1.23
ExpBERT (orig + random) 62.4 ± 1.41 51.8 ± 1.03

Table 5: Combining language explanations with the ex-
ternal CTD ontology improves accuracy on Disease.

Model Disease
ExpBERT 52.4 ± 1.23
ExpBERT (+ External) 59.1 ± 3.26

explanations to our original explanations led to a
slight drop (≈1 F1 point) in accuracy. These results
suggest that ExpBERT’s performance comes from
having a diverse set of high quality explanations
and are not just due to providing more features.

4.3 Complementing language explanations
with external databases

Natural language explanations can capture differ-
ent types of inductive biases and prior knowledge,
but some types of prior knowledge are of course
better introduced through other means. We wrap up
our experiments with a vignette on how language
explanations can complement other forms of fea-
ture and representation engineering. We consider
Disease, where we have access to an external on-
tology (Comparative Toxicogenomic Database or
CTD) from Wei et al. (2015) containing chemical-
disease interactions. Following Hancock et al.
(2018), we add 6 bits to the explanation represen-
tation v(x) that test if the given chemical-disease
pair follows certain relations in CTD (e.g., if they
are in the ctd-therapy dictionary). Table 5 shows
that as expected, other sources of information can
complement language explanations in ExpBERT.
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5 Related work

Many other works have used language to guide
model training. As mentioned above, semantic
parsers have been used to convert language ex-
planations into features (Srivastava et al., 2017)
and noisy labels on unlabeled data (Hancock et al.,
2018; Wang et al., 2019).

Rather than using language to define a global
collection of features, Rajani et al. (2019) and Cam-
buru et al. (2018) use instance-level explanations
to train models that generate their own explana-
tions. Zaidan and Eisner (2008) ask annotators to
highlight important words, then learn a generative
model over parameters given these rationales. Oth-
ers have also used language to directly produce
parameters of a classifier (Ba et al., 2015) and as
part of the parameter space of a classifier (Andreas
et al., 2017).

While the above works consider learning from
static language supervision, Li et al. (2016) and
Weston (2016) learn from language supervision in
an interactive setting. In a related line of work,
Wang et al. (2017), users teach a system high-level
concepts via language.

6 Discussion

Recent progress in general-purpose language rep-
resentation models like BERT open up new op-
portunities to incorporate language into learning.
In this work, we show how using these models
with natural language explanations can allow us
to leverage a richer set of explanations than if we
were constrained to only use explanations that can
be programmatically evaluated, e.g., through n-
gram matching (BERT+Patterns) or semantic pars-
ing (BERT+SemParser).

The ability to incorporate prior knowledge of the
“right” inductive biases into model representations
dangles the prospect of building models that are
more robust. However, more work will need to
be done to make this approach more broadly ap-
plicable. We outline two such avenues of future
work. First, combining our ExpBERT approach
with more complex state-of-the-art models can be
conceptually straightforward (e.g., we could swap
out BERT-base for a larger model) but can some-
times also require overcoming technical hurdles.
For example, we do not fine-tune ExpBERT in
this paper; doing so might boost performance, but
fine-tuning through all of the explanations on each
example is computationally intensive.

Second, in this paper we provided a proof-of-
concept for several relation extraction tasks, relying
on the fact that models trained on existing natural
language inference datasets (like MultiNLI) could
be applied directly to the input sentence and expla-
nation pair. Extending ExpBERT to other natural
language tasks where this relationship might not
hold is an open problem that would entail finding
different ways of interpreting an explanation with
respect to the input.
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A Appendix

A.1 Implementation Details

Interpreting explanations. When interpreting
an explanation ei on a particular example x =
(s, o1, o2), we first substitute o1 and o2 into the
placeholders in the explanation ei to produce an
instance-level version of the explanation. For ex-
ample, “{o1} and {o2} are a couple” might become
“Jim Bob and Michelle Duggar are a couple”.

Model hyperparameters and evaluation. We
use BERT-BASE-UNCASED for Spouse and
TACRED, and SCIBERT-SCIVOCAB-UNCASED for
Disease from Beltagy et al. (2019). We finetune
all our BERT models on MultiNLI using the Trans-
formers library2 using default parameters. The
resulting BERT model is then frozen and used to
produce features for our classifier. We use the fol-
lowing hyperparameters for our MLP classifier:
number of feed-forward layers ∈ [0,1], dimension
of each layer ∈ [64, 256], and dropout ∈ [0.0, 0.3].
We optionally project the 768 dimensional BERT
feature vector down to 64 dimensions. To train our
classifier, we use the Adam optimizer (Kingma and
Ba, 2014) with default parameters, and batch size
∈ [32, 128].

We early stop our classifier based on the F1 score
on the validation set, and choose the hyperparame-
ters that obtain the best early-stopped F1 score on
the validation set. For Spouse and Disease, we
report the test F1 means and 95% confidence inter-
vals of 5-10 runs. For TACRED, we follow Zhang
et al. (2017), and report the test F1 of the median
validation set F1 of 5 runs corresponding to the
chosen hyperparameters.

A.2 Datasets

Spouse and Disease preprocessed datasets were
obtained directly from the codebase provided by
Hancock et al. (2018)3. We use the train, validation,
test split provided by Hancock et al. (2018) for
Disease, and split the development set of Spouse
randomly into a validation and test set (the split
was done at a document level). To process TACRED,
we use the default BERT tokenizer and indexing
pipeline in the Transformers library.

2https://huggingface.co/transformers/
3https://worksheets.codalab.org/worksheets/0x900e7e41deaa4ec5b2fe41dc50594548/

A.3 Explanations
The explanations can be found in Tables 6 and 7
on the following page. We use 40 explanations
for Spouse, 28 explanations for Disease, and 128
explanations for TACRED (in accompanying file).
The explanations were written by the authors.

https://huggingface.co/transformers/
https://worksheets.codalab.org/worksheets/0x900e7e41deaa4ec5b2fe41dc50594548/
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{o1} and {o2} have a marriage license
{o1}’s husband is {o2}
{o1}’s wife is {o2}
{o1} and {o2} are married
{o1} and {o2} are going to tie the knot
{o1} married {o2}
{o1} and {o2} are a married couple
{o1} and {o2} had a wedding
{o1} and {o2} married in the past
{o1} tied the knot with {o2}
{o1} and {o2} have a son
{o1} and {o2} have a daughter
{o1} and {o2} have kids together
{o1} and {o2} are expecting a son
{o1} and {o2} are expecting a daughter
{o1} is engaged to {o2}
{o1} is the fiancé of {o2}
{o1} is the fiancée of {o2}
{o1} is the daughter of {o2}
{o1} is the mother of {o2}
{o1} and {o2} are the same person
{o1} is the same person as {o2}
{o1} is married to someone other than {o2}
{o1} is the father of {o2}
{o1} is the son of {o2}
{o1} is marrying someone other than {o2}
{o1} is the ex-wife of {o2}
{o1} is a location
{o2} is a location
{o1} is an organization
{o2} is an organization
{o1} and {o2} are partners
{o1} and {o2} share a home
{o1} and {o2} are a couple
{o1} and {o2} share the same surname
someone is married to {o1}
someone is married to {o2}
{o1} is a person
{o2} is a person
{o1} and {o2} are different people

Table 6: Explanations for Spouse. The groups corre-
spond to MARRIED, CHILDREN, ENGAGED, NEGA-
TIVES and MISC.

The symptoms of {o2} appeared after the
administration of {o1}
{o2} developed after {o1}
Patients developed {o2} after being treated with {o1}
{o1} contributes indirectly to {o2}
{o1} has been associated with the development of {o2}
Symptoms of {o2} abated after withdrawal of {o1}
A greater risk of {o2} was found in the {o1} group
compared to a placebo
{o2} is a side effect of {o1}
{o2} has been reported to occur with {o1}
{o2} has been demonstrated after the
administration of {o1}
{o1} caused the appearance of {o2}
Use of {o1} can lead to {o2}
{o1} can augment {o2}
{o1} can increase the risk of {o2}
Symptoms of {o2} appeared after dosage of {o1}
{o1} is a chemical
{o2} is a disease
{o1} is used for the treatment of {o2}
{o1} is known to reduce the symptoms of {o2}
{o1} is used for the prevention of {o2}
{o1} ameliorates {o2}
{o1} induces {o2}
{o1} causes a disease other than {o2}
{o1} is an organ
administering {o1} causes {o2} to worsen
{o1} is effective for the treatment of {o2}
{o1} has an effect on {o2}
{o1} has an attenuating effect on {o2}

Table 7: Explanations for Disease


