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Abstract
Imitation learning algorithms provide state-of-
the-art results on many structured prediction
tasks by learning near-optimal search policies.
Such algorithms assume training-time access
to an expert that can provide the optimal ac-
tion at any queried state; unfortunately, the
number of such queries is often prohibitive,
frequently rendering these approaches imprac-
tical. To combat this query complexity, we
consider an active learning setting in which
the learning algorithm has additional access to
a much cheaper noisy heuristic that provides
noisy guidance. Our algorithm, LEAQI, learns
a difference classifier that predicts when the
expert is likely to disagree with the heuris-
tic, and queries the expert only when neces-
sary. We apply LEAQI to three sequence la-
beling tasks, demonstrating significantly fewer
queries to the expert and comparable (or bet-
ter) accuracies over a passive approach.

1 Introduction

Structured prediction methods learn models to map
inputs to complex outputs with internal dependen-
cies, typically requiring a substantial amount of
expert-labeled data. To minimize annotation cost,
we focus on a setting in which an expert provides
labels for pieces of the input, rather than the com-
plete input (e.g., labeling at the level of words, not
sentences). A natural starting point for this is imita-
tion learning-based “learning to search” approaches
to structured prediction (Daumé et al., 2009; Ross
et al., 2011; Bengio et al., 2015; Leblond et al.,
2018). In imitation learning, training proceeds
by incrementally producing structured outputs on
piece at a time and, at every step, asking the ex-
pert “what would you do here?” and learning to
mimic that choice. This interactive model comes at
a substantial cost: the expert demonstrator must be
continuously available and must be able to answer
a potentially large number of queries.

We reduce this annotation cost by only asking
an expert for labels that are truly needed; our al-
gorithm, Learning to Query for Imitation (LEAQI,
/"li:,tSi:/)1 achieves this by capitalizing on two fac-
tors. First, as is typical in active learning (see §2),
LEAQI only asks the expert for a label when it is
uncertain. Second, LEAQI assumes access to a
noisy heuristic labeling function (for instance, a
rule-based model, dictionary, or inexpert annota-
tor) that can provide low-quality labels. LEAQI
operates by always asking this heuristic for a label,
and only querying the expert when it thinks the
expert is likely to disagree with this label. It trains,
simultaneously, a difference classifier (Zhang and
Chaudhuri, 2015) that predicts disagreements be-
tween the expert and the heuristic (see Figure 1).

The challenge in learning the difference classifier
is that it must learn based on one-sided feedback: if
it predicts that the expert is likely to agree with the
heuristic, the expert is not queried and the classifier
cannot learn that it was wrong. We address this
one-sided feedback problem using the Apple Tast-
ing framework (Helmbold et al., 2000), in which
errors (in predicting which apples are tasty) are
only observed when a query is made (an apple is
tasted). Learning in this way particularly important
in the general case where the heuristic is likely not
just to have high variance with respect to the expert,
but is also statistically biased.

Experimentally (§4.5), we consider three struc-
tured prediction settings, each using a different type
of heuristic feedback. We apply LEAQI to: English
named entity recognition where the heuristic is a
rule-based recognizer using gazetteers (Khashabi
et al., 2018); English scientific keyphrase extrac-
tion, where the heuristic is an unsupervised method
(Florescu and Caragea, 2017); and Greek part-of-
speech tagging, where the heuristic is a small dictio-

1Code is available at: https://github.com/xkianteb/leaqi

https://github.com/xkianteb/leaqi
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h(s10)	=		ORG									y

disagree	=	False

Figure 1: A named entity recognition example (from the Wikipedia page for Clarence Ellis). x is the input sentence
and y is the (unobserved) ground truth. The predictor π operates left-to-right and, in this example, is currently at
state s10 to tag the 10th word; the state s10 (highlighted in purple) combines x with ŷ1:9. The heuristic makes two
errors at t = 4 and t = 6. The heuristic label at t = 10 is yh10 =ORG. Under Hamming loss, the cost at t = 10 is
minimized for a = ORG, which is therefore the expert action (if it were queried). The label that would be provided
for s10 to the difference classifier is 0 because the two policies agree.

nary compiled from the training data (Zesch et al.,
2008; Haghighi and Klein, 2006). In all three set-
tings, the expert is a simulated human annotator.
We train LEAQI on all three tasks using fixed BERT
(Devlin et al., 2019) features, training only the fi-
nal layer (because we are in the regime of small
labeled data). The goal in all three settings is to
minimize the number of words the expert annotator
must label. In all settings, we’re able to establish
the efficacy of LEAQI, showing that it can indeed
provide significant label savings over using the ex-
pert alone and over several baselines and ablations
that establish the importance of both the difference
classifier and the Apple Tasting paradigm.

2 Background and Related Work

We review first the use of imitation learning for
structured prediction, then online active learning,
and finally applications of active learning to struc-
tured prediction and imitation learning problems.

2.1 Learning to Search

The learning to search approach to structured pre-
diction casts the joint prediction problem of pro-
ducing a complex output as a sequence of smaller
classification problems (Ratnaparkhi, 1996; Collins
and Roark, 2004; Daumé et al., 2009). For in-
stance, in the named entity recognition example
from Figure 1, an input sentence x is labeled one
word at a time, left-to-right. At the depicted state
(s10), the model has labeled the first nine words and
must next label the tenth word. Learning to search
approaches assume access to an oracle policy π?,
which provides the optimal label at every position.

In (interactive) imitation learning, we aim to
imitate the behavior of the expert policy, π?, which
provides the true labels. The learning to search
view allows us to cast structured prediction as a
(degenerate) imitation learning task, where states

Algorithm 1 DAgger(Π, N, 〈βi〉Ni=0, π
?)

1: initialize dataset D = {}
2: initialize policy π̂1 to any policy in Π
3: for i = 1 . . . N do
4: . stochastic mixture policy
5: Let πi = βiπ

? + (1− βi)π̂i
6: Generate a T -step trajectory using πi
7: Accumulate dataD ← D∪{(s, π?(s))} for

all s in those trajectories
8: Train classifier π̂i+1 ∈ Π on D
9: end for

10: return best (or random) π̂i

are (input, prefix) pairs, actions are operations on
the output, and the horizon T is the length of the
sequence. States are denoted s ∈ S, actions are
denoted a ∈ [K], where [K] = {1, . . . ,K}, and
the policy class is denoted Π ⊆ [K]S . The goal in
learning is to find a policy π ∈ Π with small loss
on the distribution of states that it, itself, visits.

A popular imitation learning algorithm, DAg-
ger (Ross et al., 2011), is summarized in Alg 1. In
each iteration, DAgger executes a mixture policy
and, at each visited state, queries the expert’s ac-
tion. This produces a classification example, where
the input is the state and the label is the expert’s
action. At the end of each iteration, the learned
policy is updated by training it on the accumulation
of all generated data so far. DAgger is effective
in practice and enjoys appealing theoretical prop-
erties; for instance, if the number of iterations N
is Õ(T 2 log(1/δ)) then with probability at least
1− δ, the generalization error of the learned policy
is O(1/T ) (Ross et al., 2011, Theorem 4.2).

2.2 Active Learning

Active learning has been considered since at least
the 1980s often under the name “selective sam-

https://en.wikipedia.org/wiki/Clarence_Ellis_(computer_scientist)
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pling” (Rendell, 1986; Atlas et al., 1990). In ag-
nostic online active learning for classification, a
learner operates in rounds (e.g. Balcan et al., 2006;
Beygelzimer et al., 2009, 2010). At each round,
the learning algorithm is presented an example
x and must predict a label; the learner must de-
cide whether to query the true label. An effective
margin-based approach for online active learning
is provided by Cesa-Bianchi et al. (2006) for linear
models. Their algorithm defines a sampling proba-
bility ρ = b/(b+ z), where z is the margin on the
current example, and b > 0 is a hyperparameter
that controls the aggressiveness of sampling. With
probability ρ, the algorithm requests the label and
performs a perceptron-style update.

Our approach is inspired by Zhang and Chaud-
huri’s (2015) setting, where two labelers are avail-
able: a free weak labeler and an expensive strong
labeler. Their algorithm minimizes queries to the
strong labeler, by learning a difference classifier
that predicts, for each example, whether the weak
and strong labelers are likely to disagree. Their
algorithm trains this difference classifier using an
example-weighting strategy to ensure that its Type
II error is kept small, establishing statistical consis-
tency, and bounding its sample complexity.

This type of learning from one-sided feed-
back falls in the general framework of partial-
monitoring games, a framework for sequential deci-
sion making with imperfect feedback. Apple Tast-
ing is a type of partial-monitoring game (Little-
stone and Warmuth, 1989), where, at each round,
a learner is presented with an example x and must
predict a label ŷ ∈ {−1,+1}. After this predic-
tion, the true label is revealed only if the learner
predicts +1. This framework has been applied in
several settings, such as spam filtering and doc-
ument classification with minority class distribu-
tions (Sculley, 2007). Sculley (2007) also conducts
a through comparison of two methods that can be
used to address the one-side feedback problem:
label-efficient online learning (Cesa-Bianchi et al.,
2006) and margin-based learning (Vapnik, 1982).

2.3 Active Imitation & Structured Prediction

In the context of structured prediction for natu-
ral language processing, active learning has been
considered both for requesting full structured out-
puts (e.g. Thompson et al., 1999; Culotta and Mc-
Callum, 2005; Hachey et al., 2005) and for re-
questing only pieces of outputs (e.g. Ringger et al.,

2007; Bloodgood and Callison-Burch, 2010). For
sequence labeling tasks, Haertel et al. (2008) found
that labeling effort depends both on the number of
words labeled (which we model), plus a fixed cost
for reading (which we do not).

In the context of imitation learning, active ap-
proaches have also been considered for at least
three decades, often called “learning with an exter-
nal critic” and “learning by watching” (Whitehead,
1991). More recently, Judah et al. (2012) describe
RAIL, an active learning-for-imitation-learning al-
gorithm akin to our ACTIVEDAGGER baseline, but
which in principle would operate with any under-
lying i.i.d. active learning algorithm (not just our
specific choice of uncertainty sampling).

3 Our Approach: LEAQI

Our goal is to learn a structured prediction model
with minimal human expert supervision, effec-
tively by combining human annotation with a noisy
heuristic. We present LEAQI to achieve this. As
a concrete example, return to Figure 1: at s10, π
must predict the label of the tenth word. If π is
confident in its own prediction, LEAQI can avoid
any query, similar to traditional active learning. If
π is not confident, then LEAQI considers the label
suggested by a noisy heuristic (here: ORG). LEAQI
predicts whether the true expert label is likely to
disagree with the noisy heuristic. Here, it predicts
no disagreement and avoids querying the expert.

3.1 Learning to Query for Imitation
Our algorithm, LEAQI, is specified in Alg 2. As
input, LEAQI takes a policy class Π, a hypothesis
classH for the difference classifier (assumed to be
symmetric and to contain the “constant one” func-
tion), a number of episodes N , an expert policy π?,
a heuristic policy πh, and a confidence parameter
b > 0. The general structure of LEAQI follows
that of DAgger, but with three key differences:

(a) roll-in (line 7) is according to the learned pol-
icy (not mixed with the expert, as that would
require additional expert queries),

(b) actions are queried only if the current policy
is uncertain at s (line 12), and

(c) the expert π? is only queried if it is pre-
dicted to disagree with the heuristic πh at s
by the difference classifier, or if apple tasting
method switches the difference classifier label
(line 15; see §3.2).
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Algorithm 2 LEAQI(Π,H, N, π?, πh, b)

1: initialize dataset D = {}
2: initialize policy π1 to any policy in Π
3: initialize difference dataset S = {}
4: initialize difference classifier h1(s) = 1 (∀s)
5: for i = 1 . . . N do
6: Receive input sentence x
7: . generate a T -step trajectory using πi
8: Generate output ŷ using πi
9: for each s in ŷ do

10: . draw bernouilli random variable
11: Zi ∼ Bern

(
b

b+certainty(πi,s)

)
; see §3.3

12: if Zi = 1 then
13: . set difference classifier prediction
14: d̂i = hi(s)
15: if AppleTaste(s, πh(s), d̂i) then
16: . predict agree query heuristic
17: D ← D ∪

{ (
s, πh(s)

) }
18: else
19: . predict disagree query expert
20: D ← D ∪ { (s, π?(s)) }
21: di = 1

[
π?(s) = πh(s)]

22: S ← S ∪
{ (
s, πh(s), d̂i, di

) }
23: end if
24: end if
25: end for
26: Train policy πi+1 ∈ Π on D
27: Train difference classifier hi+1 ∈ H on S to

minimize Type II errors (see §3.2)
28: end for
29: return best (or random) πi

In particular, at each state visited by πi, LEAQI
estimates z, the certainty of πi’s prediction at that
state (see §3.3). A sampling probability ρ is set
to b/(b+ z) where z is the certainty, and so if the
model is very uncertain then ρ tends to zero, follow-
ing (Cesa-Bianchi et al., 2006). With probability ρ,
LEAQI will collect some label.

When a label is collected (line 12), the difference
classifier hi is queried on state s to predict if π?

and πh are likely to disagree on the correct action.
(Recall that h1 always predicts disagreement per
line 4.) The difference classifier’s prediction, d̂i, is
passed to an apple tasting method in line 15. In-
tuitively, most apple tasting procedures (including
the one we use, STAP; see §3.2) return d̂i, unless
the difference classifier is making many Type II
errors, in which case it may return ¬d̂i.

A target action is set to πh(s) if the apple tast-

Algorithm 3 AppleTaste_STAP(S, ah
i , d̂i)

1: . count examples that are action ah
i

2: let t =
∑

(_,a,_,_)∈S 1[ah
i = a]

3: . count mistakes made on action ah
i

4: let m =
∑

(_,a,d̂,d)∈S 1[d̂ 6= d ∧ ah
i = a]

5: w = t
|S| . percentage of time ah

i was seen
6: if w < 1 then
7: . skew distribution
8: draw r ∼ Beta(1− w, 1)
9: else

10: draw r ∼ Uniform(0, 1)
11: end if
12: return (d = 1) ∧ (r ≤

√
(m+ 1)/t)

ing algorithm returns “agree” (line 17), and the
expert π? is only queried if disagreement is pre-
dicted (line 20). The state and target action (either
heuristic or expert) are then added to the training
data. Finally, if the expert was queried, then a new
item is added to the difference dataset, consisting
of the state, the heuristic action on that state, the
difference classifier’s prediction, and the ground
truth for the difference classifier whose input is s
and whose label is whether the expert and heuristic
actually disagree. Finally, πi+1 is trained on the
accumulated action data, and hi+1 is trained on the
difference dataset (details in §3.3).

There are several things to note about LEAQI:

� If the current policy is already very certain, a
expert annotator is never queried.

� If a label is queried, the expert is queried only
if the difference classifier predicts disagree-
ment with the heuristic, or the apple tasting
procedure flips the difference classifier predic-
tion.

� Due to apple tasting, most errors the differ-
ence classifier makes will cause it to query the
expert unnecessarily; this is the “safe” type
of error (increasing sample complexity but
not harming accuracy), versus a Type II error
(which leads to biased labels).

� The difference classifier is only trained on
states where the policy is uncertain, which is
exactly the distribution on which it is run.

3.2 Apple Tasting for One-Sided Learning
The difference classifier h ∈ H must be trained
(line 27) based on one-sided feedback (it only ob-
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serves errors when it predicts “disagree“) to min-
imize Type II errors (it should only very rarely
predict “agree” when the truth is “disagree”). This
helps keep the labeled data for the learned policies
unbiased. The main challenge here is that the feed-
back to the difference classifier is one-sided: that
is, if it predicts “disagree” then it gets to see the
truth, but if it predicts “agree” it never finds out
if it was wrong. We use one of (Helmbold et al.,
2000)’s algorithms, STAP (see Alg 3), which works
by random sampling from apples that are predicted
to not be tasted and tasting them anyway (line 12).
Formally, STAP tastes apples that are predicted to
be bad with probability

√
(m+ 1)/t, where m is

the number of mistakes, and t is the number of
apples tasted so far.

We adapt Apple Tasting algorithm STAP to our
setting for controlling the number of Type II errors
made by the difference classifier as follows. First,
because some heuristic actions are much more com-
mon than others, we run a separate apple tasting
scheme per heuristic action (in the sense that we
count the number of error on this heuristic action
rather than globally). Second, when there is signifi-
cant action imbalance2 we find it necessary to skew
the distribution from STAP more in favor of query-
ing. We achieve this by sampling from a Beta dis-
tribution (generalizing the uniform), whose mean
is shifted toward zero for more frequent heuristic
actions. This increases the chance that Apple Tast-
ing will have on finding bad apples error for each
action (thereby keeping the false positive rate low
for predicting disagreement).

3.3 Measuring Policy Certainty

In step 11, LEAQI must estimate the certainty of
πi on s. Following Cesa-Bianchi et al. (2006),
we implement this using a margin-based criteria.
To achieve this, we consider π as a function that
maps actions to scores and then chooses the action
with largest score. The certainty measure is then
the difference in scores between the highest and
second highest scoring actions:

certainty(π, s) = max
a

π(s, a)−max
a′ 6=a

π(s, a′)

2For instance, in named entity recognition, both the heuris-
tic and expert policies label the majority of words as O (not an
entity). As a result, when the heuristic says O, it is very likely
that the expert will agree. However, if we aim to optimize for
something other than accuracy—like F1—it is precisely these
disagreements that we need to find.

3.4 Analysis
Theoretically, the main result for LEAQI is an inter-
pretation of the main DAgger result(s). Formally,
let dπ denote the distribution of states visited by π,
C(s, a) ∈ [0, 1] be the immediate cost of perform-
ing action a in state s, Cπ(s) = Ea∼π(s)C(s, a),
and the total expected cost of π to be J(π) =
TEs∼dπCπ(s), where T is the length of trajecto-
ries. C is not available to a learner in an imitation
setting; instead the algorithm observes an expert
and minimizes a surrogate loss `(s, π) (e.g., ` may
be zero/one loss between π and π?). We assume `
is strongly convex and bounded in [0, 1] over Π.

Given this setup assumptions, let εpol-approx =

minπ∈Π
1
N

∑N
i=1 Es∼dπi `(s, π) be the true loss

of the best policy in hindsight, let εdc-approx =

minh∈H
1
N

∑N
i=1 Es∼dπi err(s, h, π?(s) 6= πh(s))

be the true error of the best difference classifier in
hindsight, and assuming that the regret of the pol-
icy learner is bounded by regpol(N) after N steps,
Ross et al. (2011) shows the following3:
Theorem 1 (Thm 4.3 of Ross et al. (2011)). After
N episodes each of length T , under the assump-
tions above, with probability at least 1 − δ there
exists a policy π ∈ π1:N such that:

Es∼dπ`(s, π) ≤

εpol-approx + regpol(N) +
√

(2/N) log(1/δ)

This holds regardless of how π1:N are trained
(line 26). The question of how well LEAQI per-
forms becomes a question of how well the combi-
nation of uncertainty-based sampling and the dif-
ference classifier learn. So long as those do a good
job on their individual classification tasks, DAgger
guarantees that the policy will do a good job. This
is formalized below, whereQ?(s, a) is the best pos-
sible cumulative cost (measured by C) starting in
state s and taking action a:
Theorem 2 (Theorem 2.2 of Ross et al. (2011)).
Let u be such that Q?(s, a) − Q?(s, π?(s)) ≤ u
for all a and all s with dπ(s) > 0; then for some
π ∈ π1:N , as N →∞:

J(π) ≤ J(π?) + uTεpol-approx

Here, u captures the most long-term impact a single
decision can have; for example, for average Ham-
ming loss, it is straightforward to see that u = 1

T

3Proving a stronger result is challenging: analyzing the
sample complexity of an active learning algorithm that uses a
difference classifier—even in the non-sequential setting—is
quite involved (Zhang and Chaudhuri, 2015).



2098

Task Named Entity Recognition Keyphrase Extraction Part of Speech Tagging

Language English (en) English (en) Modern Greek (el)
Dataset CoNLL’03 (Tjong

Kim Sang and De Meulder,
2003)

SemEval 2017 Task 10
(Augenstein et al., 2017)

Universal Dependencies
(Nivre, 2018)

# Ex 14, 987 2, 809 1, 662
Avg. Len 14.5 26.3 25.5
# Actions 5 2 17
Metric Entity F-score Keyphrase F-score Per-tag accuracy
Features English BERT (Devlin et al.,

2019)
SciBERT (Beltagy et al.,
2019)

M-BERT (Devlin et al.,
2019)

Heuristic String matching against an
offline gazeteer of entities
from Khashabi et al. (2018)

Output from an
unsupervised keyphrase
extraction model
Florescu and Caragea
(2017)

Dictionary from
Wiktionary, similar to
Zesch et al. (2008) and
Haghighi and Klein
(2006)

Heur Quality P 88%, R 27%, F 41% P 20%, R 44%, F 27% 10% coverage, 67% acc

Table 1: An overview of the three tasks considered in experiments.

because any single mistake can increase the num-
ber of mistakes by at most 1. For precision, recall
and F-score, u can be as large as one in the (rare)
case that a single decision switches from one true
positive to no true positives.

4 Experiments

The primary research questions we aim to answer
experimentally are:

Q1 Does uncertainty-based active learning
achieve lower query complexity than passive
learning in the learning to search settings?

Q2 Does learning a difference classifier improve
query efficiency over active learning alone?

Q3 Does Apple Tasting successfully handle the
problem of learning from one-sided feedback?

Q4 Is the approach robust to cases where the noisy
heuristic is uncorrelated with the expert?

Q5 Is casting the heuristic as a policy more effec-
tive than using its output as features?

To answer these questions, we conduct experiments
on three tasks (see Table 1): English named entity
recognition, English scientific keyphrase extraction,
and low-resource part of speech tagging on Modern
Greek (el), selected as a low-resource setting.

4.1 Algorithms and Baselines

In order to address the research questions above, we
compare LEAQI to several baselines. The baselines
below compare our approach to previous methods:

DAGGER. Passive DAgger (Alg 1)

ACTIVEDAGGER. An active variant of DAgger
that asks for labels only when uncertain. (This
is equivalent to LEAQI, but with neither the
difference classifier nor apple tasting.)

DAGGER+FEAT. DAGGER with the heuristic
policy’s output appended as an input feature.

ACTIVEDAGGER+FEAT. ACTIVEDAGGER

with the heuristic policy as a feature.

The next set of comparisons are explicit ablations:

LEAQI+NOAT LEAQI with no apple tasting.

LEAQI+NOISYHEUR. LEAQI, but where the
heuristic returns a label uniformly at random.

The baselines and LEAQI share a linear relation-
ship. DAGGER is the baseline algorithm used
by all algorithms described above but it is very
query inefficient with respect to an expert annota-
tor. ACTIVEDAGGER introduces active learning to
make DAGGER more query efficient; the delta to
the previous addresses Q1. LEAQI+NOAT intro-
duces the difference classifier; the delta addresses
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Q2. LEAQI adds apple tasting to deal with one-
sided learning; the delta addresses Q3. Finally,
LEAQI+NOISYHEUR. (vs LEAQI) addresses Q4
and the +FEAT variants address Q5.

4.2 Data and Representation

For named entity recognition, we use training,
validation, and test data from CoNLL’03 (Tjong
Kim Sang and De Meulder, 2003), consisting of IO
tags instead of BIO tags (the “B” tag is almost never
used in this dataset, so we never attempt to predict
it) over four entity types: Person, Organization,
Location, and Miscellaneous. For part of speech
tagging, we use training and test data from modern
Greek portion of the Universal Dependencies (UD)
treebanks (Nivre, 2018), consisting of 17 universal
tags4. For keyphrase extraction, we use training,
validation, and test data from SemEval 2017 Task
10 (Augenstein et al., 2017), consisting of IO tags
(we use one “I” tag for all three keyphrase types).

In all tasks, we implement both the policy and
difference classifier by fine-tuning the last layer of
a BERT embedding representation (Devlin et al.,
2019). More specifically, for a sentence of length T ,
w1, . . . , wT , we first compute BERT embeddings
for each word, x1, . . . ,xT using the appropriate
BERT model: English BERT and M-BERT5 for
named entity and part-of-speech, respectively, and
SciBERT (Beltagy et al., 2019) for keyphrase ex-
traction. We then represent the state at position t
by concatenating the word embedding at that posi-
tion with a one-hot representation of the previous
action: st = [wt; onehot(at−1)]. This feature rep-
resentation is used both for learning the labeling
policy and also learning the difference classifier.

4.3 Expert Policy and Heuristics

In all experiments, the expert π? is a simulated hu-
man annotator who annotates one word at a time.
The expert returns the optimal action for the rele-
vant evaluation metric (F-score for named entity
recognition and keyphrase extraction, and accuracy
for part-of-speech tagging). We take the annotation
cost to be the total number of words labeled.

The heuristic we implement for named en-
tity recognition is a high-precision gazeteer-based
string matching approach. We construct this by
taking a gazeteer from Wikipedia using the Cog-
Comp framework (Khashabi et al., 2018), and use

4ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, NOUN, NUM, PART,
PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X.

5Multilingual BERT (Devlin et al., 2019)

FlashText (Singh, 2017) to label the dataset. This
heuristic achieves a precision of 0.88, recall of 0.27
and F-score of 0.41 on the training data.

The keyphrase extraction heuristic is the out-
put of an “unsupervised keyphrase extraction” ap-
proach (Florescu and Caragea, 2017). This system
is a graph-based approach that constructs word-
level graphs incorporating positions of all word
occurrences information; then using PageRank
to score the words and phrases. This heuristic
achieves a precision of 0.20, recall of 0.44 and
F-score of 0.27 on the training data.

The part of speech tagging heuristic is based on
a small dictionary compiled from Wiktionary. Fol-
lowing Haghighi and Klein (2006) and Zesch et al.
(2008), we extract this dictionary using Wiktionary
as follows: for word w in our training data, we find
the part-of-speech y by querying Wiktionary. If w
is in Wikitionary, we convert the Wikitionary part
of speech tag to a Universal Dependencies tag (see
§A.1), and if word w is not in Wiktionary, we use
a default label of “X”. Furthermore, if word w has
multiple parts of speech, we select the first part of
speech tag in the list. The label “X” is chosen 90%
of the time. For the remaining 10%, the heuristic
achieves an accuracy of 0.67 on the training data.

4.4 Experimental Setup
Our experimental setup is online active learning.
We make a single pass over a dataset, and the goal
is to achieve an accurate system as quickly as possi-
ble. We measure performance (accuracy or F-score)
after every 1000 words (≈ 50 sentences) on held-
out test data, and produce error bars by averaging
across three runs and reporting standard deviations.

Hyperparameters for DAGGER are optimized us-
ing grid-search on the named entity recognition
training data and evaluated on development data.
We then fix DAGGER hyperparameters for all other
experiments and models. The difference classifier
hyperparameters are subsequently optimized in the
same manner. We fix the difference classifier hy-
perparameters for all other experiments.6

4.5 Experimental Results
The main results are shown in the top two rows of
Figure 2; ablations of LEAQI are shown in Figure 3.

6We note that this is a somewhat optimistic hyperparameter
setting: in the real world, model selection for active learning
is extremely challenging. Details on hyperparameter selection
and LEAQI’s robustness across a rather wide range of choices
are presented in §A.2, §A.3 and §A.4 for keyphrase extraction
and part of speech tagging.
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Figure 2: Empirical evaluation on three tasks: (left) named entity recognition, (middle) keyphrase extraction and
(right) part of speech tagging. The top rows shows performance (f-score or accuracy) with respect to the number
of queries to the expert. The bottom row shows the number of queries as a function of the number of words seen.

In Figure 2, the top row shows traditional learning
curves (performance vs number of queries), and
the bottom row shows the number of queries made
to the expert as a function of the total number of
words seen.

Active vs Passive (Q1). In all cases, we see that
the active strategies improve on the passive strate-
gies; this difference is largest in keyphrase extrac-
tion, middling for part of speech tagging, and small
for NER. While not surprising given previous suc-
cesses of active learning, this confirms that it is
also a useful approach in our setting. As expected,
the active algorithms query far less than the passive
approaches, and LEAQI queries the least.

Heuristic as Features vs Policy (Q5). We see
that while adding the heuristic’s output as a feature
can be modestly useful, it is not uniformly useful
and, at least for keyphrase extraction and part of
speech tagging, it is not as effective as LEAQI.
For named entity recognition, it is not effective
at all, but this is also a case where all algorithms
perform essentially the same. Indeed, here, LEAQI
learns quickly with few queries, but never quite
reaches the performance of ActiveDAgger. This
is likely due to the difference classifier becoming
overly confident too quickly, especially on the “O”

label, given the (relatively well known) oddness in
mismatch between development data and test data
on this dataset.

Difference Classifier Efficacy (Q2). Turning to
the ablations (Figure 3), we can address Q2
by comparing the ActiveDAgger curve to the
LeaQI+NoAT curve. Here, we see that on NER
and keyphrase extraction, adding the difference
classifier without adding apple tasting results in a
far worse model: it learns very quickly but plateaus
much lower than the best results. The exception
is part of speech tagging, where apple tasting does
not seem necessary (but also does not hurt). Over-
all, this essentially shows that without controlling
Type II errors, the difference classifier on it’s own
does not fulfill its goals.

Apple Tasting Efficacy (Q3). Also considering
the ablation study, we can compare LeaQI+NoAT
with LeaQI. In the case of part of speech tagging,
there is little difference: using apple tasting to
combat issues of learning from one sided feed-
back neither helps nor hurts performance. However,
for both named entity recognition and keyphrase
extraction, removing apple tasting leads to faster
learning, but substantially lower final performance
(accuracy or f-score). This is somewhat expected:
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Figure 3: Ablation results on (left) named entity recognition, (middle) keyphrase extraction and (right) part of
speech tagging. In addition to LEAQI and DAgger (copied from Figure 2), these graphs also show LEAQI+NOAT
(apple tasting disabled), and LEAQI+NOISYHEUR. (a heuristic that produces labels uniformly at random).

without apple tasting, the training data that the pol-
icy sees is likely to be highly biased, and so it gets
stuck in a low accuracy regime.

Robustness to Poor Heuristic (Q4). We com-
pare LeaQI+NoisyHeur to ActiveDAgger. Because
the heuristic here is useless, the main hope is
that it does not degrade performance below Ac-
tiveDAgger. Indeed, that is what we see in all three
cases: the difference classifier is able to learn quite
quickly to essentially ignore the heuristic and only
rely on the expert.

5 Discussion and Limitations

In this paper, we considered the problem of re-
ducing the number of queries to an expert labeler
for structured prediction problems. We took an
imitation learning approach and developed an algo-
rithm, LEAQI, which leverages a source that has
low-quality labels: a heuristic policy that is sub-
optimal but free. To use this heuristic as a policy,
we learn a difference classifier that effectively tells
LEAQI when it is safe to treat the heuristic’s action
as if it were optimal. We showed empirically—
across Named Entity Recognition, Keyphrase Ex-
traction and Part of Speech Tagging tasks—that the
active learning approach improves significantly on
passive learning, and that leveraging a difference
classifier improves on that.

1. In some settings, learning a difference clas-
sifier may be as hard or harder than learning
the structured predictor; for instance if the
task is binary sequence labeling (e.g., word
segmentation), minimizing its usefulness.

2. The true labeling cost is likely more compli-
cated than simply the number of individual

actions queried to the expert.

Despite these limitations, we hope that LEAQI
provides a useful (and relatively simple) bridge that
can enable using rule-based systems, heuristics,
and unsupervised models as building blocks for
more complex supervised learning systems. This
is particularly attractive in settings where we have
very strong rule-based systems, ones which often
outperform the best statistical systems, like corefer-
ence resolution (Lee et al., 2011), information ex-
traction (Riloff and Wiebe, 2003), and morphologi-
cal segmentation and analysis (Smit et al., 2014).
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Supplementary Material For:
Active Imitation Learing with Noisy

Guidance

A Experimental Details:

A.1 Wiktionary to Universal Dependencies

POS Tag Source Greek, Modern (el) Wiktionary Universal Dependencies

adjective ADJ
adposition ADP
preposition ADP
adverb ADV
auxiliary AU
coordinating conjunction CCONJ
determiner DET
interjection INTJ
noun NOUN
numeral NUM
particle PART
pronoun PRON
proper noun pROPN
punctuation PUNCT
subordinating conjunction SCONJ
symbol SYM
verb VERB
other X
article DET
conjunction PART

Table 2: Conversion between Greek, Modern (el) Wik-
tionary POS tags and Universal Dependencies POS
tags.

A.2 Hyperparameters
Here we provide a table of all of hyperparameters
we considered for LEAQI and baselines models.
(see section 4.4)

Table 3: Hyperparameters

Hyperparameter Values Considered Final Value
Policy Learning rate 10−3, 10−4, 10−5, 10−6, 5.5 · 10−6, 10−6 10−6

Difference Classifier Learning rate h 10−1, 10−2, 10−3, 10−4 10−2

Confidence parameter (b) 5.0 · 10−1, 10 · 10−1, 15 · 10−1 5.0 · 10−1

A.3 Ablation Study Difference Classifier
Learning Rate (see Figure 4)

A.4 Ablation Study Confidence Parameter: b
(see Figure 5)
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Figure 4: (top-row) English keyphrase extraction and (bottom-row) low-resource language part of speech tagging
on Greek, Modern (el). We show the performance of using different learning for the difference classifier h. These
plots indicate that their is small difference in performance depending on the difference classifier learning rate.
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Figure 5: (top-row) English keyphrase extraction and (bottom-row) low-resource language part of speech tagging
on Greek, Modern (el). We show the performance of using difference confidence parameters b. These plots indicate
that our model is robust to difference confidence parameters.


