Calibrating Structured Output Predictors for Natural Language
Processing

Abhyuday Jagannatha', Hong Yu!?
!College of Information and Computer Sciences,University of Massachusetts Amherst
2Department of Computer Science,University of Massachusetts Lowell
{abhyuday, hongyu}@cs.umass.edu

Abstract

We address the problem of calibrating predic-
tion confidence for output entities of interest
in natural language processing (NLP) applica-
tions. It is important that NLP applications
such as named entity recognition and ques-
tion answering produce calibrated confidence
scores for their predictions, especially if the
applications are to be deployed in a safety-
critical domain such as healthcare. However,
the output space of such structured prediction
models is often too large to adapt binary or
multi-class calibration methods directly. In
this study, we propose a general calibration
scheme for output entities of interest in neu-
ral network based structured prediction mod-
els. Our proposed method can be used with
any binary class calibration scheme and a neu-
ral network model. Additionally, we show
that our calibration method can also be used
as an uncertainty-aware, entity-specific decod-
ing step to improve the performance of the
underlying model at no additional training
cost or data requirements. We show that our
method outperforms current calibration tech-
niques for named-entity-recognition, part-of-
speech and question answering. We also im-
prove our model’s performance from our de-
coding step across several tasks and bench-
mark datasets. Our method improves the cal-
ibration and model performance on out-of-
domain test scenarios as well.

1 Introduction

Several modern machine-learning based Natural
Language Processing (NLP) systems can provide

a confidence score with their output predictions.

This score can be used as a measure of predictor
confidence. A well-calibrated confidence score is a
probability measure that is closely correlated with
the likelihood of model output’s correctness. As
a result, NLP systems with calibrated confidence
can predict when their predictions are likely to be

incorrect and therefore, should not be trusted. This
property is necessary for the responsible deploy-
ment of NLP systems in safety-critical domains
such as healthcare and finance. Calibration of pre-
dictors is a well-studied problem in machine learn-
ing (Guo et al., 2017; Platt, 2000); however, widely
used methods in this domain are often defined as
binary or multi-class problems(Naeini et al., 2015;
Nguyen and O’Connor, 2015). The structured out-
put schemes of NLP tasks such as information ex-
traction (IE) (Sang and De Meulder, 2003) and ex-
tractive question answering (Rajpurkar et al., 2018)
have an output space that is often too large for
standard multi-class calibration schemes.

Formally, we study NLP models that provide
conditional probabilities py(y|x) for a structured
output y given input x. The output can be a la-
bel sequence in case of part-of-speech (POS) or
named entity recognition (NER) tasks, or a span
prediction in case of extractive question answer-
ing (QA) tasks, or a relation prediction in case of
relation extraction task. py(y|x) can be used as a
score of the model’s confidence in its prediction.
However, pg(y|z) is often a poor estimate of model
confidence for the output y. The output space of
the model in sequence-labelling tasks is often large,
and therefore py(y|x) for any output instance y will
be small. For instance, in a sequence labelling task
with C' number of classes and a sequence length
of L, the possible events in output space will be
of the order of C'*. Additionally, recent efforts
(Guo et al., 2017; Nguyen and O’Connor, 2015;
Dong et al., 2018; Kumar and Sarawagi, 2019) at
calibrating machine learning models have shown
that they are poorly calibrated. Empirical results
from Guo et al. (2017) show that techniques used
in deep neural networks such as dropout and their
large architecture size can negatively affect the cal-
ibration of their outputs in binary and multi-class
classification tasks.

2078

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2078-2092
July 5 - 10, 2020. (©2020 Association for Computational Linguistics

Parallelly, large neural network architectures
based on contextual embeddings (Devlin et al.,
2018; Peters et al., 2018) have shown state-of-the-
art performance across several NLP tasks (Andrew
and Gao, 2007; Wang et al., 2019) . They are be-
ing rapidly adopted for information extraction and
other NLP tasks in safety-critical applications (Zhu
et al., 2018; Sarabadani, 2019; Li et al., 2019; Lee
et al., 2019). Studying the miss-calibration in such
models and efficiently calibrating them is impera-
tive for their safe deployment in the real world.

In this study, we demonstrate that neural net-
work models show high calibration errors for NLP
tasks such as POS, NER and QA. We extend the
work by Kuleshov and Liang (2015) to define well-
calibrated forecasters for output entities of interest
in structured prediction of NLP tasks. We provide a
novel calibration method that applies to a wide vari-
ety of NLP tasks and can be used to produce model
confidences for specific output entities instead of
the complete label sequence prediction. We pro-
vide a general scheme for designing manageable
and relevant output spaces for such problems. We
show that our methods lead to improved calibra-
tion performance on a variety of benchmark NLP
datasets. Our method also leads to improved out-of-
domain calibration performance as compared to the
baseline, suggesting that our calibration methods
can generalize well.

Lastly, we propose a procedure to use our cal-
ibrated confidence scores to re-score the predic-
tions in our defined output event space. This pro-
cedure can be interpreted as a scheme to combine
model uncertainty scores and entity-specific fea-
tures with decoding methods like Viterbi. We show
that this re-scoring leads to consistent improvement
in model performance across several tasks at no ad-
ditional training or data requirements.

2 Calibration framework for Structured
Prediction NLP models

2.1 Background

Structured Prediction refers to the task of predicting
a structured output y = [y1, y2, ...y for an input
z. In NLP, a wide array of tasks including pars-
ing, information extraction, and extractive ques-
tion answering fall within this category. Recent
approaches towards solving such tasks are com-
monly based on neural networks that are trained by

minimizing the following objective :

D
L(OID) = = > log(pe(y|z™)) + R(8) (1)
1=0

where 0 is the parameter vector of the neural
network and R is the regularization penalty and
D is the dataset {(y(*), 9:("))}@0. The trained
model py can then be used to produce the output
§ = argmax,cy pg(y|r). Here, the correspond-
ing model probability pg(y|x) is the uncalibrated
confidence score.

In binary class classification, the output space
Y is [0, 1]. The confidence score for such classi-
fiers can then be calibrated by training a forecaster
F, :[0,1] — [0, 1] which takes in the model confi-
dence F, (P (y|z)) to produce a recalibrated score
(Platt, 2000). A widely used method for binary
class calibration is Platt scaling where F, is a lo-
gistic regression model. Similar methods have also
been defined for multi-class classification (Guo
et al., 2017). However, extending this to structured
prediction in NLP settings is non-trivial since the
output space |)| is often too large for us to calibrate
the output probabilities of all events.

2.2 Related Work

Calibration methods for binary/multi class classi-
fication has been widely studied in related litera-
ture (Brocker, 2009; Guo et al., 2017). Recent ef-
forts at confidence modeling for NLP has focused
on several tasks like co-reference, (Nguyen and
O’Connor, 2015), semantic parsing (Dong et al.,
2018) and neural machine translation (Kumar and
Sarawagi, 2019).

2.3 Calibration in Structured Prediction

In this section, we define the calibration framework
by Kuleshov and Liang (2015) in the context of
structured prediction problems in NLP. The model
pp denotes the neural network that produces an
conditional probability pg(y|z) given an (z,y) tu-
ple. In a multi/binary class setting, a function F,
is used to map the output py(y|x) to a calibrated
confidence score for all y €). In a structured
prediction setting, since the cardinality of) is usu-
ally large, we instead focus on the event of interest
set Z(x). Z(x) contains events of interest F that
are defined using the output events relevant to the
deployment requirements of a model. The event
FE is a subset of) . There can be several differ-
ent schemes to define Z (). In later sections, we

2079

discuss related work on calibration that can be un-
derstood as applications of different Z () schemes.
In this work, we define a general framework for
constructing Z(x) for NLP tasks which allows us
to maximize calibration performance on output en-
tities of interest.

We define F(E,z,pg) to be a function, that
takes the event E, the input feature x and py to
produce a confidence score between [0, 1]. We refer
to this calibration function as the forecaster and use
Fy(E,x) as a shorthand since it is implicit that F,
depends on outputs of py. We would like to find the
forecaster that minimizes the discrepancy between
Fy(E,z) and P(y € E|z) for (z,y) sampled from
P(z,y) and E uniformly sampled from Z(x).

A commonly used methodology for construct-
ing a forecaster for py is to train it on a held-out
dataset Dge,,. A forecaster for a binary classifier is
perfectly calibrated if

P(y = 1|Fy(z) = p) = p. (2)

It is trained on samples from {(z,I(y = 1) :
(x,y) € Dgey}- For our forecaster based on Z(z),
perfect calibration would imply that

P(y € E|Fy(x,E) = p) = p. 3)

The training data samples for our forecaster are
{(z,Jl(y € E) : E€ Z(x), (z,Y) € Dgev}-

2.4 Construction of Event of Interest set Z(x)

The main contributions of this paper stem from our
proposed schemes for constructing the aformen-
tioned Z(x) sets for NLP applications.

Entities of Interest : In the interest of brevity, let
us define “Entities of interest” ¢(x) as the set of all
entity predictions that can be queried from pg for a
sample z. For instance, in the case of answer span
prediction for QA, the ¢(x) may contain the MAP
prediction of the best answer span (answer start
and end indexes). In a parsing or sequence labeling
task, ¢(z) may contain the top-k label sequences
obtained from viterbi decoding. In a relation or
named-entity extraction task, ¢(z) contains the re-
lation or named entity span predictions respectively.
Each entity s in ¢(x) corresponds to a event set E
that is defined by all outputs in) that contain the
entity s. Z(x) contains set E for all entities in ¢(z).

Positive Entities and Events : We are interested
in providing a calibrated probability for y € E
corresponding to an s for all s in ¢(x). Here y is

the correct label sequence for the input x. If y lies
in the set E for an entity s, we refer to s as a positive
entity and the event as a positive event. In the
example of named entity recognition, s may refer
to a predicted entity span, E refers to all possible
sequences in) that contain the predicted span. The
corresponding event is positive if the correct label
sequence y contains the span prediction s.

Schemes for construction of Z(x) : While con-
structing the set ¢(x) we should ensure that it is
limited to a relatively small number of output en-
tities, while still covering as many positive events
in Z(x) as possible. To explain this consideration,
let us take the example of a parsing task such as
syntax or semantic parsing. Two possible schemes
for defining Z () are :

1. Scheme 1: ¢(z) contains the MAP label se-
quence prediction. Z(x) contains the event
corresponding to whether the label sequence
y' = argmax, py(y|z) is correct.

2. Scheme 2: ¢(x) contains all possible label se-
quences. Z(x) contains a event corresponding
to whether the label sequence 3/ is correct, for
ally € Y

Calibration of model confidence by Dong et al.
(2018) can be viewed as Scheme 1, where the entity
of interest is the MAP label sequence prediction.
Whereas, using Platt Scaling in a one-vs-all setting
for multi-class classification (Guo et al., 2017) can
be seen as an implementation of Scheme 2 where
the entity of interest is the presence of class label.
As discussed in previous sections, Scheme 2 is too
computationally expensive for our purposes due
to large value of |)| . Scheme 1 is computation-
ally cheaper, but it has lower coverage of positive
events. For instance, a sequence labelling model
with a 60% accuracy at sentence level means that
only 60 % of positive events are covered by the
set corresponding to argmax,, po(y|x) predictions.
In other words, only 60 % of the correct outputs
of model py will be used for constructing the fore-
caster. This can limit the positive events in Z(z).
Including the top-k predictions in ¢(z) may in-
crease the coverage of positive events and therefore
increase the positive training data for the forecaster.
The optimum choice of & involves a trade-off. A
larger value of k implies broader coverage of posi-
tive events and more positive training data for the
forecaster training. However, it may also lead to

2080

Calibration BERT BERT+CRF DistilBERT
Platt 15.904+.03 15.56+.23 12.30+.13
Calibrated Mean 2.55+.34 2.31+.35 2.02+.16
+Var 2.11+.32 2.55+.32 2.73+.40
Platt+top2 11.44+.07 14.21+.16 11.03+.31
Calibrated Mean+top2 294+ 29 4.82+.15 3.61+.17
+Var+top2 2.17+.35 4.26+.10 2.43+.16
+Rank+top2 2.431+.30 2.434.45 2.21+.09
+Rank+Var+top2 1.81+.12 2.29+.27 1.97+.14
Platt+top3 17.46+.13 18.11£.16 12.844+.37
+Rank+Var+top3 3.184.12 3.71+.25 2.05+.06

Table 1: ECE percentages on Penn Treebank for different models and calibration methods. The results are for
top-1 MAP predictions on the test data. ECE standard deviation is estimated by repeating the experiments for
5 repetitions. ECE for uncalibrated BERT, BERT+CRF model and DistilBERT is 35.11%, 33.72% and 28.06%
respectively. heuristic-k is 2 for all +Rank+Var+topk forecasters. Full feature model +Rank+Var+topk, k = 3 is

also provided for completeness.

an unbalanced training dataset that is skewed in
favour of negative training examples.

Task specific details about ¢(x) are provided in
the later sections. For the purposes of this paper,
top-k refers to the top £ MAP sequence predictions,
also referred to as argmax (k).

2.5 Forecaster Construction

Here we provide a summary of the steps involved in
Forecaster construction. Remaining details are in
the Appendix. We train the neural network model
pg on the training data split for a task and use the
validation data for monitoring the loss and early
stopping. After the training is complete, this vali-
dation data is re-purposed to create the forecaster
training data. We use an MC-Dropout(Gal and
Ghahramani, 2016) average of (n=10) samples to
get a low variance estimate of logit outputs from
the neural networks. This average is fed into the
decoding step of the model py to obtain top-k label
sequence predictions. We then collect the relevant
entities in ¢(x), along with the I(y € E) labels to
form the training data for the forecaster. We use
gradient boosted decision trees (Friedman, 2001)
as our region-based (Dong et al., 2018; Kuleshov
and Liang, 2015) forecaster model.

Choice of the hyperparameter k: We limit our
choice of k to {2,3}. We train our forecasters on
training data constructed through top-2 and top-3
extraction each. These two models are then eval-
uated on top-1 extraction training data, and the
best value of k is used for evaluation on test. This
heuristic for k£ selection is based on the fact that

the top-1 training data for a good predictor py, is a
positive-event rich dataset. Therefore, this dataset
can be used to reject a larger k if it leads to re-
duced performance on positive events. We refer
to the value of k£ obtained from this heuristic as as
heuristic-k.

2.6 Feature Construction for Calibration

We use three categories of features as inputs to our
forecaster.

Model and Model Uncertainty based features
contain the mean probability obtained by averag-
ing over the marginal probability of the “entity of
interest” obtained from 10 MC-dropout samples
of pg. Average of marginal probabilities acts as a
reduced variance estimate of un-calibrated model
confidence. Our experiments use the pre-trained
contextual word embedding architectures as the
backbone networks. We obtain MC-Dropout sam-
ples by enabling dropout sampling for all dropout
layers of the networks. We also provide 10** and
90" percentile values from the MC-Dropout sam-
ples, to provide model uncertainty information to
the forecaster. Since our forecaster training data
contains entity predictions from top-k MAP predic-
tions, we also include the rank % as a feature. We
refer to these two features as “Var” and “Rank” in
our models.

Entity of interest based features contain the
length of the entity span if the output task is named
entity. We only use this feature in the NER experi-
ments and refer to it as “In”.

Data Uncertainty based features: Dong et al.
(2018) propose the use of language modelling (LM)

2081

Calibration BERT BERT+CRF DistilBERT
Baseline 60.30+.12 62.31+.11 60.17+.08
+Rank+Var+top2 60.30+.23 62.31+.09 60.13+.11
+Rank+Var+top3 59.84+.16 61.06+.14 58.95+£.08

Table 2: Micro-avg f-score for POS datasets using the baseline and our best proposed calibration method. The
confidence score from the calibration method is used to re-rank the events E € Z(s) and the top selection is chosen.
Standard deviation is estimated by repeating the experiments for 5 repetitions. Baseline refers to MC-dropout
averaged (sample-size=10) output from the model pg. heuristic-k is 2 for +Rank+Var+topk forecasters.

and OOV-word-based features as a proxy for data
uncertainty estimation. The use of word-pieces
and large pre-training corpora in contextual word
embedding models like BERT may affect the ef-
ficacy of LM based features. Nevertheless, we
use LM perplexity (referred to as “Im”) in the QA
task to investigate its effectiveness as an indica-
tor of the distributional shift in data. Essentially,
our analysis focuses on LM perplexity as a proxy
for distributional uncertainty (Malinin and Gales,
2018) in our out-of-domain experiments. The use
of word-pieces in models like BERT reduces the
negative effect of OOV words on model prediction.
Therefore, we do not include OOV features in our
experiments.

3 Experiments and Results

We use BERT-base (Devlin et al., 2018) and dis-
tilIBERT (Sanh et al., 2019) network architecture for
our experiments. Validation split for each dataset
was used for early stopping BERT fine-tuning and
as training data for forecaster training. POS and
NER experiments are evaluated on Penn Treebank
and CoNLL 2003 (Sang and De Meulder, 2003),
MADE 1.0 (Jagannatha et al., 2019) respectively.
QA experiments are evaluated on SQuADI1.1 (Ra-
jpurkar et al., 2018) and EMRQA (Pampari et al.,
2018) corpus. We also investigate the performance
of our forecasters on an out-of-domain QA corpus
constructed by applying EMRQA QA data genera-
tion scheme (Pampari et al., 2018) on the MADE
1.0 named entity and relations corpus. Details for
these datasets are provided in their relevant sec-
tions.

We use the expected calibration error (ECE) met-
ric defined by Naeini et al. (2015) with N = 20
bins (Guo et al., 2017) to evaluate the calibration
of our models. ECE is defined as an estimate of the
expected difference between the model confidence
and accuracy. ECE has been used in several re-
lated works (Guo et al., 2017; Maddox et al., 2019;

Kumar et al., 2018; Vaicenavicius et al., 2019) to
estimate model calibration. We use Platt scaling as
the baseline calibration model. It uses the length-
normalized probability averaged across 10 MC-
Dropout samples as the input. The lower variance
and length invariance of this input feature make
Platt Scaling a strong baseline. We also use a “Cali-
brated Mean” baseline using Gradient Boosted De-
cision Trees as our estimator with the same input
feature as Platt.

3.1 Calibration for Part-of-Speech Tagging

Part-of-speech (POS) is a sequence labelling task
where the input is a text sentence, and the out-
put is a sequence of syntactic tags. We evaluate
our method on the Penn Treebank dataset (Marcus
et al., 1994). We can define either the token pre-
diction or the complete sequence prediction as the
entity of interest. Since using a token level entity
of interest effectively reduces the calibration prob-
lem to that of calibrating a multi-class classifier,
we instead study the case where the predicted label
sequence of the entire sentence forms the entity
of interest set. The event of interest set is defined
by the events y = MAP () which denote whether
each top-k sentence level MAP prediction is cor-
rect. We use three choice of pg models, namely
BERT, BERT-CRF and distilBERT. We use model
uncertainty and rank based features for our POS
experiments.

Table 1 shows the ECE values for our base-
line, proposed and ablated models. The value of
heuristic-k is 2 for all +Rank+Var+topk forecasters
across all PTB models. “topk” in Table 1 refers
to forecasters trained with additional top-k predic-
tions. Our methods outperform both baselines by
a large margin. Both “Rank” and “Var” features
help in improving model calibration. Inclusion of
top-2 prediction sequences also improve the cal-
ibration performance significantly. Table 1 also
shows the performance of our full feature model
“+Rank+Var+topk” for the sub-optimal value of

2082

Calibration CoNLL MADE 1.0
(BERT) (bioBERT)
Platt 2.00+.12 4.00£.07
Calibrated Mean 2.294+.33 3.07£.18
+Var 243+36 3.05+.17
+Var+In 2.24+.14 2.92+.24
Platt+top3 16.64+.48 2.14+.18
Calibrated Mean+top3 17.06+.50 2.22+.31
+Var+top3 17.10+.24 2.17+.39
+Rank+Var+top3 2.01£33 2.34+.15
+Rank+Var+In+top3 1.91+.29 2.12+.24
Table 3: ECE percentages for the two named entity

datasets and calibration methods. The results are for all
predicted named entity spans in top-1 MAP predictions
on the test data. ECE standard deviation is estimated
by repeating the experiments for 5 repetitions. ECE
for uncalibrated span marginals from BERT model is
3.68% and 5.59% for CoNLL and MADE 1.0 datasets.
heuristic-k is 3 for all +Rank+Var+top3 forecasters.

Calibration CoNLL MADE 1.0
(BERT) (biOBERT)
Baseline 89.454.08 84.01+.11
+Rank+Var+top3 89.73+.12 84.334+.07
+Rank+Var+In+top3 89.78+.10 84.34+.10

Table 4: Micro-avg f-score for NER datasets and
our best proposed calibration method. The confidence
score from the calibration method is used to re-rank the
events E € Z(s) and a confidence value of 0.5 is used
as a cutoff. Standard deviation is estimated by repeat-
ing the experiments for 5 repetitions. Baseline refers
to MC-dropout averaged (sample-size=10) output of
model pg. heuristic-k is 3 for all +Rank+ Var+top3 fore-
casters.

k = 3. It has lower performance than k = 2 across
all models. Therefore for the subsequent experi-
mental sections, we only report topk calibration
performance using the heuristic-k value only.

We use the confidence predictions of our full-
feature model +Rank+Var+topk to re-rank the top-
k predictions in the test set. Table 2 shows the
sentence-level (entity of interest) accuracy for our
re-ranked top prediction and the original model
prediction.

3.2 Calibration for Named Entities

For Named Entity (NE) Recognition experiments,
we use two NE annotated datasets, namely CoNLL
2003 and MADE 1.0. CoNLL 2003 consists
of documents from the Reuters corpus annotated

with named entities such as Person, Location etc.
MADE 1.0 dataset is composed of electronic health
records annotated with clinical named entities such
as Medication, Indication and Adverse effects.

The entity of interest for NER is the named en-
tity span prediction. We define ¢(x) as predicted
entity spans in argmax (k) label sequences predic-
tions for x. We use BERT-base with token-level
softmax output and marginal likelihood based train-
ing. The model uncertainty estimates for “Var” fea-
ture are computed by estimating the variance of
length normalized MC-dropout samples of span
marginals. Due to the similar trends in behavior of
BERT and BERT+CRF model in POS experiments,
we only use BERT model for NER. However, the
span marginal computation can be easily extended
to linear-chain CRF models. We also use the length
of the predicted named entity as the feature “In”
in this experiment. Complete details about fore-
caster and baselines are in the Appendix. Value
of heuristic-k is 3 for all +Rank+Var+topk fore-
casters. We show ablation and baseline results for
k = 3 only. However, no other forecasters for any
k € {2, 3} outperform our best forecasters in Table
3.

We use the confidence predictions of our
“+Rank+Var+top3” models to re-score the confi-
dence predictions for all spans predicted in top-3
MAP predictions for samples in the test set. A
threshold of 0.5 was used to remove span predic-
tions with low confidence scores. Table 4 shows
the Named Entity level (entity of interest) Micro-
F score for our re-ranked top prediction and the
original model prediction. We see that re-ranked
predictions from our models consistently improve
the model f-score.

3.3 Calibration for QA Models

We use three datasets for evaluation of our cali-
bration methods on the QA task. Our QA tasks
are modeled as extractive QA methods with a
single span answer predictions. We use three
datasets to construct experiments for QA calibra-
tion. SQuADI1.1 and EMRQA (Pampari et al.,
2018) are open-domain and clinical-domain QA
datasets, respectively. We process the EMRQA
dataset by restricting the passage length and re-
moving unanswerable questions. We also design
an out-of-domain evaluation of calibration using
clinical QA datasets. We follow the guidelines
from Pampari et al. (2018) to create a QA dataset

2083

Calibration SQuAD1.1 EMRQA MADE 1.0 MADE
1.0(00D)
(BERT) (biOBERT) (biOBERT) (bioBERT)
Platt 3.69+.16 5.07+.37 3.64+.17 15.20+.16
Calibrated Mean 2.954+.26 2.28+.18 2.50+.31 13.26+.94
+Var 2.92+4.28 2.74+.15 2.714£.32 12.41+.95
Platt+top3 7.71+.28 5.42+.25 11.87+.19 16.36+.26
Calibrated Mean-+top3 3.52+.35 2.11£.19 9.21+.25 12.11+.24
+Var+top3 3.56+.29 2.20+.20 9.264.27 11.67+.27
+Var+lm+top3 3.54+.21 2.12+.19 6.07+.26 12.42+.32
+Rank+Var+top3 2.47+.18 1.98+.10 1.77+.23 12.69+.20
+Rank+Var+lm-+top3 2.79+.32 2.244+.29 1.66+.27 12.604.28

Table 5: ECE percentages for QA tasks SQuADI1.1, EMRQA and MADE 1.0. MADE 1.0(OOD) refers to the
out-of-domain evaluation of a QA model that is trained and calibrated on EMRQA training and validation splits.
The results are for top-1 MAP predictions on the test data. ECE standard deviation is estimated by repeating the
experiments for 5 repetitions. BERT model’s uncalibrated ECE for SQuAD1.1, EMRQA, MADE 1.0 and MADE
1.0(O0D) are 6.24% 6.10%, 20.10% and 18.70% respectively. heuristic-k is 3 for all +Rank+Var+topk forecasters.

Calibration SQuADI1.1 EMRQA MADE 1.0 MADE
1.0(00D)
(BERT) (biOBERT) (biOBERT) (bioBERT)
Baseline 79.794.08 70.97+.14 66.21+.18 31.62+.12
+Rank+Var+top3 80.04+.11 71.34+.22 66.33+.12 31.99+.11
+Rank+Var+lm-+top3 80.03+.15 71.37+.26 66.33+.15 32.02+.09

Table 6: Table shows change in Exact Match Accuracy for QA datasets and our best proposed calibration method.
The confidence score from the calibration method is used to re-rank the events E € Z(s). Standard deviation is
estimated by repeating the experiments for 5 repetitions. Baseline refers to MC-dropout averaged (sample-size=10)
output of model pg. heuristic-k is 3 for all +Rank+Var+topk forecasters.

from MADE 1.0 (Jagannatha et al., 2019). This
allows us to have two QA datasets with common
question forms, but different text distributions. In
this experimental setup we can mimic the evalua-
tion of calibration methods in a real-world scenario,
where the task specifications may remain the same
but the underlying text source changes. Details
about dataset pre-processing and construction are
provided in the Appendix.

The entity of interest for QA is the top-k answer
span predictions. We use the “Im” perplexity as a
feature in this experiment to analyze its behaviour
in out-of-domain evaluations. We use a 2 layer
unidirectional LSTM to train a next word language
model on the EMRQA passages. This language
model is then used to compute the perplexity of a
sentence for the “lm” input feature to the forecaster.
We use the same baselines as the previous two
tasks.

Based on Table 5, our methods outperform the
baselines by a large margin in both in-domain and

out-of-domain experiments. Value of heuristic-k is
3 for all +Rank+Var+topk forecasters. We show ab-
lation and baseline results for kK = 3 only. However,
no other forecasters for any k € {2, 3} outperform
our best forecasters in Table 5 . Our models are
evaluated on SQuADI1.1 dev set, and test sets from
EMRQA and MADE 1.0. They show consistent
improvements in ECE and Exact Match Accuracy.

4 Discussion

Our proposed methods outperform the baselines in
most tasks and are almost as competitive in others.

Features and top-k samples: The inclusion of
top-k features improve the performance in almost
all tasks when the rank of the prediction is included.
We see large increases in calibration error when the
top-k prediction samples are included in forecaster
training without including the rank information in
tasks such as CoNLL NER and MADE 1.0 QA.
This may be because the £ = 1,2, 3 predictions

2084

“*1 —— EMRQA Trained MADE Calibrated

Accuracy -
Model Confidence

»31 —— EMRQA Trained EMRQA Calibrated

-:{ —— EMRQA Trained Uncalibrated
- e " —— MADE Trained MADE Calibrated
g o= e . MADE Trained Uncalibrated
g% 015 .
5% i \/\N/Q\i PR S
= B - a

Ivlodel Confidencné

Figure 1: Modified reliability plots (Accuracy - Confidence vs Confidence) on MADE 1.0 QA test. The dotted
horizontal line represents perfect calibration. Scatter point diameter denotes bin size. The inner diameter of the
scatter point denotes the number of positive events in that bin.

may have similar model confidence and uncertainty
values. Therefore a more discriminative signal such
as rank is needed to prioritize them. For instance,
the difference between probabilities of £ = 1 and
k = 2 MAP predictions for POS tagging may dif-
fer by only one or two tokens. In a sentence of
length 10 or more, this difference in probability
when normalized by length would account to very
small shifts in the overall model confidence score.
Therefore an additional input of rank k& leads to a
substantial gain in performance for all models in
POS.

Our task-agnostic scheme of “Rank+Var+topk™
based forecasters consistently outperform or stay
competitive to other forecasting methods. However,
results from task-specific features such as “Im” and
“len” show that use of task-specific features can
further reduce the calibration error. Our domain
shift experimental setup has the same set of ques-
tions in both in-domain and out-of-domain datasets.
Only the data distribution for the answer passage is
different. However, we do not observe an improve-
ment in out-of-domain performance by using “Im”
feature. A more detailed analysis of task-specific
features in QA with both data and question shifts
is required. We leave further investigations of such
schemes as our future work.

Choice of k is important : The optimal choice
of k seems to be strongly dependent on the in-
herent properties of the tasks and its output event
set. In all our experiments, for a specific task all

“By the close Yorkshire had turned that into a 37-run

advantage but had scuttled their hopes
, taking four for 24 in 48 balls and leaving them hanging

on 119 for five and praying for rain.”

Entity Rank Mean Prob Calibrated
Confidence
off-spinner Such Rank 1 90.08+ 8.65 86.32
Such Rank 2 89.02 +2.07 86.61

Figure 2: An example of named entity span from
CoNLL dataset. Rank is k" rank from top-k MAP
inference (Viterbi decoding). Mean Prob and Std is
the mean and standard deviation of length-normalized
probabilities (geometric mean of marginal probabilities
for each token in the span). Calibrated confidence is the
output of Rank+Var+In+top3.

+Rank+Var+topk forecasters exhibit consistent be-
haviours with respect to the choice of k. In POS
experiments, heuristic-k = 2. In all other tasks,
heuristic-k = 3. Our heuristic-k models are the
best performing models, suggesting that the heuris-
tic described in Section 2.5 may generalize to other
tasks as well.

Re-scoring : We show that using our forecaster
confidence to re-rank the entities of interest leads
to a modest boost in model performance for the
NER and QA tasks. In POS no appreciable gain or
drop in performance was observed for k = 2. We
believe this may be due to the already high token
level accuracy (above 97%) on Penn Treebank data.
Nevertheless, this suggests that our re-scoring does

2085

not lead to a degradation in model performance in
cases where it is not effective.

Our forecaster re-scores the top-k entity confi-
dence scores based on model uncertainty score and
entity-level features such as entity lengths. Intu-
itively, we want to prioritize predictions that have
low uncertainty over high uncertainty predictions,
if their uncalibrated confidence scores are simi-
lar. We provide an example of such re-ranking
in Figure 2. It shows a named entity span predic-
tions for the correct span “Such”. The model py
produces two entity predictions “off-spinner Such”
and “Such”. The un-calibrated confidence score of
“off-spinner Such” is higher than “Such”, but the
variance of its prediction is higher as well. There-
fore the +Rank+Var+In+top3 re-ranks the second
(and correct) prediction higher. It is important to
note here that the variance of “off-spinner Such”
may be higher just because it involves two token
predictions as compared to only one token predic-
tion in “Such”. This along with the “In” feature
in +Rank+Var+In+top3 may mean that the fore-
caster is also using length information along with
uncertainty to make this prediction. However, we
see similar improvements in QA tasks, where the
“In” feature is not used, and all entity predictions
involve two predictions (span start and end index
predictions). These results suggest that use of un-
certainty features are useful in both calibration and
re-ranking of predicted structured output entities.

Out-of-domain Performance Our experi-
ments testing the performance of calibrated QA
systems on out-of-domain data suggest that our
methods result in improved calibration on unseen
data as well. Additionally, our methods also lead
to an improvement in system accuracy on out-of-
domain data, suggesting that the mapping learned
by the forecaster model is not specific to a dataset.
However, there is still a large gap between the cali-
bration error for within domain and out-of-domain
testing. This can be seen in the reliability plot
shown in Figure 1. The number of samples in
each bin are denoted by the radius of the scatter
point. The calibrated models shown in the figure
corresponds to “+Rank+Var+lm+top3’ forecaster
calibrated using both in-domain and out-of-domain
validation datasets for forecaster training. We see
that out-of-domain forecasters are over-confident
and this behaviour is not mitigated by using data-
uncertainty aware features like “lm”. This is likely
due to a shift in model’s prediction error when

applied to a new dataset. Re-calibration of the fore-
caster using a validation set from the out-of-domain
data seems to bridge the gap. However, we can see
that the sharpness (Kuleshov and Liang, 2015) of
out-of-domain trained, in-domain calibrated model
is much lower than that of in-domain trained, in-
domain calibrated one. Additionally, a validation
dataset is often not available in the real world. Miti-
gating the loss in calibration and sharpness induced
by out-of-domain evaluation is an important avenue
for future research.

Uncertainty Estimation : We use MC-Dropout
as a model (epistemic) uncertainty estimation
method in our experiments. However, our method
is not specific to MC-Dropout, and is compatible
with any method that can provide a predictive dis-
tribution over token level outputs. As a result any
bayesian or ensemble based uncertainity estima-
tion method (Welling and Teh, 2011; Lakshmi-
narayanan et al., 2017; Ritter et al., 2018) can be
used with our scheme. In this work, we do not
investigate the use of aleatoric uncertainty for cal-
ibration. Our use of language model features is
aimed at accounting for distributional uncertainty
instead of aleatoric uncertainty (Gal, 2016; Malinin
and Gales, 2018). Investigating the use of different
types of uncertainty for calibration remains as our
future work.

5 Conclusion

We show a new calibration and confidence based
re-scoring scheme for structured output entities in
NLP. We show that our calibration methods outper-
form competitive baselines on several NLP tasks.
Our task-agnostic methods can provide calibrated
model outputs of specific entities instead of the en-
tire label sequence prediction. We also show that
our calibration method can provide improvements
to the trained model’s accuracy at no additional
training or data cost. Our method is compatible
with modern NLP architectures like BERT. Lastly,
we show that our calibration does not over-fit on
in-domain data and is capable of generalizing the
calibration to out-of-domain datasets.

Acknowledgement

Research reported in this publication was supported
by the National Heart, Lung, and Blood Institute
(NHLBI) of the National Institutes of Health under
Award Number ROTHL125089.

2086

References

Galen Andrew and Jianfeng Gao. 2007. Scalable train-
ing of L1-regularized log-linear models. In Proceed-
ings of the 24th International Conference on Ma-
chine Learning, pages 33-40.

Jochen Brocker. 2009. Reliability, sufficiency, and the
decomposition of proper scores. Quarterly Journal
of the Royal Meteorological Society: A journal of
the atmospheric sciences, applied meteorology and
physical oceanography, 135(643):1512-1519.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Li Dong, Chris Quirk, and Mirella Lapata. 2018. Con-
fidence modeling for neural semantic parsing. arXiv
preprint arXiv:1805.04604.

Jerome H Friedman. 2001. Greedy function approx-
imation: a gradient boosting machine. Annals of
statistics, pages 1189-1232.

Yarin Gal. 2016. Uncertainty in deep learning. Univer-
sity of Cambridge, 1:3.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050-1059.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages
1321-1330. JMLR. org.

Abhyuday Jagannatha, Feifan Liu, Weisong Liu, and
Hong Yu. 2019. Overview of the first natural lan-
guage processing challenge for extracting medica-
tion, indication, and adverse drug events from elec-
tronic health record notes (made 1.0). Drug safety,
42(1):99-111.

Volodymyr Kuleshov and Percy S Liang. 2015. Cali-
brated structured prediction. In Advances in Neural
Information Processing Systems, pages 3474-3482.

Aviral Kumar and Sunita Sarawagi. 2019. Calibration
of encoder decoder models for neural machine trans-
lation. arXiv preprint arXiv:1903.00802.

Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. 2018.
Trainable calibration measures for neural networks
from kernel mean embeddings. In International
Conference on Machine Learning, pages 2810-
2819.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In
Advances in neural information processing systems,
pages 6402-6413.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2019. Biobert: pre-trained biomed-
ical language representation model for biomedical
text mining. arXiv preprint arXiv:1901.08746.

Fei Li, Yonghao Jin, Weisong Liu, Bhanu Pratap Singh
Rawat, Pengshan Cai, and Hong Yu. 2019. Fine-
tuning bidirectional encoder representations from
transformers (bert)-based models on large-scale
electronic health record notes: An empirical study.
JMIR Med Inform, 7(3):e14830.

Wesley Maddox, Timur Garipov, Pavel Izmailov,
Dmitry Vetrov, and Andrew Gordon Wilson. 2019.
A simple baseline for bayesian uncertainty in deep
learning. arXiv preprint arXiv:1902.02476.

Andrey Malinin and Mark Gales. 2018. Predictive un-
certainty estimation via prior networks. In Advances

in Neural Information Processing Systems, pages
7047-7058.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger.
1994. The penn treebank: annotating predicate
argument structure. In Proceedings of the workshop
on Human Language Technology, pages 114-119.
Association for Computational Linguistics.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. 2015. Obtaining well calibrated prob-
abilities using bayesian binning. In Twenty-Ninth
AAAI Conference on Artificial Intelligence.

Claudio A Naranjo, Usoa Busto, Edward M Sellers,
P Sandor, I Ruiz, EA Roberts, E Janecek, C Domecq,
and DJ Greenblatt. 1981. A method for estimating
the probability of adverse drug reactions. Clinical
Pharmacology & Therapeutics, 30(2):239-245.

Khanh Nguyen and Brendan O’Connor. 2015. Pos-
terior calibration and exploratory analysis for nat-
ural language processing models. arXiv preprint
arXiv:1508.05154.

Anusri Pampari, Preethi Raghavan, Jennifer Liang, and
Jian Peng. 2018. emrqa: A large corpus for ques-
tion answering on electronic medical records. arXiv
preprint arXiv:1809.00732.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

J Platt. 2000. Probabilistic outputs for support vec-
tor machines and comparison to regularized likeli-
hood methods. Advances in Large Margin Classi-
fiers, pages 61-74.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

2087

https://doi.org/10.2196/14830
https://doi.org/10.2196/14830
https://doi.org/10.2196/14830
https://doi.org/10.2196/14830

Hippolyt Ritter, Aleksandar Botev, and David Barber.
2018. A scalable laplace approximation for neural
networks. In 6th International Conference on Learn-
ing Representations, ICLR 2018-Conference Track
Proceedings, volume 6.

Erik F Sang and Fien De Meulder. 2003. Intro-
duction to the conll-2003 shared task: Language-
independent named entity recognition. arXiv
preprint ¢s/0306050.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sarah Sarabadani. 2019. Detection of adverse drug re-
action mentions in tweets using elmo. In Proceed-
ings of the Fourth Social Media Mining for Health
Applications (# SMM4H) Workshop & Shared Task,
pages 120-122.

Juozas Vaicenavicius, David Widmann, Carl Anders-
son, Fredrik Lindsten, Jacob Roll, and Thomas B
Schon. 2019. Evaluating model calibration in classi-
fication. arXiv preprint arXiv:1902.06977.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. 2019. Super-
glue: A stickier benchmark for general-purpose
language understanding systems. arXiv preprint
arXiv:1905.00537.

Max Welling and Yee W Teh. 2011. Bayesian learn-
ing via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on
machine learning (ICML-11), pages 681-688.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Transformers: State-of-the-
art natural language processing. arXiv preprint
arXiv:1910.03771.

Henghui Zhu, Ioannis Ch Paschalidis, and Amir
Tahmasebi. 2018. Clinical concept extraction
with contextual word embedding. arXiv preprint
arXiv:1810.10566.

2088

A Appendices
A.1 Algorithm Details:

The forecaster construction algorithm is provided
in Algorithm 1. The candidate events in Algorithm
1 are obtained by extracting top-k label sequences
for every output. The logits obtained from py are
averaged over 10 MC-Dropout samples before be-
ing fed into the final output layer. We use the vali-
dation dataset from the task’s original split to train
the forecaster. The validation dataset is used to
construct both training and validation split for the
forecaster. The training split contains all top-k pre-
dicted entities. The validation split contains only
top-1 predicted entities.

A.2 Evaluation Details

We use the expected calibration error (ECE) score
defined by (Naeini et al., 2015) to evaluate our cal-
ibration methods. Expected calibration error is a
score that estimates the expected absolute differ-
ence between model confidence and accuracy. This
is calculated by binning the model outputs into N
(N = 20 for our experiments) bins and then com-
puting the expected calibration error across all bins.
It is defined as

- |3
ECE = Z —lace(B;) — conf(B;)|, (%)

- mn
=0

where N is the number of bins, n is the total num-
ber of data samples, B; is the it" bin. The func-
tions acc(.) and con f(.) calculate the accuracy and
model confidence for a bin.

A.3 Implementation Details

We use AllenNLP’s wrapper with HuggingFace’s
Transformers code ! for our implementation®. We
use BERT-base-cased (Wolf et al., 2019) weights as
the initialization for general-domain datasets and
bio-BERT weights (Lee et al., 2019) as the initial-
ization for clinical datasets. We use cased models
for our analysis, since bio-BERT(Lee et al., 2019)
uses cased models. A common learning rate of 2e-
5 was used for all experiments. We used validation
data splits provided by the datasets. In cases where
the validation dataset was not provided, such as
MADE 1.0, EMRQA or SQuADI1.1, we use 10%

Uhttps://github.com/huggingface/transformers

>The code for forecaster construction is available at
https://github.com/abhyudaynj/ StructuredPredictionCalibra-
tionNLP

of the training data as the validation data. We use
a patience of 5 for early stopping the model, with
each epoch consisting of 20,000 steps. We use the
final evaluation metric instead of negative log like-
lihood (NLL) to monitor and early stop the training.
This is to reduce the mis-calibration of the underly-
ing pg model, since Guo et al. (2017) observe that
neural nets overfit on NLL. The implementation
for each experiment is provided in the following
subsections.

A.3.1 Part-of-speech experiments

We evaluate our method on the Penn Treebank
dataset (Marcus et al., 1994). Our experiment uses
the standard training (1-18), validation(19-21) and
test (22-24) splits from the WSJ portion of the Penn
Treebank dataset. The un-calibrated output of our
model for a candidate label sequence is estimated
as

=

R 1
p:M Z

MC— Dropout

po(y1,y2, --yrlx)T, (5)

where M is the number of dropout samples. The
L™ root accounts for different sentence lengths.
Here L is the length of the sentence. We observe
that this kind of normalization improves the cal-
ibration of both baselines and proposed models.
We do not normalize the probabilities while report-
ing the ECE of uncalibrated models. We use two
choice of py models, namely BERT and BERT+CRF.
BERT only model adds a linear layer to the out-
put of BERT network and uses a softmax activation
function to produce marginal label probabilities for
each token. BERT+CRF uses a CRF layer on top of
unary potentials obtained from the BERT network
outputs.

We use Platt Scaling (Platt, 2000) as the baseline
calibration model. Our Platt scaling model uses the
MC-Dropout average of length normalized proba-
bility output of the model pg as input. The lower
variance and length invariance of this input feature
make Platt Scaling a very strong baseline. We also
use a “Calibrated Mean” baseline using Gradient
Boosted Decision Trees as our estimator with the
same input feature as Platt.

A.3.2 NER Experiments

For CoNLL dataset, “testa” file was reserved for
validation data and ““testb” was reserved for test.
For MADE 1.0 (Jagannatha et al., 2019), since
validation data split was not provided we randomly
selected 10% of training data as validation data.

2089

Algorithm 1: Forecaster construction for model py with max rank k4.
Input: Uncalibrated model py , Validation Dataset D = {(a:(i), y(i)}go s kma-

Output: Forecaster I,

Function Get-Forecaster (pg, D, kmaz)
for i < 0to |D| do

end
(

Fy« B

return F

with minimum ECE on D,

Function Get-Candidate-Events (pg,, kmaz)

| return Z(z);

7 (a;(i)) + Get-Candidate-Events(pg, 20 kmaz)

Dirain — {(zD,c,E) : c = 1(y) € E) ,VE € Z(z)}
Tr—1 (w(i)) <+ Get-Candidate-Events(py, 20 1)

Dy — {(z,¢,E) : c = 1(y® € E) ,VE € Tj—1(z)}

Train Forecasters Fyk) for k = {1, ..., kmaa } using Dygin

Construct top-k,q. label sequences using MC-Dropout average of pg(z) logits.
Extract relevant entity set ¢(z) from top-ky,.. label sequences.
Z(x) < Events corresponding to entities in ¢(x).

The length normalized marginal probability for a
span starting at ¢ and of length [is estimated as

R 1
P:M Z

MC— Dropout

1
L.

Po(Yir Y2, - Yiti—1|)

(6)

We use this as the input to both the baseline and
proposed models. We observe that this kind of nor-
malization improves the calibration of baseline and
proposed models. We do not normalize the prob-
abilities while reporting the ECE of uncalibrated
models. We use BIO-tags for training. While de-
coding, we also allow spans that start with “I-” tag.

A.3.3 QA experiments

We use three datasets for our QA experiments,
SQAUD 1.1, EMRQA and MADE 1.0. Our main
aim in these experiments is to understand the be-
haviour of calibration and not the complexity of
the tasks themselves. Therefore, we restrict the pas-
sage lengths of EMRQA and MADE 1.0 datasets
to be similar to SQuADI1.1. We pre-process the
passages from EMRQA to remove unannotated an-
swer span instances and reduce the passage length
to 20 sentences. EMRQA provides multiple ques-
tion templates for the same question type (referred
to as logical form in Pampari et al. (2018)). For
each annotation, we randomly sample 3 question
templates for our QA experiments. This is done to
ensure that question types that have multiple ques-
tion templates are not over-represented in the data.

For example, the question type for “’Does he take
anything for her —problem—" has 49 available
answer templates, whereas “How often does the
patient take —medication—" only has one. So for
each annotation, we sample 3 question templates
for a question type. If the question type does not
have 3 available templates, we up-sample. For
more details please refer to Pampari et al. (2018).

EMRQA is a QA dataset constructed from
named entity and relation annotations from clin-
ical i2b2 datasets consisting of adverse event, med-
ication and risk related questions (Pampari et al.,
2018). We aim to also test the performance of our
calibration method on out-of-domain test data. To
do so, we construct a QA dataset from the clinical
named entity and relation dataset MADE 1.0, using
the questions and the dataset construction proce-
dure followed in EMRQA. This allows us to have
two QA datasets with common question forms, but
different text distributions. This experimental setup
enables us to evaluate how a QA system would per-
form when deployed on a new text corpus. This
corresponds to the application scenario where a
fixed set of questions (such as Adverse event ques-
tionnaire (Naranjo et al., 1981)) are to be answered
for clinical records from different sources. Both
EMRQA and MADE 1.0 are constructed from clin-
ical documents. However, the documents them-
selves have different structure and language due to
their different clinical sources, thereby mimicking

2090

the real-world application scenarios of clinical QA
systems.

MADE QA Construction MADE 1.0 (Jagan-
natha et al., 2019) is an NER and relation dataset
that has similar annotation to “relations” and “med-
ication” i2b2 datasets used in EMRQA. EMRQA
uses an automated procedure to construct ques-
tions and answers from NER and relation annota-
tions. We replicate the automated QA construction
followed by Pampari et al. (2018) on MADE 1.0
dataset to obtain a corresponding QA dataset for
the same. For this construction, we use question
templates that use annotations that are common
in both MADE 1.0 and EMRQA datasets. Exam-
ples of common questions are in Table 7. A full
list of questions in MADE 1.0 QA is in “ques-
tion_templates.csv” file included in supplementary
materials. The dataset splits for EMRQA and
MADE QA are provided in Table 8.

Forecaster features Since we only consider
single-span answer predictions, we require a con-
stant number of predictions (answer start and an-
swer end token index), for this task. Therefore we
do not use the “In” feature in this task. The un-
calibrated probability of an event is normalized as
follows and then used as input to all calibration
models.

p= % Z bo (ystarta yend|x)1/2 (7)
M C— Dropout

Unlike the previous tasks, extractive QA with
single-span output does not have a varying num-
ber of output predictions for each data sample. It
always only predicts the start and end spans. There-
fore using length normalized (where length is al-
ways 2) uncalibrated output does not significantly
affect the calibration of baseline models. However,
we use the length-normalized uncalibrated proba-
bility as our input feature to keep our base set of fea-
tures consistent throughout the tasks. Additionally,
in extractive QA tasks with non-contiguous spans,
the number of output predictions can vary and be
higher than 2. In such cases, based on our results
on POS and NER, the length-normalized probabil-
ity may prove to be more useful. The “Var” feature
and “Rank” feature is estimated as described in
previous tasks.

2091

Input Output Example Question Form

Problem Treatment How does the patient manage her —problem—

Treatment Problem Why is the patient on —treatment—

Problem Problem Has the patient ever been diagnosed or treated for
—problem—

Drug Drug Has patient ever been prescribed —medication—

Table 7: Examples of questions that are common in EMRQA and MADE QA datasets.

Dataset Name Train Validation Test
EMRQA 74414 8870 9198
MADE QA 99496 14066 21309

Table 8: Dataset size for the MADE dataset QA pairs that were constructed using guidelines from EMRQA.
EMRQA dataset splits are also provided for comparison.

2092

