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Abstract

We study the task of semantic parse correction
with natural language feedback. Given a natu-
ral language utterance, most semantic parsing
systems pose the problem as one-shot transla-
tion where the utterance is mapped to a cor-
responding logical form. In this paper, we
investigate a more interactive scenario where
humans can further interact with the system
by providing free-form natural language feed-
back to correct the system when it generates
an inaccurate interpretation of an initial utter-
ance. We focus on natural language to SQL
systems and construct, SPLASH, a dataset of ut-
terances, incorrect SQL interpretations and the
corresponding natural language feedback. We
compare various reference models for the cor-
rection task and show that incorporating such
a rich form of feedback can significantly im-
prove the overall semantic parsing accuracy
while retaining the flexibility of natural lan-
guage interaction. While we estimated hu-
man correction accuracy is 81.5%, our best
model achieves only 25.1%, which leaves a
large gap for improvement in future research.
SPLASH is publicly available at https://
aka.ms/Splash_dataset.

1 Introduction

Natural language interfaces (NLIs) have been the
“holy grail" of natural language understating and
human-computer interaction for decades (Woods
et al., 1972; Codd, 1974; Hendrix et al., 1978;
Zettlemoyer and Collins, 2005). However, early
attempts in building NLIs to databases did not
achieve the expected success due to limitations
in language understanding capability, among other
reasons (Androutsopoulos et al., 1995; Jones and
Galliers, 1995). NLIs have been receiving increas-
ing attention recently motivated by interest in de-
veloping virtual assistants, dialogue systems, and
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8 Find all the locations whose names contain the
word "film"

finding the Address of Locations table for which
Location_Name contains "film"

Address
770 Edd Lane Apt. 098
14034 Kohler Drive

8 Address is wrong. I want the name of the
locations

finding the Location Name of Locations table for
which Location Name contains "film"

Location Name

Film Festival
Film Castle

Figure 1: An example of human interaction with a Text-
to-SQL system to correct the interpretation of an input
utterance. The system generates an initial SQL parse,
explains it in natural language, and displays the execu-
tion result. Then, the system uses the human-provided
natural language feedback to correct the initial parse.

semantic parsing systems. NLIs to databases were
at the forefront of this wave with several studies fo-
cusing on parsing natural language utterances into
an executable SQL queries (Text-to-SQL parsing).

Most of the work addressing the Text-to-SQL
problem (and semantic parsing in general) frames it
as a one-shot mapping problem. We establish (Sec-
tion 4.1) that the majority of parsing mistakes that
recent neural text-to-SQL parsers make are minor.
Hence, it is often feasible for humans to detect
and suggest fixes for such mistakes. Su et al.
(2018) make a similar observation about parsing
text to API calls (Su et al., 2017) and show that
parsing mistakes could be easily corrected if hu-
mans are afforded a means of providing precise
feedback. Likewise, an input utterance might be
under- or mis-specified, thus extra interactions may
be required to generate the desired output similarly
to query refinements in information retrieval sys-
tems (Dang and Croft, 2010).
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Humans have the ability to learn new concepts
or correct others based on natural language descrip-
tion or feedback. Similarly, previous work has
explored how machines can learn from language in
tasks such as playing games (Branavan et al., 2012),
robot navigation (Karamcheti et al., 2017), concept
learning (e.g., shape, size, etc.) classifiers (Srivas-
tava et al., 2018), etc. Figure 1 shows an example
of a text-to-SQL system that offers humans the af-
fordance to provide feedback in natural language
when the system misinterprets an input utterance.
To enable this type of interactions, the system needs
to: (1) provide an explanation of the underlying
generated SQL, (2) provide a means for humans to
provide feedback and (3) use the feedback, along
with the original question, to come up with a more
accurate interpretation.

In this work, we study the task of SQL parse
correction with natural language feedback to en-
able text-to-SQL systems to seek and leverage hu-
man feedback to further improve the overall per-
formance and user experience. Towards that goal,
we make the following contributions: (1) we de-
fine the task of SQL parse correction with natu-
ral language feedback; (2) We create a framework
for explaining SQL parse in natural language to
allow text-to-SQL users (who may have a good
idea of what kind of information resides on their
databases but are not proficient in SQL Hendrix
et al. (1978)) to provide feedback to correct in-
accurate SQL parses; (3) we construct SPLASH—
Semantic Parsing with Language Assistance from
Humans—a new dataset of natural language ques-
tions that a recent neural text-to-SQL parser failed
to generate correct interpretation for together with
corresponding human-provided natural language
feedback describing how the interpretation should
be corrected; and (4) we establish several base-
line models for the correction task and show that
the task is challenging for state-of-the-art semantic
parsing models.

2 Task

We formally define the task of SQL parse correc-
tion with natural language feedback. Given a ques-
tion g, a database schema s, a mispredicted parse
p’, a natural language feedback f on p’, the task is
to generate a corrected parse p (Figure 2). Follow-
ing Yu et al. (2018), s is defined as the set of tables,
columns in each table and the primary and foreign
keys of each table.

Question:

Find all the locations whose names contain the
word "film"

Predicted Parse:

SELECT Address FROM LOCATIONS WHERE
Location Name LIKE '$film%'

Feedback:
Address is wrong. | want the name of the locations

Gold Parse:

SELECT Location_Name FROMLOCATIONS
WHERE Location Name LIKE '$film%'

Schema:

|Location71D |Location7Name |Address |Other7Details|

Figure 2: An example from our SQL parse correction
task (DB Name: cre_Theme_park and Table Name:
Locations). Given a question, initial predicted parse
and natural language feedback on the predicted parse,
the task is to predict a corrected parse that matches the
gold parse.

Models are trained with tuples ¢, s, p/, f and
gold parse p. At evaluation time, a model takes
as input tuples in the form ¢, s, p/, f and hypoth-
esizes a corrected parse p. We compare p and the
gold parse p in terms of their exact set match (Yu
et al., 2018) and report the average matching ac-
curacy across the testing examples as the model’s
correction accuracy.

3 Dataset Construction

In this section, we describe our approach for col-
lecting training data for the SQL parse correction
task. We first generate pairs of natural language
utterances and the corresponding erroneous SQL
parses (Section 3.1). We then employ crowd work-
ers (with no SQL knowledge) to provide feedback,
in natural language, to correct the erroneous SQL
(Section 3.3). To enable such workers to provide
feedback, we show them an explanation of the gen-
erated SQL in natural language (Section 3.2). Fi-
nally, to improve the diversity of the natural lan-
guage feedback, we ask a different set of annotators
to paraphrase each feedback. We describe the pro-
cess in detail in the remainder of this section.

3.1 Generating Questions and Incorrect SQL
Pairs

We use the Spider dataset (Yu et al., 2018) as our
source of questions. Spider has several advantages
over other datasets. Compared to ATIS (Price,
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SQL:

SELECT id, name from browser GROUP
BY id ORDER BY COUNT (*) DESC

Template: !

SELECT cols from table Group
BY col ORDER BY aggr col

Explanation: !

Step 1: Find the number of rows of each value
of id in browser table.

Step 2: Find id, name of browser table with
largest value in the results of step 1.

Figure 3: An example of a SQL query, the correspond-
ing template and the generated explanation.

1990) and GeoQuery (Zelle and Mooney, 1996),
Spider is much larger in scale (200 databases vs.
one database, and thousands vs. hundreds of SQL
parses). Compared to WikiSQL (Zhong et al.,
2017), Spider questions require inducing parses
of complex structures (requiring multiple tables,
joining, nesting, etc.). Spider also adopts a cross-
domain evaluation setup in which databases used
at testing time are never seen at training time.

To generate erroneous SQL interpretations of
questions in Spider, we opted for using the output
of a text-to-SQL parser to ensure that our dataset
reflect the actual distribution of errors that contem-
porary parsers make. This is a more realistic setup
than artificially infusing errors in the gold SQL. We
use the Seq2Struct parser (Shin, 2019)! to generate
erroneous SQL interpretations. Seq2Struct com-
bines grammar-based decoder of Yin and Neubig
(2017) with a self-attention-based schema encod-
ing and it reaches a parsing accuracy of 42.94% on
the development set of Spider.”

Note that we make no explicit dependencies on
the model used for this step and hence other models
could be used as well (Section 6.3).

We train Seq2Struct on 80% of Spider’s train-
ing set and apply it to the remaining 20%, keeping

"https://github.com/rshin/seg2struct

2When we started the dataset construction at the beginning
of June 2019, we were able to achieve a parsing accuracy of
41.30% on Spider’s development set which was the state-of-
the-art accuracy at the time. It is worth noting that unlike
current state-of-the-art models, Seq2Struct does not use pre-
trained language models. It was further developed into a new
model called RAT-SQL (Wang et al., 2020) which achieved a
new state-of-the-art accuracy as of April 2020.

only cases where the generated parses do not match
the gold parse (we use the exact set match of Yu
et al. (2018)). Following the by-database splitting
scheme of Spider, we repeat the 80-20 training and
evaluation process for three times with different
examples in the evaluation set at each run. This
results in 3,183 pairs of questions and an erroneous
SQL interpretation. To further increase the size of
the dataset, we also ignore the top prediction in
the decoder beam? and use the following predic-
tions. We only include cases where the difference
in probability between the top and second to top
SQLs is below a threshold of 0.2. The intuition
here is that those are predictions that the model
was about to make and hence represent errors that
the model could have made. That adds 1,192 pairs
to our dataset.

3.2 Explaining SQL

In one of the earliest work on natural language
interfaces to databases, Hendrix et al. (1978) note
that many business executives, government official
and other decision makers have a good idea of what
kind of information residing on their databases. Yet
to obtain an answer to a particular question, they
cannot use the database themselves and instead
need to employ the help of someone who can. As
such, in order to support an interactive Text-to-SQL
system, we need to be able to explain the incorrect
generated SQL in a way that humans who are not
proficient in SQL can understand.

We take a template-based approach to explain
SQL queries in natural language. We define a tem-
plate as follows: Given a SQL query, we replace
literals, table and columns names and aggregation
and comparison operations with generic placehold-
ers. We also assume that all joins are inner joins
(true for all Spider queries) whose join conditions
are based on primary and foreign key equivalence
(true for more than 96% of Spider queries). A query
that consists of two subqueries combined with an
intersection, union or except operations is split into
two templates that are processed independently and
we add an intersection/union/except part to the ex-
planation at the end. We apply the same process to
the limit operation—generate an explanation of the
query without limit, then add a limit-related step at
the end.

We select the most frequent 57 templates used
in Spider training set which cover 85% of Spider

3We used a beam of size 20.
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queries. For each SQL template, we wrote down
a corresponding explanation template in the form
of steps (e.g., join step, aggregation step, selec-
tion step) that we populate for each query. Figure 3
shows an example of a SQL queries, its correspond-
ing template and generated explanations. We also
implemented a set of rules for compressing the
steps based on SQL semantics. For instance, an or-
dering step following by a “limit 1” is replaced with
“find largest/smallest” where “largest” or “smallest”
is decided according to the ordering direction.

3.3 Crowdsourcing Feedback

We use an internal crowd-sourcing platform simi-
lar to Amazon Mechanical Turk to recruit annota-
tors. Annotators are only selected based on their
performance on other crowd-sourcing tasks and
command of English. Before working on the task,
annotators go through a brief set of guidelines ex-
plaining the task.* We collect the dataset in batches
of around 500 examples each. After each batch is
completed, we manually review a sample of the
examples submitted by each annotator and exclude
those who do not provide accurate inputs from the
annotators pool and redo all their annotations.

Annotators are shown the original question, the
explanation of the generated SQL and asked to: (1)
decide whether the generated SQL satisfies the in-
formation need in the question and (2) if not, then
provide feedback in natural language. The first step
is necessary since it helps identifying false nega-
tive parses (e.g., another correct parse that does
not match the gold parse provided in Spider). We
also use the annotations of that step to assess the
extent to which our interface enables target users
to interact with the underlying system. As per our
assumption that target users are familiar with the
kind of information that is in the database (Hendrix
et al., 1978), we show the annotators an overview
of the tables in the database corresponding to the
question that includes the table and column names
together with examples (first 2 rows) of the con-
tent. We limit the maximum feedback length to 15
tokens to encourage annotators to provide a correct-
ing feedback based on the initial parse (that focuses
on the edit to be made) rather than describing how
the question should be answered.

A total of 10 annotators participated in this task.
They were compensated based on an hourly rate

*We provide the data collection instructions and a screen-
shot of the data collection interface in the appendix.

Number of Train Dev  Test
Examples 7,481 871 962
Databases 111 9 20

2,775 290 506
2,840 383 325
Uniq. Gold Parses 1,781 305 194
Uniq. Feedbacks 7,350 860 948
Feedback tokens (Avg.) 139 13.8 13.1

Uniq. Questions
Uniq. Wrong Parses

Table 1: SPLASH summary

(as opposed to per annotation) to encourage them
to optimize for quality and not quantity. They took
an average of 6 minutes per annotation.

To improve the diversity of the feedback we col-
lect, we ask a separate set of annotators to generate
a paraphrase of each feedback utterance. We follow
the same annotators quality control measures as in
the feedback collection task. An example instance
from the dataset is shown in Figure 2.

3.4 Dataset Summary

Overall, we ask the annotators to annotate 5409
example (427 of which had the correct SQL parse
and the remaining had an incorrect SQL parse).
Examples with correct parse are included to test
whether the annotators are able to identify correct
SQL parses given their explanation and the ques-
tion. Annotators are able to identify the correct
parses as correct 96.4% of the time. For the ex-
amples whose predicted SQL did not match the
gold SQL, annotators still marked 279 of them
as correct. Upon manual examinations, we found
that annotators were indeed correct in doing so
95.5% of the time. Even though the predicted and
gold SQLs did not match exactly, they were equiva-
lent (e.g., "price between 10 and 20’ vs.
"price > 10 and price < 207).

After paraphrasing, we ended up with 9,314
question-feedback pairs, 8352 of which correspond
to questions in the Spider training split and 962
from the spider development split. We use all the
data from the Spider development split as our test
data. We hold out 10% of the remaining data (split
by database) to use as our development set and
use the rest as the training set. Table 1 provides a
summary of the final dataset.

4 Dataset Analysis

We conduct a more thorough analysis of SPLASH in
this section. We study the characteristics of the mis-
takes made by the parser as well as characteristics
of the natural language feedback.
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4.1 Error Characteristics

We start by characterizing the nature of errors usu-
ally made by the models in parsing the original ut-
terance to SQL. To understand the relation between
the gold and the predicted SQL, we measure the
edit distance between them for all cases for which
the model made a mistake in the SQL prediction.
We measure the edit distance by the number of
edit segments (delete, insert, replace) between both
parses. We find the minimal sequence of token-
level edits using the levenshtein distance algorithm.
Then, we combine edits of the same type (delete,
insert, replace) applied to consecutive positions in
the predicted parse in one segment. Figure 4 shows
a frequency histogram of different values of edit
distance. We observe that most inaccurate predic-
tions lie within a short distance from the correct
SQL (78%+ within a distance of 3 or less).

In addition to the number of edits, we also char-
acterize the types of edits needed to convert the
predicted SQL to the gold one. Our edit distance
calculations support three operations replace, insert
and delete. Those correspond to 58%,, 31% and
11% of the edit operations respectively. Most of the
edits are rather simple and require replacing, insert-
ing or deleting a single token (68.1% of the edits).
The vast majority of those correspond to editing
a schema item (table or column name): 89.2%, a
SQL keyword (e.g., order direction, aggregation,
count, distinct, etc.): 7.4%, an operator (greater
than, less than, etc.): 2.2% or a number (e.g. for a
limit operator): 1.2%.

The edits between the predicted and generated
SQL spanned multiple SQL keywords. The dis-
tribution of different SQL keywords appearing in
edits and their distribution across edit types (re-
place, insert or delete) is shown in Figure 5. Note
that a single edit could involve multiple keywords
(e.g., multiple joins, a join and a where clause,
etc.). Interestingly, many of the edits involve a join
highlighting that handling utterances that require
a join is harder and more error prone. Following
Jjoin, most edits involve where clauses (making the
query more or less specific), aggregation operators,
counting and selecting unique values.

The error analysis demonstrates that many of the
errors made by the model are in fact not significant
and hence it is reasonable to seek human feedback
to correct them.

35%
30%

L 25%

~

1 2 3 4 5 6 7 8 9 10
Distance between Gold and Predicted SQL

Figure 4: A histogram of the distance between the gold
and the predicted SQL.

= INSERT
045 =REPLACE
0.4 DELETE

SQL Keywords

Figure 5: A histogram of different SQL keywords ap-
pearing in edits (between the gold and predicted SQL)
and their distribution across edit types (replace, insert
or delete).

4.2 Feedback Characteristics

To better understand the different types of feedback
our annotators provided, we sample 200 examples
from the dataset, and annotate them with the type
of the feedback. We start by assigning the feedback
to one of three categories: (1) Complete: the feed-
back fully describes how the predicted SQL can be
corrected , (2) Partial: the feedback describes a way
to correct the predicted SQL but only partially and
(3) Paraphrase: the feedback is a paraphrase of the
original question. The sample had 81.5% for Com-
plete, 13.5% for Partial and 5.0% for Paraphrase
feedback. Examples of each type of feedback are
shown in Table 2. Upon further inspection of the
partial and paraphrase feedback, we observe that
they mostly happen when the distance between the
predicted and gold SQL is high (major parsing er-
rors). As such, annotators opt for providing partial
feedback (that would at least correct some of the
mistakes) or decide to rewrite the question in a
different way.

We also annotate and present the types of feed-
back, in terms of changes the feedback is suggest-
ing, in Table 3. Note that the same feedback may
suggest multiple changes at the same time. The
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Complete Feedback: [81.5%]

SELECT TYPE FROM school GROUP BY TYPE HAVING count (%) >= 2

Question: Show the types of schools that have two schools.
Pred. SQL.:
Feedback: You should not use greater than.

Partial Feedback: [13.5%]

Question:
Pred. SQL:
Feedback:

What are the names of all races held between 2009 and 2011?
SELECT country FROM circuits WHERE lat BETWEEN 2009 AND 2011
You should use races table.

Paraphrase Feedback: [5.0%]

What zip codes have a station with a max temperature greater than or equal to 80

SELECT zip_code FROM weather WHERE min_temperature_f

Question:

and when did it reach that temperature?
Pred. SQL:

> 80 OR min_sea_level_pressure_inches > 80
Feedback:

Find date , zip code whose max temperature f greater than or equals 80.

Table 2: Examples (question, predicted SQL and feedback) of complete, partial and paraphrase feedback

table shows that the feedback covers a broad range
of types, which matches our initial analysis of er-
ror types. We find that a majority of feedback
is referencing the retrieved information. In many
such cases, the correct information has not been
retrieved because the corresponding table was not
used in the query. This typically corresponds to a
missing inner one-to-one join operation and agrees
with our earlier analysis on edit distance between
the gold and predicted SQL. The second most pop-
ular category is incorrect conditions or filters fol-
lowed by aggregation and ordering errors. We split
the first two categories by whether the informa-
tion/conditions are missing, need to be replaced
or need to be removed. We observe that most of
the time the information or condition needs to be
replaced. This is followed by missing information
that needs to be inserted and then unnecessary ones
that need to be removed.

We heuristically identify feedback patterns for
each collected feedback. To identify the feedback
pattern, we first locate the central predicate in the
feedback sentence using a semantic role labeler (He
et al., 2015). Since some feedback sentences can
be broken into multiple sentence fragments, a sin-
gle feedback may contain more than one central
predicate. For each predicate, we identify its main
arguments. We represent every argument with its
first non stopword token. To reduce the vocabulary,
we heuristically identify column mentions and re-
place them with the token ’item’.

We visualize the distribution of feedback pat-
terns for the top 60 most frequent patterns in Fig-
ure 6 , and label the ones shared among multiple
patterns. As is shown, our dataset covers a diverse
variety of feedback patterns centered around key
operations to edit the predicted SQL that reference

Figure 6: Patterns of feedback covered in our dataset.
Patterns are extracted heuristically using predicates and
arguments extracted from the feedback sentence. The
figure shows the top 60 frequent patterns.

operations, column names and values.

5 Related Work

Our work is linked to multiple existing research
lines including semantic parsing, learning through
interaction (Li et al., 2017a; Hancock et al., 2019;
Lietal.,2017b, inter alia) and learning from natural
language supervision (Srivastava et al., 2017; Co-
Reyes et al., 2019; Srivastava et al., 2018; Hancock
et al., 2018; Ling and Fidler, 2017, inter alia). We
discuss connections to the most relevant works.
Text-to-SQL Parsing: Natural language to
SQL (natural language interfaces to databases)
has been an active field of study for several
decades (Woods et al., 1972; Hendrix et al., 1978;
Warren and Pereira, 1982; Popescu et al., 2003; Li
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Feedback Type % Example
Information

- Missing 13%

- Wrong 36%

- Unnecessary 4%
Conditions

- Missing 10%

- Wrong 19%

- Unnecessary 7%
Aggregation 6%
Order/Uniq 5%

I also need the number of different services
Return capacity in place of height
No need to return email address

ensure they are FDA approved

need to filter on open year not register year
return results for all majors

I wanted the smallest ones not the largest
only return unique values

Table 3: Examples of feedback annotators provided for different types

and Jagadish, 2014). This line of work has been re-
ceiving increased attention recently driven, in part,
by the development of new large scale datasets such
as WikiSQL (Zhong et al., 2017) and Spider (Yu
et al., 2018). The majority of this work has focused
on mapping a single query to the corresponding
SQL with the exception of a few datasets, e.g.,
SParC (Yu et al., 2019b) and CoSQL (Yu et al.,
2019a), that target inducing SQL parses for se-
quentially related questions. While these datasets
focus on modeling conversational dependencies be-
tween questions, SPLASH evaluates the extent to
which models can interpret and apply feedback on
the generated parses. We empirically confirm that
distinction in Section 6.3.

Learning from Feedback: Various efforts have
tried to improve semantic parsers based on feed-
back or execution validation signals. For example,
Clarke et al. (2010) and Artzi and Zettlemoyer
(2013) show that semantic parsers can be improved
by learning from binary correct/incorrect feedback
signals or validation functions. Iyer et al. (2017)
improve text-to-SQL parsing by counting on hu-
mans to assess the correctness of the execution
results generated by the inferred parses. In their
system, parses with correct results are used to aug-
ment the training set together with crowdsourced
gold parses of the parses that are marked as in-
correct. Lawrence and Riezler (2018) show that
a text-to-Overpass parser can be improved using
historic logs of token-level binary feedback (col-
lected using a graphical user interface that maps an
Overpass query to predefined blocks) on generated
parses. We note that our work is different from this
line of work in that we do not seek to retrain and
generally improve the parser, rather we focus on
the task of immediately incorporating the natural
language feedback to correct an initial parse.

Interactive Semantic Parsing Multiple other
efforts sought to interactively involve humans in
the parsing process itself. He et al. (2016) ask
simplified questions about uncertain dependencies
in CCG parses and use the answers as soft con-
straints to regenerate the parse. Both Li and Ja-
gadish (2014) and Su et al. (2018) generate se-
mantic parses and present them in a graphical user
interface that humans can control to edit the initial
parse. Gur et al. (2018) ask specific predefined
multiple choice questions about a narrow set of
predefined parsing errors. This interaction model
together with the synthetically generated erroneous
parses that are used for training can be appropri-
ate for simple text-to-SQL parsing instance as in
WikiSQL, which was the only dataset used for eval-
uation. Yao et al. (2019b) ask yes/no questions
about the presence of SQL components while gen-
erating a SQL parse one component at a time. Our
work falls under the general category of interactive
semantic parsing. However, our interaction model
is solely based on natural language feedback which
can convey richer information and offering a more
flexible interaction. Our work is closest to (Lab-
utov et al., 2018), which also studies correcting
semantic parses with natural language feedback,
but we (1) focus on text-to-SQL parsing and build
on a multi-domain dataset that requires generat-
ing complex semantic structures and generalizing
to unseen domains (Labutov et al. consider only
the domain of email and biographical research);
(2) pair the mispredicted parses and feedback with
gold parses’ in both our training and testing splits
which benefits a wider class of correction models;
and (3) show that incorporating the mispredicted
parse significantly improves the correction accu-

3In real world scenarios, the gold parse is the final parse
that the user approves after a round (or more) of corrections.
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racy (on the contrary to the findings of Labutov et
al.).

Asking Clarifying Questions: Another rele-
vant research direction focused on extending se-
mantic parsers beyond one-shot interactions by cre-
ating agents that can ask clarifying questions that
resolve ambiguities with the original question. For
example, Yao et al. (2019a) showed that using
reinforcement learning based agents that can ask
clarifying questions can improve the performance
of semantic parsers in the “If-Then recipes” do-
main. Generating clarifying questions have been
studied in multiple domains to resolve ambiguity
caused by speech recognition failure (Stoyanchev
et al., 2014), recover missing information in ques-
tion answering (Rao and Daumé II1, 2018) or clar-
ify information needs in open-domain information-
seeking (Aliannejadi et al., 2019). Our work is
different from this research in that we focus on en-
abling and leveraging human feedback that corrects
an initial parse of a fully specified question rather
than spotting and clarifying ambiguities.

6 Experiments

We present and evaluate a set of baseline models
for the correction task (Section 2) in which we
use SPLASH for training and testing (unless other-
wise stated). Our main evaluation measure is the
correction accuracy—the percentage of the testing
set examples that are corrected—in which we fol-
low Yu et al. (2018) and compare the corrected
parse to the gold parse using exact set match.® We
also report the end-to-end accuracy on Spider de-
velopment set (which we use to construct our test-
ing set) of the two turn interaction scenario: first
Seq2Struct attempts to parse the input question. If
it produced a wrong parse the question together
with that parse and the corresponding feedback are
attempted using the correction model. An example
is considered “correct” if any of the two attempts
produces the correct parse.’

6.1 Baselines

Methods that ignore the feedback: One ap-
proach for parse correction is re-ranking the de-
coder beam (top-n predictions) (Yin and Neubig,

SExact set match is a binary measure of exact string match-
ing between SQL queries that handles ordering issues.

7 Seq2Struct produces correct parses for 427/1034 of Spi-
der Dev. 511 of the remaining examples are supported by our
SQL explanation patterns. We estimate the end-to-end accu-
racy as (427+511%X/100) /1034, where X is the correction
accuracy.

2019). Here, we simply discard the top-1 candi-
date and sample uniformly and with probabilities
proportional to the parser score of each candidate.
We also report the accuracy of deterministically
choosing the second candidate.

Handcrafted re-ranking with feedback: By
definition, the feedback f describes how to edit
the initial parse p’ to reach the correct parse. We
represent the “diff” between p’ and each candi-
date parse in the beam p; as set of schema items
that appear only in one of them. For exam-
ple, the diff between select first_name,
last_name from students and select
first_name from teachersis {last_name,
students, teachers}. We assign a score to p; equals
to the number of matched schema items in the diff
with f. A schema item (e.g., “first_name”) is con-
sidered to be mentioned in f is all the individual
tokens (“first” and “name”) are tokens in f.

Seq2Struct+Feedback: The Seq2Struct model
we use to generate erroneous parses for data col-
lection (Section 3.1) reached an accuracy of 41.3%
on Spider’s development set when trained on the
full Spider training set for 40,000 steps. After that
initial training phase, we adapt the model to in-
corporating the feedback by appending the feed-
back to the question for each training example
in SPLASH and we continue training the model
to predict the gold parse for another 40,000 steps.
We note that Seq2Struct+Feedback does not use
the mispredicted parses.

EditSQL+Feedback: EditSQL (Zhang et al.,
2019) is the current state-of-the-art model for con-
versational text-to-SQL. It generates a parse for
an utterance at a conversation turn ¢ by editing
(i.e., copying from) the parse generated at turn ¢ — 1
while condition on all previous utterances as well as
the schema. We adapt EditSQL for the correction
task by providing the question and the feedback
as the utterances at turn one and two respectively,
and we force it to use the mispredicted parse the
the prediction of turn one (rather than predicting it).
We train the model on the combination of the train-
ing sets of SPLASH and Spider (which is viewed as
single turn conversations).®

To provide an estimate of human performance,
we report the percentage of feedback instances la-

8We exclude turn one predictions from the training loss
when processing SPLASH examples otherwise, the model
would be optimized to produce the mispredicted parses. We
use the default hyper-parameters provided by the authors to-
gether with the development set of SPLASH for early stopping.
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Exact Match Accuracy (%)

Baseline Correction  End-to-End
Without Feedback
= Seq2Struct N/A 41.30
= Re-ranking: Uniform 2.39 42.48
= Re-ranking: Parser score 11.26 46.86
= Re-ranking: Second Best 11.85 47.15
With Feedback
= Re-ranking: Handcrafted 16.63 49.51
= Seq2Struct+Feedback 13.72 48.08
= EditSQL+Feedback 25.16 53.73
Re-ranking Upper Bound 36.38 59.27
Estimated Human Accuracy 81.50 81.57

Table 4: Correction and End-to-End accuracies of Baseline models.

beled as Complete as described in Section 4.2. We
also report the re-ranking upper bound (the per-
centage of test examples whose gold parses exist
in Seq2Struct beam).

6.2 Main Results

The results in Table 4 suggest that: (1) the feedback
we collect is indeed useful for correcting erroneous
parses; (2) incorporating the mispredicted parse
helps the correction process (even a simple hand-
crafted baseline that uses the mispredicted parases
outperforms a strong trained neural model); and
(3) the state-of-the-art EditSQL model equipped
with BERT (Devlin et al., 2019) achieves the best
performance, yet it still struggles with the task we
introduce, leaving a large gap for improvement.

6.3 Analysis

Does EditSQL+Feedback use the feedback? To
confirm that EditSQL+Feedback does not learn to
ignore the feedback, we create a test set of random
feedback by shuffling the feedback of SPLASH test
examples. The accuracy on the randomized test set
drops to 5.6%.

Is SPLASH just another conversational text-
to-SQL dataset? We evaluate the trained EditSQL
models on SParC and CoSQL (state-of-the-art mod-
els trained by EditSQL authors) on SPLASH test set,
and we get accuracies of 3.4% and 3.2%, respec-
tively. That confirms that SPLASH targets different
modeling aspects as we discuss in Section 5.

Is SPLASH only useful for -correcting
Seq2Struct errors? EditSQL is also shown to
achieve strong results on Spider (57.6% on the
development set) when used in a single-turn

mode (state-of-the-art when we started writing
this paper). We collect feedback for a sample of
179 mispredicted parses produces by EditSQL.’
Using the EditSQL+Feedback model trained
on SPLASH we get a correction accuracy of 14.6%
for EditSQL errors.

7 Conclusions and Future Work

We introduce the task of SQL parse correction
using natural language feedback together with a
dataset of human-authored feedback paired with
mispredicted and gold parses. We compare base-
line models and show that natural language feed-
back is effective for correcting parses, but still state-
of-the-art models struggle to solve the task. Future
work can explore improving the correction mod-
els, leveraging logs of natural language feedback
to improve text-to-SQL parsers, and expanding the
dataset to include multiple turns of correction.
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A Appendix

A.1 Feedback Collection instructions

Figure 7 shows the instructions shown to the anno-
tators.

A.2 Feedback Collection Interface
Screenshot

Figure 8 shows an example of the data collection
interface. The Predicted SQL is: ’SELECT
name, salary FROM instructor

WHERE dept_name LIKE "$math%"’.
Note that neither the gold nor the predicted SQL
are shown to the annotator.

A.3 Example of Explanations

Figure 9 shows several examples of how different
SQL components can be explained in natural lan-
guage.

1.

11.

12.

Correcting Steps for Answering Questions.

We have some information stored in tables; each row is a record that consists of one or more columns. Using the
given tables, we can answer questions by doing simple systematic processing steps over the tables. Notice that the
answer to the question is always the result of the last step. Also, notice that the steps might not be in perfect English
as they were generated automatically. Each step, generates a table of some form.

For each question, we have generated steps to answer it, but it turned out that something is wrong with the steps.
Your task is write down in English a short (one sentence most of the time) description of the mistakes and how it
can be correct. It is important to note that we are not looking for rewritings of steps, but rather we want to get short
natural English commands (15 words at most) that describes the correction to be made to get the correct answer.
Use proper and fluent English. Don’t use math symbols.

Don’t rewrite the steps after correcting them. But rather, just describe briefly the change that needs to be made.

We show only two example values from each table to help you understand the contents of each table. Tables typically
contain several rows. Never use the shown values to write your input.

There could be more than one wrong piece in the steps. Please, make sure to mention all of them not just one.

If the steps are correct, just check the “All steps are correct” box

Some of the mistakes are due to additional steps or parts of steps. Your feedback can suggest removing those parts.
Do not just copy parts of the questions. Be precise in your input.

If in doubt about how to correct a mistake, just mention what is wrong.

You do not have to mention which steps contain mistakes. If in doubt, do not refer to a particular step.

The generated steps might not sound like the smartest way for answering the question. But it is the most systematic
way that works for all kinds of questions and all kinds of tables. Please, do not try to propose smarter steps.

Figure 7: Crowd-sourcing instructions
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Question:
Find the name and salary of instructors who are advisors of the students from the
Math department.

Steps:
find the , salary of instructor table for which dept name equals Math

Tables with example values:

instructor student

1D dept_name|| salary ID dept_name|[tot_cred
16593 1|[Pimenta |[Cybernetics|[79866.95||  [32245||Saariluomal[Statistics  |[12
28400| Atanassov/|[Statistics  |[84982.92 79589||Schopp Elec. Eng. |[104

Feedback:
L] All steps are correct

the students, not the instructors, should be from the Math
department

“suomit [ Sip |

Figure 8: An example of the data collection interface. The Predicted SQL is: * SELECT name, salary FROM
instructor WHERE dept_name LIKE "$%$math%"’. Note thatneither the gold nor the predicted SQL are
shown to the annotator.

SQL Component Explanation

intersect show the rows that are in both the results of step 1 and step 2

union show the rows that are in any of the results of step 1 and step 2

except show the rows that are in the results of step 1 but not in the results of step 2

limit n only keep the first n rows of the results in step 1

join for each row in Table 1, find corresponding rows in Table 2

select find Column of Table

aggregation find each value of Columnl in Table along with the OPERATION of Column2
of the corresponding rows to each value

ordering order Direction by Column

condition whose Column Operation Value

distinct without repetition

Figure 9: Examples of how different SQL components can be explained in natural language
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