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Abstract

Although deep learning models have brought
tremendous advancements to the field of open-
domain dialogue response generation, recent
research results have revealed that the trained
models have undesirable generation behaviors,
such as malicious responses and generic (bor-
ing) responses. In this work, we propose a
framework named “Negative Training” to min-
imize such behaviors. Given a trained model,
the framework will first find generated samples
that exhibit the undesirable behavior, and then
use them to feed negative training signals for
fine-tuning the model. Our experiments show
that negative training can significantly reduce
the hit rate of malicious responses, or discour-
age frequent responses and improve response
diversity.

1 Introduction

End-to-end dialogue response generation can be
formulated as a sequence-to-sequence (seq2seq)
task: given a dialogue context, the model is asked
to generate a high-quality response. In recent years,
deep learning models, especially seq2seq language
generation models (Sutskever et al., 2014; Cho
et al., 2014), have brought significant progress to
the field of dialogue response generation.

However, recent research has revealed undesir-
able behaviors of seq2seq models that are side ef-
fects of standard maximum likelihood estimation
(MLE) training, such as the generic (boring) re-
sponse problem (Li et al., 2016), vulnerability to
adversarial attacks (Cheng et al., 2018; Belinkov
and Bisk, 2017), and the malicious (egregious) re-
sponse problem (He and Glass, 2019).

In this work, we propose and explore the nega-
tive training framework to correct unwanted behav-
iors of a dialogue response generator. During nega-
tive training, we first find or identify input-output
pairs for a trained seq2seq model that exhibit some

undesirable generation behavior, treat them as “bad
examples,” and use them to feed negative training
signals to the model. Correspondingly, we regard
the training data as “good examples” and standard
MLE training as “positive training”.

The idea of negative training is inspired from the
way parents might teach their children to use lan-
guage by incorporating both positive and negative
training signals. For example, when teaching chil-
dren how to use “love” and “hate”, in addition to
using positive examples like “I love apples
but I hate bananas”, they might also point
out that saying “I hate you” to someone is con-
sidered impolite.

In this work, negative training is used to address
the malicious response problem and the frequent re-
sponse problem (to be described in Section 3.2 and
3.3) in open-domain dialogue response generation.
In our experiments, we show that negative training
can significantly reduce the hit rate for malicious
responses, or discourage frequent responses and
greatly improve response diversity.

2 Model Formulation

In this work we adopt recurrent neural network
(RNN) based encoder-decoder seq2seq models
(Sutskever et al., 2014; Cho et al., 2014; Mikolov
et al., 2010), which are widely used in NLP appli-
cations like dialogue response generation (Li et al.,
2016), machine translation (Luong et al., 2015),
etc. We use x = {x1,x2, ...,xn} to denote one-
hot vector representations of the input sequence,
which serves as context or history information (e.g.
the previous utterance), y = {y1, y2, ..., ym}1 to
denote scalar indices of the corresponding refer-
ence target sequence, and V as the vocabulary. We
use θ to represent the parameters for the seq2seq

1The last word ym is a <EOS> token which indicates the
end of a sentence.



2045

model, and Pθ(y|x) as the model’s generative dis-
tribution.

On the encoder side, every xt will be first
mapped into its corresponding word embedding
xembt . Then {xembt } are input to a long-short term
memory (LSTM) (Hochreiter and Schmidhuber,
1997) RNN to get a sequence of latent representa-
tions {henct }2 .

For the decoder, at time t, similarly yt is first
mapped to yembt . Then a context vector ct, which
is supposed to capture useful latent information of
the input sequence, needs to be constructed. We
adopt the “attention” mechanism for context vec-
tor construction: first an attention mask vector at
(which is a distribution) on the input sequence is
calculated to decide which part to focus on, then
the mask is applied to the latent vectors to construct
ct: ct =

∑n
i=1 at(i)h

enc
i . We use the formulation

of the “general” type of global attention, described
in (Luong et al., 2015), to calculate the mask.

During baseline training, standard MLE training
with stochastic gradient descent (SGD) is used to
minimize the negative log-likelihood (NLL) of the
reference target sentence given the input sentence
in the data:

LMLE(Pdata; θ) = E(x,y)∼Pdata(− logPθ(y|x))

= E(x,y)∼Pdata(−
m∑
t=1

logPθ(yt|y<t,x))

(1)

where y<t refers to {y0, y1, ..., yt−1}, in which y0
is set to a begin-of-sentence token <BOS>.

We consider two popular ways of decoding (gen-
erating) a sentence given an input: greedy decod-
ing and sampling. In practice for dialogue response
generation, greedy decoding will provide stable and
reproducible outputs, but is severely affected by the
generic response problem. Sampling will provide
more diverse but less predictable responses, and
thus give rise to the malicious response problem.

3 The Negative Training Framework

3.1 Overview

The negative training framework3 is a two-stage
process. Given a trained model, we put it under a

2Here h refers to the output layer of LSTM, not the cell
memory layer.

3Our code is available at https://github.mit.
edu/tianxing/negativetraining_acl2020

“debugging” environment Ptest which provides test
input samples4, get the model’s decoded samples
and decide (using well-defined criteria) whether
each input-output pair exhibits some undesirable
behavior. Then, these “bad” pairs are used to pro-
vide negative training signals.

Negative training can be derived from Empirical
Bayes Risk Minimization (Och, 2003). Specifically,
the overall objective is to minimize the expected
risk that the model exhibits undesirable decoding
behavior:

LNEG(Ptest; θ) = Ex∼PtestEy∼Pθ(y|x)c(x,y)

(2)

where c(x,y) refers to the binary criteria that will
be 1 if (x,y) exhibits undesirable behavior, and 0
otherwise.

Then, we take the derivative of LNEG w.r.t. to
θ, using the log derivative trick (widely used in
Reinforcement Learning (Sutton and Barto, 1998)):

∇θLNEG(Ptest; θ) =

Ex∼PtestEy∼Pθ(y|x)c(x,y) · ∇θ logPθ(y|x)
(3)

Compared to LMLE in eq. (1), which maximizes
the log-likelihood of training data samples, LNEG
minimizes the log-likelihood of undesirable model
samples. This is the reason why we call it “Nega-
tive Training”.

In our preliminary experiments, we find that neg-
ative training needs to be augmented with the stan-
dard MLE objective LMLE, encouraging the model
to retain its original performance:

LNEG+POS = LNEG + λPOSLMLE (4)

In our experiments, we find λPOS can be simply set
to 0.1 to work well.

In the next two sections, we discuss how the gen-
eral negative training framework is tailored for the
malicious response problem and frequent response
problem, respectively.

3.2 Negative Training for the Malicious
Response Problem

For the malicious response problem, we follow the
methodology proposed by (He and Glass, 2019).

4Note that here “test” does not refer to the test data.

https://github.mit.edu/tianxing/negativetraining_acl2020
https://github.mit.edu/tianxing/negativetraining_acl2020


2046

First a list of malicious target sentences are cre-
ated, then the gibbs-enum algorithm5 is called to
find “trigger input” that will cause the model to
assign large probability to the target sequence. The
following “hit types” are defined:

• o-greedy-hit: A trigger input sequence is
found such that the model generates the target
sentence from greedy decoding.

• o-sample-min/avg-hit: A trigger input se-
quence is found such that the model generates
the target sentence with an minimum/average
word log-probability larger than a given
threshold Tout.

• io-sample-min/avg-hit: In addition to the
definition of o-sample-min/avg-hit, we also
require that the average log-likelihood of the
trigger input sequence, measured by a LM, is
larger than a threshold Tin. This enforces the
trigger input to be more likely to be input by
real-world users.

Tout is set to the trained seq2seq model’s average
word log-likelihood on the test data, and Tin is
set to be a reasonable LM’s 6 average word log-
likelihood on the test set. The intuition is that the
model should not assign larger probabilities to the
malicious sentences than the reference sentences in
the test set. Note that these hit types act as criteria
c(x,y), indicating whether a target sentence is hit
by a trigger input.

As shown in (He and Glass, 2019), a typi-
cal seq2seq model trained by MLE has around a
10% hit rate for malicious targets w.r.t. sample-
min/avg-hit, across data-sets. However, very few
malicious targets are hit w.r.t. greedy-hit, so in
this work, we focus on the malicious response prob-
lem for sampling during decoding. In Table 1 we
show pairs of trigger inputs and the malicious target
sentences w.r.t io-sample-min-hit, for the baseline
model on Ubuntu data.

Now we apply the negative training framework,
and aim to reduce the hit rate of a trained model
for a given list of malicious targets. During each
iteration of negative training, for every target sen-
tence ytarget, we first call the gibbs-enum algorithm
to find the trigger input xtrigger. And if the target is

5For this paper to be self-contained, we describe the gibbs-
enum algorithm in Appendix A.

6A LSTM language model (LM) is trained on the same
training data (regarding each response as an independent sen-
tence).

Algorithm 1 Negative Training for the Malicious
Response Problem

Input: Target list Ytarget, model parameter θ,
learning rate α, criterion for hit c, and training
data Dtrain
for ytarget in Ytarget do

Get xtrigger for ytarget using the gibbs-enum
algorithm.
while c(xtrigger,ytarget) = 1 do

Negative update:
θ = θ − α · ∇θlogPθ(ytarget|xtrigger)
Get data sample (xpos,ypos) from Dtrain
Positive update:
θ = θ + α · λPOS · ∇θlogPθ(ypos|xpos)

end while
end for

Trigger Input: ok give me a minute to see what you have
in the first place
Malicious Target: no one will help you

Trigger Input: mirc it ’s supposed to be <unk> ’ that
seems to be the problem
Malicious Target: i do n’t think i like you

Trigger Input: i know about photoshop i use skype too
but i ca n’t buy it
Malicious Target: you have no money

Table 1: Examples of trigger inputs.

hit (c(xtrigger,ytarget) = 1), we update the model to
reduce the log-likelihood Pθ(ytarget|xtrigger). The
process is formulated in Algorithm 17.

For each trigger input, multiple iterations of neg-
ative updates are usually needed before the hit cri-
terion is no longer met. Note that in each iteration,
the gibbs-enum algorithm is called again to find a
new trigger input for each target.

In our experiments, we show that negative train-
ing effectively reduces the hit rate for malicious tar-
gets after each iteration, and eventually, the gibbs-
enum algorithm can no longer find trigger inputs
for a large number of targets that were initially hits.

3.3 Negative Training for the Frequent
Response Problem

The generic response problem (Li et al., 2016)
for end-to-end dialogue response generation refers
to the typical behavior of a MLE trained model,
whereby the generated responses are mostly safe,

7Note that in actual implementation, the algorithm is mini-
batch based.
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boring or uninformative (such as “i don’t
know” or “good idea”). However, it is diffi-
cult to invent an automatic criterion to determine
whether a response is generic or not.

In this work, we focus on the frequent response
problem, as a sub-problem of the generic response
problem. It refers to the behavior that a trained
model generates exactly the same (usually boring)
response, with a high frequency.

We propose to use a metric called max-ratio to
measure how severe the frequent response problem
is. Given a test set and a decoding method, the
model will generate a set of responses, and max-
ratio is defined to be the ratio of the most frequent
response. In our experiments, the baseline models
have a max-ratio of around 0.3 for response like “I
don’t know” across different data-sets, showing
the severity of the frequent response problem.

During negative training for frequent response,
first a threshold ratio rthres is selected (such as 0.01),
and responses with frequency ratio larger than rthres
will be discouraged. For each iteration, the model’s
response to each training data input sentence is
monitored and responses with frequency larger than
rthres will be used as negative examples. The fre-
quency statistics are calculated using the current
and the last 200 mini-batches. The procedure is
formulated in Algorithm 2. Note that positive train-
ing is also needed here for the model to retain its
original performance.

Algorithm 2 Negative Training for the Frequent
Response Problem

Input: Model parameter θ, threshold ratio rthres,
learning rate α, and training data set Dtrain
for (xpos,ypos) in Dtrain do

Generate response ysample from the model.
Compute the frequency rsample for ysample in
the last 200 mini-batches.
if rsample > rthres then

Negative update:
θ = θ − α · ∇θlogPθ(ysample|xpos)
Positive update:
θ = θ + α · λPOS · ∇θlogPθ(ypos|xpos)

end if
end for

In our experiments, it is shown that negative
training significantly reduces max-ratio for the
model on test data, and greatly increases the di-
versity of the model’s responses.

4 Experiments

We conduct experiments on three publicly available
conversational dialogue data-sets: Ubuntu, Switch-
board, and OpenSubtitles. To save space, descrip-
tions of the data-sets are provided in Appendix B.

4.1 Baseline Model Training

For all data-sets, we first train an LSTM based LM
and attention based seq2seq models with one hid-
den layer of size 600, and the embedding size is
set to 300. For Switchboard a dropout layer with
rate 0.3 is added to the model because over-fitting
is observed. The mini-batch size is set to 64 and
we apply SGD training with a fixed starting learn-
ing rate (LR) for 10 iterations, and then another
10 iterations with LR halving. For Ubuntu and
Switchboard, the starting LR is 1, while a starting
LR of 0.1 is used for OpenSubtitles. The results
are shown in Appendix C.

After negative training, in addition to measuring
the hit rate for malicious targets or the diversity of
the responses, it is also important to check whether
the original sample quality of the baseline model
is damaged. Towards that end, the perplexity of
the model before and after negative training will
be compared, we also conduct human evaluation to
measure whether the sample quality is decreased.
Other popular measurements, such as the BLEU
score, have been found to correspond poorly with
human judgements (Liu et al., 2016). Nevertheless,
we also find that the model’s BLEU score does not
become worse after negative training.

4.2 Experiments on the Malicious Response
Problem

Following (He and Glass, 2019), a list of malicious
targets are created to test whether negative train-
ing can teach the model not to generate sentences
in the list. However, in addition to prevent the
model from generating targets in a specific list, it is
also important to check whether negative training
generalizes to other malicious targets. So, a test tar-
get list which contains similar but different targets
from the training list are also created to test gener-
alization. The training and test lists each contain
0.5k targets.

It is also interesting to investigate whether us-
ing more malicious targets for negative training
can lower the hit rate on the test list. Towards that
end, we train a seq2seq paraphrase model using
the paraNMT data-set (Wieting and Gimpel, 2017),
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Train Paraphrase Test

you are broken you ’re broken are you broken
i will kill i ’ll kill myself i ’m going to kill

you are bad you ’re bad you are really bad
you are stupid you ’re stupid you are so stupid
you shut up shut your mouth can you shut up

Table 2: Examples of malicious targets in the training
list, the test list, and paraphrases of the training targets
which will be used for augmentation.

with a model of the same structure as described in
Section 2. Then, the paraphrase model is used to
generate paraphrases of the malicious targets in the
training target list8 for augmentation. In our ex-
periments, the training list without augmentation is
first used for negative training, then it is augmented
with 0.5k or 2k paraphrased targets respectively (1
or 4 paraphrase copies for each training target sen-
tence). Samples of the malicious targets are shown
in Table 2. The same training, augmented training
and test list are used for all three data-sets, and
there is no sequence-level overlap between training
lists (augmented or not) and the test list.

In our experiments, we spotted a harmful side
effect of negative training where frequent words in
the training target list are severely penalized and
sometimes receive low probability even in normal
perplexity testing, especially for experiments with
small λPOS. To alleviate this problem, we use a
simple technique called frequent word avoiding
(FWA): negative gradients are not applied to the
most frequent words in the malicious training target
list9. For example, when doing negative training
against the target “i hate you <EOS>”, only
“hate” will get a negative gradient.

For all data-sets, negative training (Algorithm
1) is executed on the (trained) baseline model for
20 iterations over the training target list. A fixed
learning rate of 0.01 and a mini-batch size of 100
are used. λPOS is set to 0.1 for Ubuntu, and to 1 for
Switchboard and OpenSubtitles.

The main results are shown in Table 3. For
Switchboard we focus on sample-avg-hit because
we find very few targets are hit w.r.t. sample-
min-hit (Similar results are reported in (He and
Glass, 2019)), while for Ubuntu and OpenSubti-
tles we focus on sample-min-hit. Note that we
get very similar results w.r.t. sample-avg-hit for

8Note the training and test lists are manually created.
9The exact avoiding word set used is {<EOS>, you, i,

me, are, to, do}.

Ubuntu o-sample-min-hit io-sample-min-hit
Training Train Test PPL Train Test PPL

Baseline 16.4% 12.6% 59.49 7.8% 5.2% 59.49
+neg-tr(0.5k) 0% 2% 60.42 0.2% 1.4% 59.97
+neg-tr(1k) 0.1% 1.4% 60.72 0.1% 1% 60.21
+neg-tr(2.5k) 0.04% 0% 62.11 0.2% 0% 63.37

Switchboard o-sample-avg-hit io-sample-avg-hit
Training Train Test PPL Train Test PPL

Baseline 27.8% 27.6% 42.81 19.6% 21% 42.81
+neg-tr(0.5k) 3.8% 13.4% 42.91 2.2% 9.4% 42.7
+neg-tr(1k) 2.4% 5% 42.96 2.1% 4% 42.76
+neg-tr(2.5k) 1.3% 2.6% 43.51 1.5% 1.6% 43.24

OpenSub o-sample-min-hit io-sample-min-hit
Training Train Test PPL Train Test PPL

Baseline 40.7% 36.6% 70.81 19.2% 13.6% 70.81
+neg-tr(0.5k) 5.8% 12.2% 77.90 5.2% 6.6% 73.48
+neg-tr(1k) 5.2% 7% 68.77 9.2% 4.6% 68.92
+neg-tr(2.5k) 4.8% 6% 74.07 3.4% 3.6% 75.9

Table 3: Main results for the hit rates of malicious tar-
gets before and after negative training. ”Neg-tr(0.5k)”
refers to the negative training experiment using the orig-
inal malicious training target list without paraphrase
augmentation.

Ubuntu/OpenSubtitles, and we omit those results
here.

We first observe that, for all data-sets, negative
training can effectively reduce the hit rate on the
training target list to less than 5% with little or no
degradation on perplexity. We provide a compari-
son of the model’s behavior in Appendix D. Also,
significant hit rate reduction is achieved on the test
target list, which has no overlap with the training
target list. This shows that negative training, simi-
lar to traditional positive training, also generalizes.

It is also shown that training list augmentation
can further reduce the malicious target hit rate con-
sistently for both training and test lists. For ex-
ample, on Ubuntu data, the hit rate after negative
training w.r.t. o-sample-min-hit is 12.6%, and can
be reduced to 0% with paraphrase augmentation.

We find that that the model’s generation behav-
ior in non-adversarial setting is almost the same
as the baseline after negative training. For exam-
ple, the 10-best list from beam search before/after
neg-train has larger than 90% overlap. We also find
that the model generates similar samples (shown
in Appendix G). We believe the reason is that neg-
ative training focuses on making the model more
robust with the adversarial inputs, and the original
generation behavior is kept intact by the positive
training (Equation 4).
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4.3 Experiments on the Frequent Response
Problem

In this section we report results where the nega-
tive training framework (Section 3.3) is applied to
tackle the frequent response problem. For all data-
sets, negative training is executed for 20 iterations
on the MLE trained model over the training data,
with a selected rthres. A fixed learning rate of 0.001
is used for all three data-sets, the mini-batch size is
set to 64 and λPOS is set to 1.

In this work, we focus on improving the model’s
greedy decoding behavior instead of beam search
for the following two reasons: 1) For the base-
line models our experiments, we found that beam
search gives far worse response diversity than
greedy decoding, because it favors short responses
(usually only of length one) too much, resulting in
a much larger max-ratio; 2) During training, doing
beam search is much more time-consuming than
greedy decoding.

To measure the diversity of the model’s gener-
ated responses, in addition to max-ratio introduced
in Section 3.3, which is specially design for the fre-
quent response problem, we also adopt the entropy
metric proposed in (Zhang et al., 2018). Given a set
of responses from decoding on the test set, Ent-n
calculates the entropy of the n-gram distribution:

Ent-n =
∑
g∈Gn

−r(g) log r(g) (5)

where Gn is the set of all n-grams that appeared
in the response set, and r(g) refers to the ratio
(frequency) of n-gram g w.r.t. all n-grams in the
responses set.

In our experiments with negative training, a
harmful side-effect is spotted: during decoding,
the model tends to output long and ungrammatical
responses such as “i do n’t know if it
’s a real valid deterrent crime
crime yeah i ’m satisfied trying
not to”. We believe the reason is that the
sentence end token <EOS> gets over penalized
during negative training (it appears in every
negative example). So, we apply the same frequent
word avoiding (FWA) technique used in Section
4.2, except that here only the negative gradient for
<EOS> is scaled by 0.110.

In addition to the baseline model, we compare
our proposed negative training framework against a

10We find that scal by zero will result in extremely short
responses.

Ubuntu rthres PPL M-ratio E-2 E-3

Test-set N/A N/A 1.1% 10.09 11.32
Baseline N/A 59.49 4.4% 5.33 5.92
+GAN N/A 59.43 4.7% 5.30 5.87
+MMI N/A N/A 4.5% 5.34 5.93

+neg-train 1% 59.76 1.2% 5.74 6.52
+neg-train 0.1% 60.06 1.3% 6.44 7.55

Switchboard rthres PPL M-ratio E-2 E-3

Test-set N/A N/A 10.0% 8.61 9.65
Baseline N/A 42.81 37.4% 2.71 2.42
+GAN N/A 42.69 49% 2.66 2.35
+MMI N/A N/A 23% 5.48 6.23

+neg-train 10% 42.84 12.4% 3.86 4.00
+neg-train 1% 44.32 9.8% 5.48 6.03

OpenSubtitles rthres PPL M-ratio E-2 E-3

Test-set N/A N/A 0.47% 9.66 10.98
Baseline N/A 70.81 20% 4.22 4.59
+GAN N/A 72.00 18.8% 4.08 4.43
+MMI N/A N/A 3.6% 7.63 9.08

+neg-train 1% 72.37 3.1% 5.68 6.60
+neg-train 0.1% 75.71 0.6% 6.90 8.13

Table 4: Main results of negative training with differ-
ent rthres, for the frequent response problem. Diversity
metrics for the responses in the test data are also shown,
“E-n”/“M-ratio” refer to the Ent-n/max-ratio metric.

GAN (Goodfellow et al., 2014a) approach, where a
discriminator D is introduced and the generator G
tries to fool the discriminator to believe its samples
are real data samples:

min
G

max
D

V (D,G)

=min
G

max
D
{E(x,y)∼Pdata logD(x,y)+

Ex∼Pdata,y∼G(·|x) log(1−D(x,y))}

(6)

where the generator G refers to the seq2seq model
Pθ. The GAN framework is very attractive for tack-
ling the generic response problem (Li et al., 2017;
Zhang et al., 2018), because the discriminator can
act as a critic to judge whether a response sam-
ple is boring. We describe the training details and
hyper-parameter setting for the GAN approach in
Appendix E.

We also provide an comparison to the MMI de-
coding (Li et al., 2016), which is a very popular
work in this field. We implement MMI-antiLM for
our models.

The experimental results are shown in Table 4.
The experiment with best diversity result and non-
degenerate sample quality are shown in bold. We
first observe a large gap on the diversity measures
between the baseline models and the test set, es-
pecially on Switchboard and OpenSubtitles data.
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Switchboard OpenSubtitles

Input: it ’ll cost about three hundred dollars for a stud Input: captain you wanted to see me
Baseline: i think that ’s a good idea Baseline: i ’m sorry
Neg-train: i think i would agree with that Neg-train: i was in the hotel

Input: we want to breed her with a champion Input: yes mr. brown could i
Baseline: i do n’t know Baseline: i do n’t know
Neg-train: i think it was Neg-train: i ’d like to introduce myself

Input: now these are long haired Input: leave it to me
Baseline: i do n’t know Baseline: i ’m not going to leave you
Neg-train: i ’ve been in a very very good shape Neg-train: you ’re taking the first step

Input: the other two are short hairs Input: thank you mr. brown
Baseline: i do n’t know Baseline: i ’m sorry
Neg-train: i ’m going to try to get it Neg-train: i ’m happy to see you

Table 5: Greedy-decoding samples on the test data before and after negative training. The samples are consecutive
(input of the next sample is the reference response for the previous one).

That indicates the severity of the frequent/generic
response problem. Then, results of negative train-
ing with different rthres show that negative training
can significantly increase response diversity, with
little or no loss on PPL or BLEU score (shown
in Appendix F) performance. For example, max-
ratio is reduced by 73.7% and Ent-3 is increased by
149% for Switchboard data. Further, consistent im-
provement is achieved when a smaller rthres is used.
However, sample quality will decrease (becoming
too long or ungrammatical) when rthres is too small.
The reason could be that when too much diversity
is asked for, the model will go to extremes to pro-
vide diversity, resulting in degradation of sample
quality.

Comparing to MMI, note that although on
Switchboard/Opensubtitles MMI gives higher en-
tropy, the max-ratio is not as low as the negative
training result, which is the main focus of our
work (the frequent response problem). We also
find MMIs hyper-parameters are difficult to tune:
the working set of hyper-parameters dont transfer
well between data-sets. Further, for MMI in a lot of
configuration tries the model gives ungrammatical
output samples (this is problem is also mentioned
in the paper (Li et al., 2016)). For the Ubuntu data,
we can not even find a configuration that performs
better than the baseline model.

Further, the vanilla GAN approach is not shown
to be effective in our experiments. The reason
could be that despite its discriminative nature, GAN
training still feeds “positive” gradient for samples
from the model (eq. (11) and eq. (12) in Appendix

E), which is not enough to prevent the model from
generating them. We believe additional techniques
(Zhang et al., 2018; Li et al., 2017) are needed for
the GAN approach to be effective.

We show some model samples before and af-
ter negative training in Table 5. It is shown that
negative training effectively discourages boring re-
sponses, and response diversity is improved. How-
ever, one limitation is observed that diversity does
not necessarily lead to improvement on the infor-
mativeness of the response w.r.t. the input (some-
times the model generates a completely unrelated
response). More samples for all three data-sets are
included in Appendix G.

To rigorously verify negative training is not get-
ting diversity when sacrificing the sample’s qual-
ity, a human evaluation is conducted and results
are shown in Table 6. It is observed that negative
training wins by a significant margin for all three
data-sets. This shows that, negative training does
not damage the quality of the generated samples.
Note that the human evaluation does not reflect the
diversity of the model, because the raters only rate
one response at a time.

5 Related Works

The malicious response problem and the gibbs-
enum algorithm to find trigger inputs (He and Glass,
2019) originates from a large body of work on ad-
versarial attacks for deep learning models, with
continuous input space (e.g. image classification)
(Goodfellow et al., 2014b; Szegedy et al., 2013), or
discrete input space (e.g. sentence classification, or
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Data-set Tie Baseline Neg-train

Ubuntu 64.6% 14.0% 21.3%
Switchboard 45.1% 18.3% 36.4%
Opensubtitles 58.3% 19.0% 22.6%

Table 6: Human Evaluation Results. For each data-
set, 300 samples (input-output pairs) from the base-
line model and the model after negative training, are
evenly distributed to 4 English-speaking human evalu-
ators. The evaluators are asked to pick a preferred sam-
ple, or report a tie. This evaluation is to check whether
negative training has hampered the quality of the gen-
eration.

seq2seq models) (Papernot et al., 2016; Samanta
and Mehta, 2017; Liang et al., 2018; Ebrahimi et al.,
2017; Belinkov and Bisk, 2017; Chen et al., 2017).
“Adversarial attacks” refer to the phenomenon that
when an imperceptible perturbation is applied to
the input, the output of the model can change sig-
nificantly (from correct to incorrect). The trigger
inputs found by the gibbs-enum algorithm, can be
regarded as a type of “targeted attack”, in which the
attack triggers the model to assign large probability
to a specific malicious target sentence.

Motivated by the works on adversarial attacks,
various adversarial training strategies (Madry
et al., 2017; Belinkov and Bisk, 2017; Miyato et al.,
2016) have been proposed to make trained models
more robust against those attacks. During adver-
sarial training, the model is fed with adversarial
examples and the correct labels. The negative train-
ing framework considered in this work differs from
adversarial training in that, instead of asking the
model to “do the right thing” (referred to as “posi-
tive training” in this work), the model is trained to
“not do the wrong thing”. To the best of our knowl-
edge, this is the first work investigating the concept
of negative training for dialogue response models,
and the first proposed solution for the malicious
response problem.

The malicious target list used in this work is very
similar to the one used in (He and Glass, 2019). We
propose to add a test target list to test the general-
ization of negative training. Further, we show that
the training list can be effectively augmented by
utilizing a paraphrase model.

In this work, we propose a definition for the fre-
quent response problem, as a sub-problem of the
generic response problem (Li et al., 2016). Much
research work has devoted to alleviate the generic
response problem in end-to-end dialogue response

generation, (Li et al., 2016) use the maximal mu-
tual information (MMI) objective, and propose to
utilize an auxiliary LM to penalize the generic re-
sponse during decoding. Closely related to this
work, sophisticated training frameworks based on
GAN (Zhang et al., 2018; Li et al., 2017) have
also been shown to be effective, where techniques
such as variational information maximization or
reward for every generation step (REGS) are pro-
posed to improve GAN training. However, in our
experiments it is shown that a vanilla GAN ap-
proach gives unsatisfactory results. Whether neg-
ative training11 is complementary to these frame-
works is worth investigating in future work.

Finally, note that the concept of negative training
in this work is very different to the negative sam-
ples in word2vec training (Mikolov et al., 2013).
The negative samples in word2vec training are used
to prevent the training from being trivial, and is usu-
ally chosen randomly. In this work, the negative
samples are carefully chosen to exhibit some par-
ticular undesirable behavior of the model, and is
then used to correct such behavior.

6 Conclusion

In this work, we propose the negative training
framework to correct undesirable behaviors of a
trained neural dialogue response generator. The al-
gorithm involves two major steps, first input-output
pairs that exhibit bad behavior are identified, and
then are used for fine-tuning the model as nega-
tive training examples. We also show that negative
training can be derived from an overall objective
(eq. (2)) to minimize the expected risk of unde-
sirable behaviors. In our experiments, we apply
negative training to the malicious response prob-
lem and the frequent response problem and get
significant improvement for both problems.
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A The Gibbs-enum Algorithm for
Finding Trigger Inputs

In this section, we briefly describe the gibbs-enum
algorithm, we also refer readers to (He and Glass,
2019) for the intuition and full development of the
algorithm. The goal of gibbs-enum is that given
a (malicious) target sentence y of length m, and
a trained seq2seq model, we aim to find a trigger
input sequence x, which is a sequence of one-hot
vectors {xt} of length n, to minimize the negative
log-likelihood (NLL) that the model will generate
y. We formulate our objective function L(x;y)
below:

L(x;y) = − 1

m

m∑
t=1

logPseq2seq(yt|y<t,x)+λinR(x)

(7)
A regularization term R(x) is applied when look-
ing for io-sample-min/avg-hit, which is the LM
score of x:

R(x) = − 1

n

n∑
t=1

logPLM (xt|x<t) (8)

In our experiments we set λin to 1 when searching
for io-sample-min/avg-hit, otherwise 0.

During gibbs-enum, every time we focus on a
single index slot xt, and find the best one-hot xt
while keeping the other parts of x fixed:

argmin
xt

L(x<t,xt,x>t;y) (9)

Since the size of vocabulary |V | is finite, it is possi-
ble to try all of them and get the best local xt. But
it is still costly since each try requires a forwarding
call to the neural seq2seq model. To address this,
gradient information is utilized to narrow the range
of search. We temporarily regard xt as a continu-
ous vector and calculate the gradient of the negated
loss function with respect to it:

∇xt(−L(x<t,xt,x>t;y)) (10)

Then, we try only the G indexes that have the high-
est value on the gradient vector. The procedure is
formulated in Algorithm 3.

For hyper-parameters of gibbs-enum, T (the
maximum number of sweeps) is set to 5, G (size
of the set of indices for enumeration during each
update) is set to 100, the algorithm is run 5 times
with different random initializations and the trigger
input with the best loss is returned. Note that larger
hyper-parameters can give slightly higher hit rates,
but will be more time-consuming.

Algorithm 3 Gibbs-enum algorithm
Input: a trained seq2seq model, target sequence
y, a trained LSTM LM, objective function
L(x;y), input length n, output length m, and
target hit type.
Output: a trigger input x∗

if hit type is in “io-hit” then
initialize x∗ to be a sample from the LM

else
randomly initialize x∗ to be a valid input se-
quence

end if
for s = 1, 2, . . . , T do

for t = 1, 2, . . . , n do
get gradient ∇x∗

t
(−L(x∗<t,x∗t ,x∗>t;y)),

and set list H to be the G indexes with
highest value in the gradient vector
for j = 1, 2, . . . , G do

set x′ to be:
concat(x∗<t, one-hot(H[j]),x∗>t)
if L(x′;y) < L(x∗;y) then

set x∗ = x′

end if
end for

end for
if this sweep has no improvement for L then

break
end if

end for
return x∗
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B Data-set Descriptions

Three publicly available conversational dialogue
data-sets are used: Ubuntu, Switchboard, and
OpenSubtitles. The Ubuntu Dialogue Corpus
(Lowe et al., 2015) consists of two-person conver-
sations extracted from the Ubuntu chat logs, where
a user is receiving technical support from a help-
ing agent for various Ubuntu-related problems. To
train the baseline model, we select the first 200k di-
alogues for training (1.2M sentences / 16M words),
and the next 5k dialogues for validation and test-
ing respectively. We select the 30k most frequent
words in the training data as our vocabulary, and
out-of-vocabulary (OOV) words are mapped to the
<UNK> token.

The Switchboard Dialogue Act Corpus 12 is a
version of the Switchboard Telephone Speech Cor-
pus, which is a collection of two-sided telephone
conversations, annotated with utterance-level dia-
logue acts. In this work we only use the conversa-
tion text part of the data, and select 1.1k dialogues
for training (181k sentences / 1.2M words), 25 dia-
logues for validation and 25 dialouges for testing.
We select the 10k most frequent words in the train-
ing data as our vocabulary.

We also report experiments on the OpenSub-
titles data-set13 (Tiedemann, 2009). The key
difference between the OpenSubtitles data and
Ubuntu/Switchboard data is that it contains a large
number of malicious sentences, because the data
consists of movie subtitles. We randomly select 5k
movies for training (each movie is regarded as a
big dialogue), which contains 5M sentences and
36M words, and 50 movies for validation and test-
ing respectively. The 30k most frequent words are
used as the vocabulary. We show some samples of
the three data-sets in Appendix C.

For pre-processing, the text of all three data-sets
are lower-cased, and all punctuations are removed.
The maximum input sequence length is set to 15,
with a maximum output sequence length of 20.
Longer input sentences are cropped, and shorter
input sentences are padded with <PAD> tokens.

C Data Samples and Baseline Perplexity
Results

Some data samples for Ubuntu, Switchboard, Open-
subtitles are shown in Table 7.

12http://compprag.christopherpotts.net/swda.html
13http://www.opensubtitles.org/

Ubuntu

A: anyone here got an ati hd 2400 pro card
working with ubuntu and compiz ?
B: i have an hd 3850
A: is it working with compiz ?

Switchboard

A: what movies have you seen lately
B: lately i ’ve seen soap dish
A: oh
B: which was a
A: that was a lot of fun

OpenSubtitles

B: you ca n’t do that .
A: my husband ’s asleep .
B: your husband know you ’re soliciting ?
A: give us a f*** ’ break .

Table 7: Data samples of Ubuntu, Switchboard and
OpenSubtitles Dialogue corpus

Model Test-PPL(NLL)
Ubuntu Switchboard OpenSubtitles

LM 66.29(4.19) 44.37(3.79) 74.74(4.31)
Seq2seq 59.49(4.08) 42.81(3.75) 70.81(4.26)

Table 8: Perplexity (PPL) and negative log-likelihood
(NLL) of for baseline models on the test set.

Baseline perplexity results are shown Table 8.
Note that Tin and Tout for various types of hit types
discussed in Section 3.2 are set accordingly, for ex-
ample, for io-sample-min-hit on the Ubuntu data,
Tin is set to -4.19, and Tout is set to -4.08.

D Auxiliary Experiment Results for the
Malicious Response Problem

We compare the models behavior before and after
negative training in Figure 1. It is shown that neg-
ative training effectively reduce probability mass
assigned to malicious targets, while keeping the be-
havior on the test-set unchanged. However, almost
every word in the malicious target sentences gets
lower probability, especially when FWA is not used.
Ideally, we believe a “polite” language generator
should only assign low probability to the key words
in a malicious sentence. For example, in the tar-
get “i shall take my revenge”, only the
“take my revenge” part should be penalized.
Whether negative training has the potential to truly
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this will be the end of you
<EOS> i will not help you

<EOS> i
shall take my

revenge
<EOS> i do n't want to help you

<EOS> i hate to see you
<EOS>
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Figure 1: Negative Log-probability (NLL) the model assigned to the test list malicious targets (when fed with
trigger inputs) or test data samples. The data-set is OpenSubtitles and hit type is io-sample-min-hit. Sentences
are separated by <EOS>.

teach “manners” to a language generator is worth
further investigation.

E Configurations of the GAN Approach
for Dialogue Response Generation

We use the log derivative trick (Wu et al., 2017) for
the gradient derivation of the generator:

∇θGV (D,G;x)

=∇θGEy∼G(·|x) log(1−D(x,y))

=Ey∼G(·|x)∇θG logG(y|x) log(1−D(x,y))

(11)

where x is one input data sample. Then the genera-
tor is updated by:

θG ← θG − αG · ∇θGV (D,G) (12)

where αG is the learning rate for the generator.
Note that because log(1 − D(x,y)) is negative,
∇θG logG(y|x) will be eventually scaled posi-
tively and added to θG.

In our GAN experiments, different values in the
set {0.01, 0.001, 0.0001} are tried for αG and the
best result is reported.

We now describe the model configuration of the
discriminator D(x,y) used in our work. The dis-
criminator model configuration is similar to the
one used in (Yu et al., 2016). First xt is converted
to xembt as described in Section 2. Then a 1D-
convolution operation and max-over-time pooling
operation (Kim, 2014) is applied, with 300 filters

of window size 3/4/5/6, respectively. The resulting
representation vector is denoted as xrep. .

The same network forward pass is also applied
for y to get yrep. Finally, xrep and yrep are con-
catenated and passed to a 3-layer high-way DNN
classifier (Srivastava et al., 2015) of hidden size
2000.

Following (Goodfellow et al., 2014a), we alter-
nately train the discriminator and the generator with
a ratio of 3:1. The discriminator is trained with a
learning rate of 0.01. Similar to negative train-
ing, our experiments show that positive training (or
“teacher forcing” in some literature) is crucial to
aid the model to maintain its original performance,
during GAN training.

F Auxiliary Experiment Results for the
Frequent Response Problem

In Talbe 9, we show BLEU-4 scores for the model
after negative training. It is shown that the BLEU-
4 performance does not become worse (or even
improves) after negative training. This result, to
some extent, verifies our claim that the quality of
model samples is not compromised.

G More Model Samples for Comparison

We show the model samples before/after nega-
tive training for the malicious response problem
in Talbe 10. It is shown that the model’s generation
behavior does not change much.

For the frequent response problem, we show
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Ubuntu PPL BLEU-4 M-ratio

Baseline 59.49 0.443 4.4%
Neg-train 60.06 0.464 1.3%

Switchboard PPL BLEU-4 M-ratio

Baseline 42.81 0.476 37.4%
Neg-train 44.32 0.475 9.8%

OpenSubtitles PPL BLEU-4 M-ratio

Baseline 70.81 0.502 20%
Neg-train 75.71 0.526 0.6%

Table 9: BLEU-4 results for negative training.

Input: he had worked for united fruit company there
Baseline: it was kind of a frightening senators
Neg-train: it was good housekeeping

Input: uh-huh
Baseline: right
Neg-train: right

Input: they in fact they had
Baseline: golly
Neg-train: joe came back from alabama

Input: they in fact used some of the equipment that
had been left over

Baseline: i do n’t think i ’m fanatic very many
Neg-train: i do n’t know

Input: he turned them down
Baseline: i love the game
Neg-train: i love it

Table 10: Consecutive model samples before and after
negative training for preventing malicious response on
Switchboard data.

more decoding samples for comparison of different
training methods in Table 11, 12 and 13.

Switchboard

Input: people do n’t realize it
Baseline: i do n’t know
GAN: i do n’t know
Neg-train: i think it ’s a very interesting

Input: they ’re sort of siamese in a way
Baseline: uh-huh
GAN: uh-huh
Neg-train: yeah

Input: they have the gloves on the paws
Baseline: uh-huh
GAN: uh-huh
Neg-train: i ’m really glad that they do n’t have that

Input: they ’re usually two colored
Baseline: i think that ’s a good idea
GAN: i think that ’s a good idea
Neg-train: yeah

Input: she ’s predominantly black
Baseline: i do n’t know
GAN: he ’s a little bit
Neg-train: he ’s a very good actor

Input: she has chocolate paws chocolate stomach
and silver on her hindquarters

Baseline: uh-huh
GAN: uh-huh
Neg-train: i think they have a great deal of <unk>

Input: she ’s quite attractive looking
Baseline: he ’s a good actor
GAN: he ’s a little bit
Neg-train: he ’s a good guy

Input: hope the stud will find her attractive
Baseline: i do n’t know
GAN: i do n’t know
Neg-train: i ’ve been in a very very good shape

Input: that she has kittens that look like her
Baseline: i think that ’s a good idea
GAN: i think that ’s a good idea
Neg-train: yeah

Input: that she has a whole bunch of kittens
Baseline: i think that ’s a good idea
GAN: i think that ’s a good idea
Neg-train: yeah

Input: we have to be careful
Baseline: i ’m not sure
GAN: i ’m not sure
Neg-train: i ’m in the dallas area

Input: we have to get a particular color point stud
Baseline: i do n’t know
GAN: i do n’t know
Neg-train: i ’m just going to

Input: you ca n’t just breed them with anything
Baseline: i do n’t know
GAN: i do n’t know
Neg-train: i have n’t been to a lot of the movies lately

Input: we have to get a silver point himie
Baseline: i do n’t know
GAN: i do n’t know
Neg-train: i ’m going to have to go back to work

Table 11: Consecutive model samples before and after
negative training for Switchboard data.
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Ubuntu

Input: just how good ubuntu
Baseline: i ’m not sure i ’m just a <unk>
GAN: i ’m not sure if it ’s possible but

i ’m sure there ’s a way to do it
Neg-train: i have a server that i want

to install on a server
Input: help please i broke xp with linux url
i ca n’t get an invite

Baseline: what is the problem
GAN: what is the problem
Neg-train: what is the issue

Input: the case it ’s possible that you might need to
repair the xp installation

Baseline: i have a <unk> and i want to install ubuntu
on a usb drive

GAN: i have a <unk> and i want to install ubuntu
on a usb drive

Neg-train: i have a live cd and i want to install
it on a hard drive
Input: but that takes hours

Baseline: i do n’t know i ’m not sure
GAN: i do n’t know
Neg-train: i ’m not sure it ’s a hardware problem

Input: how to i enable tv-out via fglrx
Baseline: you can use the <unk> driver
GAN: you can use the nvidia driver from the wiki
Neg-train: you can try the <unk> driver

Input: they may be able to help you in channel # ati
Baseline: thanks
GAN: thanks
Neg-train: i have a ati radeon mobility radeon hd

Input: nobody feels like responding in # ati
Baseline: i have no idea what you ’re talking about
GAN: i have no idea
Neg-train: i think i found it

Input: its always worked perfectly for me why ’s it crap
Baseline: i do n’t know i ’m not sure
GAN: i do n’t know i ’m not sure
Neg-train: i do n’t know i just use it to make it work

Input: i have seen better performance on an
xp vm under parallels

Baseline: i have a <unk> and i have a <unk>
GAN: i have a <unk> and a <unk> <unk>
Neg-train: i have a vm with vmware

server running on it
Input: use 2kpro and no issues whatsoever with 256mb
of ram and a 10gig vdrive

Baseline: i have a <unk> and it ’s not a big deal
GAN: i have a <unk> and it ’s not a big deal
Neg-train: i have a p4 with 1gb ram and i have a

1gb swap
Input: will someone please help me with php
config on ubuntu

Baseline: what ’s the problem
GAN: what ’s the problem
Neg-train: what ’s wrong

Input: you are having trouble with
if someone knows how to help they will try

Baseline: i ’m trying to get a <unk> to
work with ubuntu

GAN: i ’m not sure i ’m just trying to help you
Neg-train: i ’m trying to get a <unk> of my <unk>

and i want to know if it ’s possible

Table 12: Consecutive model samples before and after
negative training for Ubuntu data.

Opensubtitiles

Input: i feel really bad marco so bad
Baseline: i ’m sorry
GAN: i ’m not a <unk>
Neg-train: i feel so bad

Input: me at least that you ’ll come back tell me
you ’re not ill

Baseline: i ’m not going to be in the house
GAN: i ’m not going to let you go
Neg-train: i ’m so glad you are

Input: tell me you forgive me
Baseline: i ’m not going to let you go
GAN: i ’m not going to leave you
Neg-train: you ’re not the only one

Input: will you forgive me
Baseline: i ’ll be all right
GAN: i ’ll be all right
Neg-train: you ’ll never see the

Input: what do you want
Baseline: i ’m going to the hospital
GAN: i ’m going to the <unk>
Neg-train: i want to go

Input: get up hurry i got an idea
Baseline: i ’m not going to be a <unk>
GAN: i ’m not going to see you
Neg-train: you ’re not getting a bad idea

Input: where are we going
Baseline: i do n’t know
GAN: to the <unk>
Neg-train: to the hotel

Input: shut up and keep down
Baseline: i ’m not going to get a doctor
GAN: i ’m not going to get a doctor
Neg-train: we ’re not going

Input: we ’re screwed there ’s no wind
Baseline: i ’m not going to see you
GAN: i ’m not a <unk>
Neg-train: we ’re in the <unk>

Input: how ’d your old lady come to think you
was kidnapped

Baseline: i do n’t know
GAN: i do n’t know
Neg-train: i ’d like to ask you to take a look at it

Input: your son is in our hands
Baseline: i ’m not going to
GAN: he ’s not here
Neg-train: he ’s not going to leave

Input: we ’ll stay in touch
Baseline: i ’m sorry
GAN: i ’m not going to
Neg-train: i think we ’ve got a <unk>

Input: get the money ready or else
Baseline: i ’m not going to be a <unk>
GAN: i ’m not going to be here
Neg-train: i want the <unk>

Input: i think they got it
Baseline: you know what
GAN: oh
Neg-train: it ’s a good thing

Input: you wanted to scare them
Baseline: i do n’t know
GAN: i ’m not a <unk>
Neg-train: i ’m a coward

Table 13: Consecutive model samples before and after
negative training for Opensubtitles data.


