
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1853–1868
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

1853

Learning to Update Natural Language Comments Based on Code Changes

Sheena Panthaplackel1, Pengyu Nie2, Milos Gligoric2,
Junyi Jessy Li3, Raymond J. Mooney1

1Department of Computer Science
2Department of Electrical and Computer Engineering

3Department of Linguistics
The University of Texas at Austin

spantha@cs.utexas.edu, pynie@utexas.edu, gligoric@utexas.edu,
jessy@austin.utexas.edu, mooney@cs.utexas.edu

Abstract
We formulate the novel task of automatically
updating an existing natural language com-
ment based on changes in the body of code
it accompanies. We propose an approach that
learns to correlate changes across two dis-
tinct language representations, to generate a se-
quence of edits that are applied to the existing
comment to reflect the source code modifica-
tions. We train and evaluate our model using
a dataset that we collected from commit his-
tories of open-source software projects, with
each example consisting of a concurrent up-
date to a method and its corresponding com-
ment. We compare our approach against mul-
tiple baselines using both automatic metrics
and human evaluation. Results reflect the chal-
lenge of this task and that our model outper-
forms baselines with respect to making edits.

1 Introduction

Software developers include natural language com-
ments alongside source code as a way to docu-
ment various aspects of the code such as function-
ality, use cases, pre-conditions, and post-conditions.
With the growing popularity of open-source soft-
ware that is widely used and jointly developed, the
need for efficient communication among develop-
ers about code details has increased. Consequently,
comments have assumed a vital role in the devel-
opment cycle. With developers regularly refactor-
ing and iteratively incorporating new functionality,
source code is constantly evolving; however, the
accompanying comments are not always updated
to reflect the code changes (Tan et al., 2007; Ratol
and Robillard, 2017). Inconsistency between code
and comments can not only lead time-wasting con-
fusion in tight project schedules (Hu et al., 2018)
but can also result in bugs (Tan et al., 2007). To
address this problem, we propose an approach that
can automatically suggest comment updates when
the associated methods are changed.

/**@return double the roll euler angle.*/
public double getRotX() {

return mOrientation.getRotationX();
}

Previous Version

/**@return double the roll euler angle in degrees.*/
public double getRotX() {

return Math.toDegrees(mOrientation.getRotationX());
}

Updated Version

Figure 1: Changes in the getRotX method and its corre-
sponding @return comment between two subsequent com-
mits of the rajawali-rajawali project, available on GitHub.

Prior work explored rule-based approaches for
detecting inconsistencies for a limited set of cases;
however, they do not present ways to automatically
fix these inconsistencies (Tan et al., 2007; Ratol
and Robillard, 2017). Recent work in automatic
comment generation aims to generate a comment
given a code representation (Liang and Zhu, 2018;
Hu et al., 2018; Fernandes et al., 2019); although
these techniques could be used to produce a com-
pletely new comment that corresponds to the most
recent version of the code, this could potentially
discard salient content from the existing comment
that should be retained. To the best of our knowl-
edge, we are the first to formulate the task of auto-
matically updating an existing comment when the
corresponding body of code is modified.

This task is intended to align with how develop-
ers edit a comment when they introduce changes
in the corresponding method. Rather than deleting
it and starting from scratch, they would likely only
modify the specific parts relevant to the code up-
dates. For example, Figure 1 shows the getRotX
method being modified to have the return value
parsed into degrees. Within the same commit, the
corresponding comment is revised to indicate this,
without imposing changes on parts of the comment
that pertain to other aspects of the return value.
We replicate this process through a novel approach
which is designed to correlate edits across two dis-
tinct language representations: source code and
natural language comments. Namely, our model

1854

is trained to generate a sequence of edit actions,
which are to be applied to the existing comment,
by conditioning on learned representations of the
code edits and existing comment. We additionally
incorporate linguistic and lexical features to guide
the model in determining where edits should be
made in the existing comment. Furthermore, we
develop an output reranking scheme that aims to
produce edited comments that are fluent, preserve
content that should not be changed, and maintain
stylistic properties of the existing comment.

We train and evaluate our system on a corpus
constructed from open-source Java projects on
GitHub, by mining their commit histories and ex-
tracting examples from consecutive commits in
which there was a change to both the code within
a method as well as the corresponding Javadoc
comment, specifically, the @return Javadoc tag.
These comments, which have been previously stud-
ied for learning associations between comment and
code entities (Panthaplackel et al., 2020), follow a
well-defined structure and describe characteristics
of the output of a method. For this reason, as an
initial step, we focus on @return comments in
this work. Our evaluation consists of several au-
tomatic metrics that are used to evaluate language
generation tasks as well as tasks that relate to edit-
ing natural language text. We also conduct human
evaluation, and assess whether human judgments
correlate with the automatic metrics.

The main contributions of this work include
(1) the task of automatically updating an existing
comment based on source code changes and (2) a
novel approach for learning to relate edits between
source code and natural language that outperforms
multiple baselines on several automatic metrics and
human evaluation. Our implementation and data
are publicly available.1

2 Task

Given a method, its corresponding comment, and
an updated version of the method, the task is to
update the comment so that it is consistent with the
code in the new method. For the example in Fig-
ure 1, we want to generate “@return double the
roll euler angle in degrees.” based on the changes
between the two versions of the method and the
existing comment “@return double the roll euler
angle.” Concretely, given (Mold, Cold) and Mnew,

1https://github.com/panthap2/
LearningToUpdateNLComments

Figure 2: High-level overview of our system.

where Mold and Mnew denote the old and new ver-
sions of the method, and Cold signifies the previous
version of the comment, the task is to produce Cnew,
the updated version of the comment.

3 Edit Model Overview

We design a system that examines source code
changes and how they relate to the existing com-
ment in order to produce an updated comment
that reflects the code modifications. Since Cold
and Cnew are closely related, training a model
to directly generate Cnew risks having it learn to
just copy Cold. To explicitly inform the model
of edits, we define the target output as a se-
quence of edit actions, Cedit, to indicate how the
existing comment should be revised (e.g., for
Cold=ABC, Cedit=<Delete>A<DeleteEnd> implies
that A should be deleted to produce Cnew=BC). Fur-
thermore, in order to better correlate these edits
with changes in the code, we unify Mold and Mnew
into a single diff sequence that explicitly identifies
code edits, Medit. We discuss in more detail how
Medit and the training Cedit are constructed in §4.

Figure 2 shows a high-level overview of our sys-
tem. We design an encoder-decoder architecture
consisting of three components: a two-layer, bi-
directional GRU (Cho et al., 2014) that encodes
the code changes (Medit), another two-layer, bi-
directional GRU that encodes the existing comment
(Cold), and a GRU that is trained to decode a se-
quence of edit actions (Cedit).2 We concatenate the

2We refrain from using the self-attention model (Vaswani
et al., 2017) because prior work (Fernandes et al., 2019) sug-
gests that it yields lower performance for comment generation.

https://github.com/panthap2/LearningToUpdateNLComments
https://github.com/panthap2/LearningToUpdateNLComments

1855

final states of the two encoders to form a vector that
summarizes the content in Medit and Cold, and use
this vector as the initial state of the decoder. The
decoder essentially has three subtasks: (1) identify
edit locations in Cold; (2) determine parts of Medit
that pertain to making these edits; and (3) apply
updates in the given locations based on the rele-
vant code changes. We rely on an attention mecha-
nism (Luong et al., 2015) over the hidden states of
the two encoders to accomplish the first two goals.
At every decoding step, rather than aligning the cur-
rent decoder state with all the encoder hidden states
jointly, we align it with the hidden states of the two
encoders separately. We concatenate the two result-
ing context vectors to form a unified context vector
that is used in the final step of computing attention,
ensuring that we incorporate pertinent content from
both input sequences. Consequently, the resulting
attention vector carries information relating to the
current decoder state as well as knowledge aggre-
gated from relevant portions of Cold and Medit.

Using this information, the decoder performs
the third subtask, which requires reasoning across
language representations. Specifically, it must de-
termine how the source code changes that are rele-
vant to the current decoding step should manifest
as natural language updates to the relevant portions
of Cold. At each step, it decides whether it should
begin a new edit action by generating an edit start
keyword, continue the present action by generating
a comment token, or terminate the present action
by generating an end-edit keyword. Because ac-
tions relating to deletions will include tokens in
Cold, and actions relating to insertions are likely to
include tokens in Medit, we equip the decoder with
a pointer network (Vinyals et al., 2015) to accom-
modate copying tokens from Cold and Medit. The
decoder generates a sequence of edit actions, which
will have to be parsed into a comment (§4.4).

4 Representing Edits

Here we define the edit lexicon that is used to con-
struct the input code edit sequence, Medit, and the
target comment edit sequence, Cedit.

4.1 Edit Lexicon

We use difflib3 to extract code edits and target com-
ment edits. Both the input code edit sequence and
the target comment edit sequence consist of a se-

3https://docs.python.org/3/library/
difflib.html

ries of edit actions; each edit action is structured as
<Action> [span of tokens] <ActionEnd>.4

We define four types of edit actions: Insert,
Delete, Replace, and Keep. Because the Replace

action must simultaneously incorporate distinct
content from two versions (i.e., tokens in the old
version that will be replaced, and tokens in the
new version that will take their place), it follows a
slightly different structure:

<ReplaceOld> [span of old tokens]
<ReplaceNew> [span of new tokens]
<ReplaceEnd>

4.2 Code Edits
We extract the edits between Mold and Mnew using
the edit lexicon to construct Medit, the code edit
sequence used as input in one of the encoders. Fig-
ure 2 (top right) shows the Medit corresponding to
code changes in Figure 1.

In contrast to line-level code diffs that are com-
monly used for commit message generation (Loy-
ola et al., 2017; Jiang et al., 2017; Xu et al., 2019),
this representation allows us to explicitly capture
more fine-grained edits. While we could exploit
the abstract syntax tree (AST) structure of source
code and represent the changes between the ASTs
corresponding to the two versions of code, prior
work suggests that such techniques do not always
lead to improved performance (Yin et al., 2019).
We leave it to future work to investigate how the
AST structure can be leveraged for this task.

4.3 Comment Edits
We identify the changes between Cold and Cnew to
construct Cedit, the target comment edit sequence.
During inference, the output comment is produced
by parsing the predicted edit sequence (§4.4). We
introduce a slightly modified set of specifications
that disregards the Keep type when constructing
the sequence of edit actions, referred to as the con-
densed edit sequence.

The intuition for disregarding Keep and the span
of tokens to which it applies is that we can simply
copy the content that is retained between Cold and
Cnew, instead of generating it anew. By doing post-
hoc copying, we simplify learning for the model
since it has to only learn what to change rather than
also having to learn what to keep.

We design a method to deterministically place
edits in their correct positions in the absence of

4Preliminary experiments showed that this performed
better than structuring edits at the token-level as in other
tasks (Shin et al., 2018; Li et al., 2018; Dong et al., 2019;
Awasthi et al., 2019).

https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html

1856

Keep spans. For the example in Figure 1, the
raw sequence <Insert>in degrees<InsertEnd>

does not encode information as to where “in de-
grees” should be inserted. To address this, we bind
an insert sequence with the minimum number of
words (aka “anchors”) such that the place of inser-
tion can be uniquely identified. This results in the
structure that is shown for Cedit in Figure 2. Here
“angle” serves as the anchor point, identifying the
insert location. Following the structure of Replace,
this sequence indicates that “angle” should be re-
placed with “angle in degrees,” effectively inserting
“in degrees” and keeping “angle” from Cold, which
appears immediately before the insert location. See
Appendix A for details on this procedure.

4.4 Parsing Edit Sequences
Since the decoder is trained to predict a sequence
of edit actions, we must align it with Cold and copy
unchanged tokens in order to produce the edited
comment. We denote the predicted edit sequence as
C’edit and the corresponding parsed output as C’new.
This procedure entails simultaneously following
pointers, left-to-right, on Cold and C’edit, which
we refer to as Pold and Pedit respectively. Pold is
advanced, copying the current token into C’new at
each point, until an edit location is reached. The
edit action corresponding to the current position
of Pedit is then applied, and the tokens from its
relevant span are copied into C’new if applicable.
Finally, Pedit is advanced to the next action, and
Pold is also advanced to the appropriate position in
cases involving deletions and replacements. This
process repeats until both pointers reach the end of
their respective sequences.

5 Features
We extract linguistic and lexical features for tokens
in Medit and Cedit, many of which were shown to
improve learning associations between @return
comment and source code entities in our prior
work (Panthaplackel et al., 2020). We incorporate
these features into the network as one-hot vectors
that are concatenated to Medit and Cedit embeddings
and then passed through a linear layer. These vec-
tors are provided as inputs to the two encoders. All
sequences are subtokenized, e.g., camelCase→
camel, case.
Features specific to Medit: We aim to take advan-
tage of common patterns among different types of
code tokens by incorporating features that identify
certain categories: edit keywords, Java keywords,

and operators. If a token is not an edit keyword,
we have indicator features for whether it is part of
a Insert, Delete, ReplaceNew, ReplaceOld, or
Keep span. We believe this will be particularly
helpful for longer spans since edit keywords only
appear at either the beginning or end of a span. Fi-
nally, we include a feature to indicate whether the
token matches a token in Cold. This is intended to
help the model identify locations in Medit that may
be relevant to editing Cold.
Features specific to Cold: We include whether a
token matches a code token that is inserted, deleted,
or replaced in Medit. These help align parts of Cold
with code edits, assisting the model in determining
where edits should be made. In order to exploit
common patterns for different types of tokens, we
incorporate features that identify whether the token
appears more than once in Cold or is a stop word,
and its part-of-speech.
Shared features: We include whether the token is
a subtoken that was originally part of a larger token
and its index if so (e.g., split from camelCase,
camel and case are subtokens with indices 0 and
1 respectively). These features aim to encode im-
portant relationships between adjacent tokens that
are lost once the body of code and comment are
transformed into a single, subtokenized sequences.
Additionally, because we focus on @return com-
ments, we introduce features intended to guide the
model in identifying relevant tokens in Medit and
Cold. Namely, we include whether a given token
matches a token in a return statement that is
unique to Mold, unique to Mnew, or present in both.
Similarly, we indicate whether the token matches
a token in the subtokenized return type that is
unique to Mold, unique to Mnew, or present in both.

6 Reranking
Reranking allows the incorporation of addi-
tional priors that are difficult to back-propagate,
by re-scoring candidate sequences during beam
search (Neubig et al., 2015; Ko et al., 2019; Kriz
et al., 2019). We incorporate two heuristics to re-
score the candidates: 1) generation likelihood and
2) similarity to Cold. These heuristics are computed
after parsing the candidate edit sequences (§4.4).
Generation likelihood. Since the edit model is
trained on edit actions only, it does not globally
score the resulting comment in terms of aspects
such as fluency and overall suitability for the up-
dated method. To this end, we make use of a pre-
trained comment generation model (§8.2) that is

1857

Train Valid Test
Examples 5,791 712 736
Projects 526 274 281
Edit Actions 8,350 1,038 1,046
Sim (Mold, Mnew) 0.773 0.778 0.759
Sim (Cold, Cnew) 0.623 0.645 0.635

Code
Unique 7,271 2,473 2,690
Mean 86.4 87.4 97.4
Median 46 49 50

Comm.
Unique 4,823 1,695 1,737
Mean 10.8 11.2 11.1
Median 8 9 9

Table 1: Number of examples, projects, and edit actions;
average similarity between Mold and Mnew as the ratio of over-
lap; average similarity between Cold and Cnew as the ratio of
overlap; number of unique code tokens and mean and median
number of tokens in a method; and number of unique comment
tokens and mean and median number of tokens in a comment.

trained on a substantial amount of data for gen-
erating Cnew given only Mnew. We compute the
length-normalized probability of this model gener-
ating the parsed candidate comment, C’new, (i.e.,
P (C′new|M new)

1/N where N is the number of tokens
in C’new). This model gives preference to com-
ments that are more likely for Mnew and are more
consistent with the general style of comments.5

Similarity to Cold. So far, our model is mainly
trained to produce accurate edits; however, we also
follow intuitions that edits should be minimal (as an
analogy, the use of Levenshtein distance in spelling
correction). To give preference to predictions that
accurately update the comment with minimal mod-
ifications, we use similarity to Cold as a heuristic
for reranking. We measure similarity between the
parsed candidate prediction and Cold using ME-
TEOR (Banerjee and Lavie, 2005).
Reranking score. The reranking score for each
candidate is a linear combination of the original
beam score, the generation likelihood, and the sim-
ilarity to Cold with coefficients 0.5, 0.3, and 0.2
respectively (tuned on validation data).

7 Data

We extracted examples from popular, open-source
Java projects using GitHub’s commit history. We
extract pairs of the form (method, comment) for
the same method across two consecutive commits
where there is a simultaneous change to both the
code and comment. This creates somewhat noisy
data for the task of comment update; Appendix B
describes filtering techniques to reduce this noise.

5We attempted to integrate this model into the training
procedure of the edit model through joint training; however,
this deteriorated performance.

We first tokenize Mold and Mnew using the javalang6

library. We subtokenize based on camelCase and
snake_case, as in previous work (Allamanis et al.,
2016; Alon et al., 2019; Fernandes et al., 2019).
We then form Medit from the subtokenized forms
of Mold and Mnew. We tokenize Cold and Cnew by
splitting by space and punctuation. We remove
HTML tags and the “@return” that precedes all
comments, and also subtokenize tokens since code
tokens may appear in comments as well. The gold
edit action sequence, Cedit, is computed from these
processed forms of Cold and Cnew.

To avoid having examples that closely resem-
ble one another in training and test, the projects in
the training, test, and validation sets are disjoint,
similar to Movshovitz-Attias and Cohen (2013).
Table 1 gives dataset statistics. Of the 7,239 exam-
ples in our final dataset, 833 of them were extracted
from the diffs used in Panthaplackel et al. (2020).
Including code and comment tokens that appear
at least twice in the training data as well as the
predefined edit keywords, the code and comment
vocabulary sizes are 5,945 and 3,642 respectively.

8 Experimental Method

We evaluate our approach against multiple rule-
based baselines and comment generation models.

8.1 Baselines

Copy: Since much of the content of Cold is typi-
cally retained in the update, we include a baseline
that merely copies Cold as the prediction for Cnew.
Return type substitution: The return type of a
method often appears in its @return comment.
If the return type of Mold appears in Cold and the
return type is updated in the code, we substitute
the new return type while copying all other parts of
Cold. Otherwise, Cold is copied as the prediction.
Return type substitution w/ null handling: As
an addition to the previous method, we also check
whether the token null is added to either a
return statement or if statement in the code.
If so, we copy Cold and append the string or null
if null, otherwise, we simply copy Cold. This base-
line addresses a pattern we observed in the data
in which ways to handle null input or cases that
could result in null output were added.

6https://pypi.org/project/javalang/

https://pypi.org/project/javalang/

1858

8.2 Generation Model

One of our main hypotheses is that modeling edit
sequences is better suited for this task than generat-
ing comments from scratch. However, a counter ar-
gument could be that a comment generation model
could be trained from substantially more data, since
it is much easier to obtain parallel data in the form
(method, comment), without the constraints of si-
multaneous code/comment edits. Hence the power
of large-scale training could out-weigh edit mod-
eling. To this end, we compare with a generation
model trained on 103,473 method/@return com-
ment pairs collected from GitHub.

We use the same underlying neural architecture
as our edit model to make sure that the difference in
results comes from the amount of training data and
from using edit of representations only: a two-layer,
bi-directional GRU that encodes the sequence of
tokens in the method, and an attention-based GRU
decoder with a copy mechanism that decodes a
sequence of comment tokens. We expect the incor-
poration of more complicated architectures, e.g.,
tree-based (Alon et al., 2019) and graph-based (Fer-
nandes et al., 2019) encoders which exploit AST
structure, can be applied to both an edit model and a
generation model, which we leave for future work.

Evaluation is based on the 736 (Mnew, Cnew)
pairs in the test set described in §7. We ensure
that the projects from which training examples are
extracted are disjoint from those in the test set.

8.3 Reranked Generation Model

In order to allow the generation model to exploit the
old comment, this system uses similarity to Cold (cf.
§6) as a heuristic for reranking the top candidates
from the previous model. The reranking score is
a linear combination of the original beam score
and the METEOR score between the candidate
prediction and Cold, both with coefficient 0.5 (tuned
on validation data).

8.4 Model Training

Model parameters are identical across the edit
model and generation model, tuned on validation
data. Encoders have hidden dimension 64, the de-
coder has hidden dimension 128, and the dimen-
sion for code and comment embeddings is 64. The
embeddings used in the edit model are initialized
using the pre-trained embedding vectors from the
generation model. We use a dropout rate of 0.6, a
batch size of 100, an initial learning rate of 0.001,

and Adam optimizer. Models are trained to min-
imize negative log likelihood, and we terminate
training if the validation loss does not decrease for
ten consecutive epochs. During inference, we use
beam search with beam width=20.

9 Evaluation

9.1 Automatic Evaluation

Metrics: We compute exact match, i.e., the per-
centage of examples for which the model prediction
is identical to the reference comment Cnew. This is
often used to evaluate tasks involving source code
edits (Shin et al., 2018; Yin et al., 2019). We also
report two prevailing language generation metrics:
METEOR (Banerjee and Lavie, 2005), and aver-
age sentence-level BLEU-4 (Papineni et al., 2002)
that is previously used in code-language tasks (Iyer
et al., 2016; Loyola et al., 2017).

Previous work suggests that BLEU-4 fails to ac-
curately capture performance for tasks related to
edits, such as text simplification (Xu et al., 2016),
grammatical error correction (Napoles et al., 2015),
and style transfer (Sudhakar et al., 2019), since
a system that merely copies the input text often
achieves a high score. Therefore, we also include
two text-editing metrics to measure how well our
system learns to edit: SARI (Xu et al., 2016), orig-
inally proposed to evaluate text simplification, is
essentially the average of N-gram F1 scores corre-
sponding to add, delete, and keep edit operations;7

GLEU (Napoles et al., 2015), used in grammatical
error correction and style transfer, takes into ac-
count the source sentence and deviates from BLEU
by giving more importance to n-grams that have
been correctly changed.

Results: We report automatic metrics averaged
across three random initializations for all learned
models, and use bootstrap tests (Berg-Kirkpatrick
et al., 2012) for statistical significance. Table 2
presents the results. While reranking using Cold
appears to help the generation model, it still sub-
stantially underperforms all other models, across
all metrics. Although this model is trained on
considerably more data, it does not have access
to Cold during training and uses fewer inputs and
consequently has less context than the edit model.
Reranking slightly deteriorates the edit model’s

7Although the original formulation only used precision for
the delete operation, more recent work computes F1 for this
as well (Dong et al., 2019; Alva-Manchego et al., 2019).

1859

Model xMatch (%) METEOR BLEU-4 SARI GLEU

Baselines
Copy 0.000 34.611 46.218 19.282 35.400
Return type subt. 13.723§ 43.106¶ 50.796‖ 31.723 42.507∗

Return type subst. + null 13.723§ 43.359 51.160† 32.109 42.627∗

Models Generation 1.132 11.875 10.515 21.164 17.350
Edit 17.663 42.222¶ 48.217 46.376 45.060

Reranked models Generation 2.083 18.170 18.891 25.641 22.685
Edit 18.433 44.698 50.717‖† 45.486 46.118

Table 2: Exact match, METEOR, BLEU-4, SARI, and GLEU scores. Scores for which the difference in performance is not
statistically significant (p < 0.05) are indicated with matching symbols.

performance with respect to SARI; however, it pro-
vides statistically significant improvements on most
other metrics.

Although two of the baselines achieve slightly
higher BLEU-4 scores than our best model, these
differences are not statistically significant, and our
model is better at editing comments, as shown
by the results on exact match, SARI, and GLEU.
In particular, our edit models beat all other mod-
els with wide, statistically significant, margins on
SARI, which explicitly measures performance on
edit operations. Furthermore, merely copying Cold,
yields a relatively high BLEU-4 score of 46.218.
The return type substitution and return type sub-
stitution w/ null handling baselines produce pre-
dictions that are identical to Cold for 74.73% and
65.76% of the test examples, respectively, while it
is only 9.33% for the reranked edit model. In other
words, the baselines attain high scores on automatic
metrics and even beat our model on BLEU-4, with-
out actually performing edits on the majority of
examples. This further underlines the shortcom-
ings of some of these metrics and the importance
of conducting human evaluation for this task.

9.2 Human Evaluation

Automatic metrics often fail to incorporate seman-
tic meaning and sentence structure in evaluation
as well as accurately capture performance when
there is only one gold-standard reference; indeed,
these metrics do not align with human judgment
in other generation tasks like grammatical error
correction (Napoles et al., 2015) and dialogue gen-
eration (Liu et al., 2016). Since automatic metrics
have not yet been explored in the context of the
new task we are proposing, we find it necessary to
conduct human evaluation and study whether these
metrics are consistent with human judgment.

User study design: Our study aims to reflect
how a comment update system would be used in
practice, such as in an Integrated Development En-

Baseline Generation Edit None
18.4% 12.4% 30.2% 55.0%

Table 3: Percentage of annotations for which users selected
comment suggestions produced by each model. All differ-
ences are statistically significant (p < 0.05).

vironment (IDE). When developers change code,
they would be shown suggestions for updating the
existing comment. If they think the comment needs
to be updated to reflect the code changes, they
could select the one that is most suitable for the new
version of the code or edit the existing comment
themselves if none of the options are appropriate.

We simulated this setting by asking a user to
select the most appropriate updated comment from
a list of suggestions, given Cold as well as the diff
between Mold and Mnew displayed using GitHub’s
diff interface. The user can select multiple options
if they are equally good or a separate None option
if no update is needed or all suggestions are poor.

The list of suggestions consists of up to three
comments, predicted by the strongest benchmarks
and our model : (1) return type substitution w/
null handling, (2) reranked generation model, and
(3) reranked edit model, arranged in randomized
order. We collapse identical predictions into a sin-
gle suggestion and reward all associated models
if the user selects that comment. Additionally, we
remove any prediction that is identical to Cold to
avoid confusion as the user should never select such
a suggestion. We excluded 6 examples from the
test set for which all three models predicted Cold
for the updated comment.

Nine students (8 graduate/1 undergraduate) and
one full-time developer at a large software com-
pany, all with 2+ years of Java experience, partic-
ipated in our study. To measure inter-annotator
agreement, we ensured that every example was
evaluated by two users. We conducted a total of
500 evaluations, across 250 distinct test examples.

Results: Table 3 presents the percentage of an-
notations (out of 500) for which users selected

1860

/**@return item in given position*/
public Complex getComplex(final int i) {

return get(i);
}

Previous Version

/**@return item in first position*/
public Complex getComplex() {

return get();
}

Updated Version

Figure 3: Changes in the getComplex method and its cor-
responding @return comment between two subsequent com-
mits of the eclipse-january project, available on GitHub.

comment suggestions that were produced by each
model. Using Krippendorff’s α (Krippendorff,
2011) with MASI distance (Passonneau, 2006)
(which accommodates our multi-label setting),
inter-annotator agreement is 0.64, indicating satis-
factory agreement. The reranked edit model beats
the strongest baseline and reranked generation by
wide statistically-significant margins. From ratio-
nales provided by two annotators, we observe that
some options were not selected because they re-
moved relevant information from the existing com-
ment, and not surprisingly, these options often cor-
responded to the comment generation model.

Users selected none of the suggested comments
55% of the time, indicating there are many cases
for which either the existing comment did not need
updating, or comments produced by all models
were poor. Based on our inspection of a sample
these, we observe that in a large portion of these
cases, the comment did not warrant an update. This
is consistent with prior work in sentence simplifi-
cation which shows that, very often, there are sen-
tences that do not need to be simplified (Li and
Nenkova, 2015). Despite our efforts to minimize
such cases in our dataset through rule-based filter-
ing techniques, we found that many remain. This
suggests that it would be beneficial to train a classi-
fier that first determines whether a comment needs
to be updated before proposing a revision. Further-
more, the cases for which the existing comment
does need to be updated but none of the models
produce reasonable predictions illustrate the scope
for improvement for our proposed task.

10 Error Analysis

We find that our model performs poorly in cases re-
quiring external knowledge and more context than
that provided by the given method. For instance,
correctly updating the comment shown in Figure 3
requires knowing that get returns the item in the
first position if no argument is provided. Our model
does not have access to this information, and it

fails to generate a reasonable update: “@return
complex in given position." On the other hand, the
reranked generation model produces “@return
the complex value" which is arguably reasonable
for the given context. This suggests that incorporat-
ing more code context could be beneficial for both
models. Furthermore, we find that our model tends
to make more mistakes when it must reason about
a large amount of code change between Mold and
Mnew, and we found that in many such cases, the
output of the reranked generation model was better.
This suggests that when there are substantial code
changes, Mnew effectively becomes a new method,
and generating a comment from scratch may be
more appropriate. Ensembling generation with our
system through a regression model that predicts the
extent of editing that is needed may lead to a more
generalizable approach that can accommodate such
cases. Sample outputs are given in Appendix C.

11 Ablations

We empirically study the effect of training the net-
work to encode explicit code edits and decode ex-
plicit comment edits. As discussed in Section 3,
the edit model consists of two encoders, one that
encodes Cold and another that encodes the code
representation, Medit. We conduct experiments in
which the code representation instead consists of
either (1) Mnew or (2) both Mold and Mnew (encoded
separately and hidden states concatenated). Addi-
tionally, rather than having the decoder generate
comment edits in the form Cedit, we introduce ex-
periments in which it directly generates Cnew, with
no intermediate edit sequence. For this, we use
only the underlying architecture of the edit model
(without features or reranking). The performance
for various combinations of input code and target
comment representations are shown in Table 4.

By comparing performance across combinations
consisting of the same input code representation
and varying target comment representations, the
importance of training the decoder to generate a
sequence of edit actions rather than the full updated
comment is very evident. Furthermore, comparing
across varying code representations under the Cedit
target comment representation, it is clear that ex-
plicitly encoding the code changes, as Medit, leads
to significant improvements across most metrics.

We further ablate the features introduced in §5.
As shown in Table 5, these features improve perfor-
mance by wide margins, across all metrics.

1861

Inputs Output xM (%) METEOR BLEU-4 SARI GLEU

Cold, Mnew
Cnew 5.707‡¶ 29.259† 33.534§ 28.024 30.000∗

Cedit 4.755‡∗ 33.796 43.315 35.516 37.970‖

Cold, Mold, Mnew
Cnew 3.714∗ 18.729 20.060 23.914 21.956
Cedit 5.163‡¶ 34.895 44.006∗ 33.479 37.618‖

Cold, Medit
Cnew 6.114¶ 29.968† 34.164§ 28.980 30.491∗

Cedit 8.922 36.229 44.283∗ 40.538 39.879

Table 4: Exact match, METEOR, BLEU-4, SARI, and GLEU for various combinations of code input and target comment
output configurations. Features and reranking are disabled for all models. Scores for which the difference in performance is not
statistically significant (p < 0.05) are indicated with matching symbols.

Model xM (%) METEOR BLEU-4 SARI GLEU

Models Edit 17.663 42.222 48.217 46.376 45.060
- feats. 8.922† 36.229 44.283 40.538 39.879∗

Reranked models Edit 18.433 44.698 50.717 45.486 46.118
- feats. 8.877† 38.446 46.665 36.924 40.317∗

Table 5: Exact match, METEOR, BLEU-4, SARI, and GLEU scores of ablated models. Scores for which the difference in
performance is not statistically significant (p < 0.05) are indicated with matching symbols.

12 Related Work

Learning from source code changes: Lee et al.
(2019) use rule-based techniques to automatically
detect and revise outdated API names in code doc-
umentation; however, their approach cannot be ex-
tended to full natural language comments that are
the focus of this work. Zhai et al. (2020) propose
a technique for updating incomplete and buggy
comments by propagating comments from different
code elements (e.g., variables, methods, classes)
based on program analysis and several heuristics.
Rather than simply copying a related comment,
we aim to revise an outdated comment by reason-
ing about code changes. Yin et al. (2019) present
an approach for learning structural and semantic
properties of source code edits so that they can be
generalized to new code inputs. Similar to their
work, we learn vector representations from source
code changes; however, unlike their setting, we
apply these representations to natural language.
Prior work in automatic commit message gener-
ation aims to learn from code changes in order
to generate a natural language summary of these
changes (Loyola et al., 2017; Jiang et al., 2017; Xu
et al., 2019). Instead of generating natural language
content from scratch as done in their work, we fo-
cus on applying edits to existing natural language
text. We also show that generating a comment from
scratch does not perform as well as our proposed
edit model for the comment update setting.
Editing natural language text: Approaches for
editing natural language text have been studied
extensively through tasks such as sentence simplifi-
cation (Dong et al., 2019), style transfer (Li et al.,
2018), grammatical error correction (Awasthi et al.,

2019), and language modeling (Guu et al., 2018).
The focus of this prior work is to revise sentences to
conform to stylistic and grammatical conventions,
and it does not generally consider broader contex-
tual constraints. On the contrary, our goal is not to
make cosmetic revisions to a given span of text, but
rather amend its semantic meaning to be in sync
with the content of a separate body of information
on which it is dependent. More recently, Shah
et al. (2020) proposed an approach for rewriting
an outdated sentence based on a sentence stating a
new factual claim, which is more closely aligned
with our task. However, in our case, the separate
body of information is not natural language and is
generally much longer than a single sentence.

13 Conclusion

We have addressed the novel task of automatically
updating an existing programming comment based
on changes to the related code. We designed a
new approach for this task which aims to correlate
cross-modal edits in order to generate a sequence
of edit actions specifying how the comment should
be updated. We find that our model outperforms
multiple rule-based baselines and comment gen-
eration models, with respect to several automatic
metrics and human evaluation.

Acknowledgements

We thank reviewers for their feedback on this work
and the participants of our user study for their time.
This work was partially supported by a Google Fac-
ulty Research Award and the US National Science
Foundation under Grant Nos. CCF-1652517 and
IIS-1850153.

1862

References
Miltiadis Allamanis. 2019. The adverse effects of code

duplication in machine learning models of code. In
SPLASH, Onward!, pages 143–153.

Miltiadis Allamanis, Hao Peng, and Charles Sutton.
2016. A convolutional attention network for ex-
treme summarization of source code. In Inter-
national Conference on Machine Learning, pages
2091–2100.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.
2019. code2seq: Generating sequences from struc-
tured representations of code. In International Con-
ference on Learning Representations.

Fernando Alva-Manchego, Louis Martin, Carolina
Scarton, and Lucia Specia. 2019. EASSE: Easier au-
tomatic sentence simplification evaluation. In Con-
ference on Empirical Methods in Natural Language
Processing and International Joint Conference on
Natural Language Processing: System Demonstra-
tions, pages 49–54.

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,
Sabyasachi Ghosh, and Vihari Piratla. 2019. Paral-
lel iterative edit models for local sequence transduc-
tion. In Conference on Empirical Methods in Nat-
ural Language Processing and International Joint
Conference on Natural Language Processing, pages
4251–4261.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for MT evaluation with improved
correlation with human judgments. In Workshop on
Intrinsic and Extrinsic Evaluation Measures for Ma-
chine Translation and/or Summarization, pages 65–
72.

Taylor Berg-Kirkpatrick, David Burkett, and Dan
Klein. 2012. An empirical investigation of statistical
significance in NLP. In Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
995–1005.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Conference on
Empirical Methods in Natural Language Processing,
pages 1724–1734.

Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and
Jackie Chi Kit Cheung. 2019. EditNTS: An neu-
ral programmer-interpreter model for sentence sim-
plification through explicit editing. In Annual Meet-
ing of the Association for Computational Linguistics,
pages 3393–3402.

Patrick Fernandes, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Structured neural summariza-
tion. In International Conference on Learning Rep-
resentations.

Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren,
and Percy Liang. 2018. Generating sentences by
editing prototypes. Transactions of the Association
for Computational Linguistics, 6:437–450.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018.
Deep code comment generation. In International
Conference on Program Comprehension, pages 200–
210.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Annual Meet-
ing of the Association for Computational Linguistics,
pages 2073–2083.

Siyuan Jiang, Ameer Armaly, and Collin McMillan.
2017. Automatically generating commit messages
from diffs using neural machine translation. In In-
ternational Conference on Automated Software En-
gineering, pages 135–146.

Wei-Jen Ko, Greg Durrett, and Junyi Jessy Li. 2019.
Linguistically-informed specificity and semantic
plausibility for dialogue generation. In North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3456–3466.

Klaus Krippendorff. 2011. Computing Krippendorff’s
alpha reliability. Technical report, University of
Pennsylvania.

Reno Kriz, João Sedoc, Marianna Apidianaki, Carolina
Zheng, Gaurav Kumar, Eleni Miltsakaki, and Chris
Callison-Burch. 2019. Complexity-weighted loss
and diverse reranking for sentence simplification. In
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 3137–3147.

Seonah Lee, Rongxin Wu, S.C. Cheung, and Sungwon
Kang. 2019. Automatic detection and update sug-
gestion for outdated API names in documentation.
Transactions on Software Engineering.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1865–1874.

Junyi Jessy Li and Ani Nenkova. 2015. Fast and accu-
rate prediction of sentence specificity. In AAAI Con-
ference on Artificial Intelligence, pages 2281–2287.

Yuding Liang and Kenny Q. Zhu. 2018. Automatic gen-
eration of text descriptive comments for code blocks.
In AAAI Conference on Artificial Intelligence, pages
5229–5236.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How NOT to evaluate your dialogue system: An
empirical study of unsupervised evaluation metrics
for dialogue response generation. In Conference on

1863

Empirical Methods in Natural Language Processing,
pages 2122–2132.

Pablo Loyola, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2017. A neural architecture for generating natu-
ral language descriptions from source code changes.
In Annual Meeting of the Association for Computa-
tional Linguistics, pages 287–292.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Conference on Em-
pirical Methods in Natural Language Processing,
pages 1412–1421.

Dana Movshovitz-Attias and William W. Cohen. 2013.
Natural language models for predicting program-
ming comments. In Annual Meeting of the Associ-
ation for Computational Linguistics, pages 35–40.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammati-
cal error correction metrics. In Annual Meeting of
the Association for Computational Linguistics and
the International Joint Conference on Natural Lan-
guage Processing, pages 588–593.

Graham Neubig, Makoto Morishita, and Satoshi Naka-
mura. 2015. Neural reranking improves subjective
quality of machine translation: NAIST at WAT2015.
In Workshop on Asian Translation, pages 35–41.

Sheena Panthaplackel, Milos Gligoric, Raymond J.
Mooney, and Junyi Jessy Li. 2020. Associating nat-
ural language comment and source code entities. In
AAAI Conference on Artificial Intelligence.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Annual Meet-
ing of the Association for Computational Linguistics,
pages 311–318.

Rebecca Passonneau. 2006. Measuring agreement on
set-valued items (MASI) for semantic and pragmatic
annotation. In International Conference on Lan-
guage Resources and Evaluation.

Inderjot Kaur Ratol and Martin P. Robillard. 2017. De-
tecting fragile comments. International Conference
on Automated Software Engineering, pages 112–
122.

Darsh J. Shah, Tal Schuster, and Regina Barzilay. 2020.
Automatic fact-guided sentence modification. In
AAAI Conference on Artificial Intelligence.

Richard Shin, Illia Polosukhin, and Dawn Song. 2018.
Towards specification-directed program repair. In
International Conference on Learning Representa-
tions Workshop.

Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Ma-
heswaran. 2019. “Transforming” delete, retrieve,
generate approach for controlled text style trans-
fer. In Conference on Empirical Methods in Natu-
ral Language Processing and the International Joint

Conference on Natural Language Processing, pages
3267–3277.

Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan
Zhou. 2007. /*iComment: Bugs or bad com-
ments?*/. In Symposium on Operating Systems Prin-
ciples, pages 145–158.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems, pages 2692–2700.

Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hang-
hang Tong, and Jian Lu. 2019. Commit message
generation for source code changes. In International
Joint Conference on Artificial Intelligence, pages
3975–3981.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and
Huan Sun. 2018. StaQC: A systematically mined
question-code dataset from Stack Overflow. In In-
ternational Conference on World Wide Web, pages
1693–1703.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
Stack Overflow. In International Conference on
Mining Software Repositories, pages 476–486.

Pengcheng Yin, Graham Neubig, Miltiadis Allamanis,
Marc Brockschmidt, and Alexander L. Gaunt. 2019.
Learning to represent edits. In International Confer-
ence on Learning Representations.

Juan Zhai, Xiangzhe Xu, Yu Shi, Guanhong Tao,
Minxue Pan, Shiqing Ma, Lei Xu, Weifeng Zhang,
Lin Tan, and Xiangyu Zhang. 2020. CPC: Automat-
ically classifying and propagating natural language
comments via program analysis. In International
Conference on Software Engineering.

1864

Train Valid Test
Total actions 8,350 1,038 1,046
Avg. # actions per example 1.44 1.46 1.42
Replace 51.9% 49.7% 50.1%
ReplaceKeepBefore 2.9% 2.6% 3.5%
ReplaceKeepAfter 0.7% 0.3% 0.4%
InsertKeepBefore 21.5% 24.1% 23.2%
InsertKeepAfter 4.2% 4.0% 3.3%
Delete 17.4% 18.0% 17.8%
DeleteKeepBefore 1.3% 0.7% 1.1%
DeleteKeepAfter 0.2% 0.5% 0.6%

Table 6: Total number of edit actions; average number of
edit actions per example; percentage of total actions that is
accounted by each edit action type.

A Modified Comment Edit Lexicon

We first transform insertions and ambigu-
ous deletions into a structure that resembles
Replace, characterized by InsertOld/InsertNew
and DeleteOld/DeleteNew spans respectively.
Next, we require the span of tokens attached to
ReplaceOld, InsertOld, and DeleteOld to be
unique across Cold so that we can uniquely identify
the edit location. We enforce this by iteratively
searching through unchanged tokens before and
after the span, incorporating additional tokens into
the span, until the span becomes unique. These
added tokens are then included in both compo-
nents of the action. For instance, if the last A is to
be replaced with C in ABA, the ReplaceOld span
would be BA and the ReplaceNew span would be
BC. We also augment the edit types to differentiate
between the various scenarios that may arise from
this search procedure.

Replace actions for which this procedure is
performed deviate from the typical nature of
Replace in which there is no overlap between the
spans attached to ReplaceOld and ReplaceNew.
This is because the tokens that are added to
make the ReplaceOld span unique will appear
in both spans. These tokens, which are effec-
tively kept between Cold and Cnew, could appear
before or after the edit location. We differenti-
ate between these scenarios by augmenting the
edit lexicon with new edit types. In addition
to Replace, we have ReplaceKeepBefore and
ReplaceKeepAfter to signify that the action en-
tails retaining some content before or after, respec-
tively. We include the same for the other types as
well with InsertKeepBefore, InsertKeepAfter,
DeleteKeepBefore, DeleteKeepAfter. Table 6
shows statistics on how often each of these edit
actions are used. We present more details about the
actions in the sections that follow.

A.1 Replacements

Replace This action is defined as shown below:

<ReplaceOld>[old span]
<ReplaceNew>[new span]
<ReplaceEnd>

It prescribes that the tokens attached to
ReplaceOld are deleted and the tokens at-
tached to ReplaceNew are inserted in their place.
There is almost never overlap between the span of
tokens attached to ReplaceOld and ReplaceNew.
Example: if B is to be replaced with C in Cold=AB
to produce Cnew=AC, the corresponding Cedit is:

<ReplaceOld>B
<ReplaceNew>C
<ReplaceEnd>

Note that the span attached to ReplaceOld must be
unique across Cold for this edit type to be used.

ReplaceKeepBefore This action is defined as
shown below:

<ReplaceOldKeepBefore>[old span]
<ReplaceNewKeepBefore>[new span]
<ReplaceEnd>

Replace is transformed into this structure if the
span attached to ReplaceOld is not unique. For
example, suppose the first B is to be replaced
with D in Cold=ABCB to produce Cnew=ADCB. If
Cedit consists of a ReplaceOld span carrying just
B, it is not obvious whether the first or last B
should be replaced. To address this, we intro-
duce a new edit type, ReplaceKeepBefore, which
forms a unique span by searching before the
edit location. It prescribes that the tokens at-
tached to ReplaceOldKeepBefore are deleted and
the tokens attached to ReplaceNewKeepBefore

are inserted in their place. Unlike Replace,
there will be some overlap at the beginning
of the spans attached to ReplaceOldKeepBefore

and ReplaceNewKeepBefore. To represent edits
Cold=ABCB to produce Cnew=ADCB, Cedit is:

<ReplaceOldKeepBefore> AB
<ReplaceNewKeepBefore> AD
<ReplaceEnd>

The span attached to ReplaceOldKeepBefore is
unique, making it clear that the first B is to be
replaced with D. It also indicates that we are effec-
tively keeping A, before the edit location.

1865

ReplaceKeepAfter This action is defined as
shown below:

<ReplaceOldKeepAfter>[old span]
<ReplaceNewKeepAfter>[new span]
<ReplaceEnd>

Replace is transformed into this structure if the
span attached to ReplaceOld is not unique and
ReplaceKeepBefore cannot be used because
we are unable to find a unique sequence of
unchanged tokens before the edit location. For
example, suppose the first B is to be replaced
with D in Cold=ABCAB to produce Cnew=ADCAB.
Searching before the edit location, we find only
AB, which is not unique across Cold, and so it
would still not be clear which B is to be edited.
To address this, we introduce a new edit type,
ReplaceKeepAfter, which forms a unique span
by searching after the edit location. It prescribes
that the tokens attached to ReplaceOldKeepAfter

are deleted and the tokens attached to
ReplaceNewKeepAfter are inserted in their
place. Unlike Replace and ReplaceKeepBefore,
there will be some overlap at the end of the
spans attached to ReplaceOldKeepAfter and
ReplaceNewKeepAfter. Therefore, to represent
editing Cold=ABCAB to produce Cnew=ADCAB,
Cedit is:

<ReplaceOldKeepAfter> BC
<ReplaceNewKeepAfter> DC
<ReplaceEnd>

The span attached to ReplaceOldKeepAfter is
unique, making it clear that the first B is to be
replaced with D. It also indicates that we are ef-
fectively keeping C, which appears after the edit
location.

A.2 Insertions

We disregard basic Insert actions since it is al-
ways ambiguous where an insertion should oc-
cur without an anchor point. Following what is
done for ambiguous Replace actions, we introduce
InsertKeepBefore and InsertKeepAfter.

InsertKeepBefore This action is defined as
shown below:

<InsertOldKeepBefore>[old span]
<InsertNewKeepBefore>[new span]
<InsertEnd>

In this representation, the span of tokens attached to
InsertOldKeepBefore must be unique and serve
as the anchor point for where the new tokens should
be inserted. We do this by searching before the

edit location. The structure is identical to that of
ReplaceKeepBefore in that the tokens attached to
InsertOldKeepBefore are replaced with the to-
kens in InsertNewKeepBefore and that there is
some overlap at the beginning of the two spans.
As an example, suppose C is to be inserted at the
end of Cold=AB to form Cnew=ABC. Then the cor-
responding Cedit is as follows:

<InsertKeepBefore> B
<InsertNewKeepBefore> BC
<InserteEnd>

This states that we are effectively inserting C and
keeping B, which appears before the edit location.

InsertKeepAfter This action is defined as
shown below:

<InsertOldKeepAfter>[old span]
<InsertNewKeepAfter>[new span]
<InsertEnd>

We rely on this when we are unable to use
InsertKeepBefore because we cannot find a
unique span of tokens to identify the anchor point,
by searching before the edit location. For instance,
suppose C is to be inserted at the beginning of
Cold=AB to form Cnew=CAB. There are no tokens
that appear before the insert point, so we instead
choose to search after. The structure is identical
to that of ReplaceKeepAfter in that the tokens at-
tached to InsertOldKeepAfter are replaced with
the tokens in InsertNewKeepAfter and that there
is some overlap at the end of the two spans. The
corresponding Cedit from our example is as follows:

<InsertKeepAfter> A
<InsertNewKeepAfter> CA
<InserteEnd>

This states that we are effectively inserting C and
keeping A, which appears after the edit location.

A.3 Deletions

Delete This action is defined as shown below:

<Delete>[old span]<DeleteEnd>

It prescribes that the tokens that appear in the
Delete span are removed from Cold. Example: if B
is to be deleted from Cold=AB to produce Cnew=A,
the corresponding Cedit is:

<Delete>B<DeleteEnd>

Note that the Delete span must be unique across
Cold for this edit type to be used.

1866

DeleteKeepBefore This action is defined as
shown below:

<DeleteOldKeepBefore>[old span]
<DeleteNewKeepBefore>[new span]
<DeleteEnd>

Delete is transformed into this structure if
the Delete span is not unique. For exam-
ple, suppose the first B is to be deleted from
Cold=ABCB to produce Cnew=ACB. From just
Cedit=<Delete>B<DeleteEnd>, it is unclear which
B is to be deleted. To address this, we intro-
duce a new edit type, DeleteKeepBefore, which
forms a unique span by searching before the edit
location. The structure is identical to that of
ReplaceKeepBefore in that the tokens attached to
DeleteOldKeepBefore are replaced with the to-
kens in DeleteNewKeepBefore and that there is
some overlap at the beginning of the two spans.
For the example under consideration, the corre-
sponding Cedit is given below:

<DeleteOldKeepBefore> AB
<DeleteNewKeepBefore> A
<DeleteEnd>

The span attached to DeleteOldKeepBefore is
unique, making it clear that the first B is to be
deleted. It also indicates that we are effectively
keeping A, which appears before the edit location.

DeleteKeepAfter This action is defined as
shown below:

<DeleteOldKeepAfter>[old span]
<DeleteNewKeepAfter>[new span]
<DeleteEnd>

Delete is transformed into this structure if the
Delete span is not unique and DeleteKeepBefore

cannot be used because we are unable to find
a unique sequence of unchanged tokens before
the edit location. For example, suppose the first
B is to be deleted from Cold=ABCAB to produce
Cnew=ACAB. Searching before the edit location, we
find only AB, which is not unique across Cold, and
so it would still not be clear which B is to be deleted.
To address this, we introduce a new edit type,
DeleteKeepAfter, which forms a unique span by
searching after the edit location. The structure
is identical to that of ReplaceKeepAfter in that
the tokens attached to DeleteOldKeepAfter are
replaced with the tokens in DeleteNewKeepAfter

and that there is some overlap at the end of the two
spans. For the example under consideration, Cedit
is as follows:

<DeleteOldKeepAfter> BC
<DeleteNewKeepAfter> C
<DeleteEnd>

The span attached to DeleteOldKeepAfter is
unique, making it clear that the first B is to be
deleted. It also indicates that we are effectively
keeping C, which appears after the edit location.

B Data Filtering

As done in Panthaplackel et al. (2020), we apply
heuristics to reduce the number of cases in which
the code and comment changes are unrelated. First,
because we focus on @return comments that per-
tain to the return values of a given method, we
discard any example in which the code change
does not entail either a change to the return type
or at least one return statement. Then, to identify
the correct mapping of two versions of a method
among other changes in a commit, we focus on the
code changes that preserve the method names. It
may happen sometimes that developers change the
method name as well as code and comment in one
commit, but we leave it as future work to improve
this filtering heuristic. Next, we attempt to remove
examples in which the comment change appears
to be purely stylistic (e.g. spelling corrections, re-
formatting, and rephrasing). Furthermore, prior
work (Allamanis, 2019) has shown that duplication
can adversely affect evaluation of machine learn-
ing models for code and language tasks. For this
reason, we remove duplicates from our corpus.

Despite having mined commit histories for thou-
sands of projects, upon filtering, we are left with
a total of 7,239 examples belonging to 1,081 dif-
ferent projects. This demonstrates the challenge of
collecting large datasets with relatively low levels
of noise in this domain. Although online code re-
sources like GitHub and StackOverflow host large
quantities of data that can be exploited for trans-
duction tasks between source code and natural lan-
guage, prior work has shown that much of this data
is unusable without cleaning (Yin et al., 2018).

Some have used rule-based techniques to do data
cleaning (Allamanis et al., 2016; Hu et al., 2018;
Fernandes et al., 2019), and others train classifiers
on hand-labeled examples that can be applied to
a much larger pool of examples in order to dif-
ferentiate between clean and noisy examples (Iyer
et al., 2016; Yao et al., 2018; Yin et al., 2018).
Most of these approaches focus on code summa-
rization or comment generation which only require
single code-NL pairs for training and evaluation

1867

as the task entails generating a natural language
summary of a given code snippet. On the contrary,
our proposed task requires two code-NL pairs that
are assumed to hold specific parallel relationships
with one another. Namely, the relationship between
Cnew and Mnew is expected to be similar to that of
Cold and Mold. The relationship between Cnew and
Cold is expected to correlate with the relationship
between Mnew and Mold. Not only does having
four moving parts in one example magnify noise,
but the need to hold these relationships makes data
cleaning particularly difficult. We leave building
classifiers for aiding this process as future work.

C Sample Output

In Table 7, we show predictions for various exam-
ples in the test set.

1868

Examples

Project: ariejan-slick2d

public float getX() {

- return center[NUM];

}

public float getX() {

+ if (left == null) {

+ calculateLeft();

+ }

+ return left.floatValue();

}

Old: @return the x location of the center of this circle Base: @return the x location of the center of this circle or null if null

Gen: @return the x of the angle in this vector

Edit: @return the x location of the left of this circle

Gold: @return the x location of the left side of this shape .

Project: jackyglony-objectiveeclipse

private IProject getProject() {

- return managedTarget.getOwner().getProject();

}

private IProject getProject() {

+ return (IProject) managedProject.getOwner();

}

Old: @return the iproject associated with the target Base: @return the iproject associated with the target

Gen: @return the iproject

Edit: @return the iproject associated with the project

Gold: @return the iproject associated with the managed project

Project: rajawali-rajawali

public double getRotX() {

- return mOrientation.getRotationX();

}

public double getRotX() {

+ return Math.toDegrees(mOrientation.getRotationX());

}

Old: @return double the roll euler angle . Base: @return double the roll euler angle .

Gen: @return the rot x .

Edit: @return parsed double the roll euler angle .

Gold: @return double the roll euler angle in degrees .

Project: Qihoo360-RePlugin

-public static <T extends Collection<?>> T validIndex(final T collection,

final int index) {

- return validIndex(collection, index,

- DEFAULT_VALID_INDEX_COLLECTION_EX_MESSAGE, Integer.valueOf(index));

}

+public static <T extends CharSequence> T validIndex(final T chars,

final int index) {

+ return validIndex(chars, index,

+ DEFAULT_VALID_INDEX_CHAR_SEQUENCE_EX_MESSAGE, Integer.valueOf(index));

}

Old: @return the validated collection (never null for method chaining) Base: @return the validated collection (never null for method chaining)

Gen: @return the index

Edit: @return the validated char sequence (never null for method chaining

)

Gold: @return the validated character sequence (never null for method

chaining)

Project: orfjackal-hourparser

public Date getStart() {

if (records.size() == NUM) {

- return null;

} else {

Date first = records.get(NUM).getDate();

for (Entry e : records) {

if (e.getDate().before(first)) {

first = e.getDate();

}

}

return first;

}

}

public Date getStart() {

if (records.size() == NUM) {

+ return new Date();

} else {

Date first = records.get(NUM).getDate();

for (Entry e : records) {

if (e.getDate().before(first)) {

first = e.getDate();

}

}

return first;

}

}

Old: @return the time of the first record or null if there are no records Base: @return the time of the first record or null if there are no records

Gen: @return the date , or null if not available

Edit: @return the time of the first record or date if there are no records

Gold: @return the time of the first record , or the current time if there

are no records

Table 7: Examples from open-source software projects. For each example, we show the diff between the two versions of the
method (left: old version, right: new version, diff lines are highlighted), the existing @return comment prior to being updated
(left), and predictions made by the return type substitution w/ null handling baseline, reranked generation model, and reranked
edit model, and the gold updated comment (right, from top to bottom).

