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Abstract

Recent advancements in neural language mod-
elling make it possible to rapidly generate vast
amounts of human-sounding text. The ca-
pabilities of humans and automatic discrimi-
nators to detect machine-generated text have
been a large source of research interest, but hu-
mans and machines rely on different cues to
make their decisions. Here, we perform care-
ful benchmarking and analysis of three popu-
lar sampling-based decoding strategies—top-
k, nucleus sampling, and untruncated random
sampling—and show that improvements in de-
coding methods have primarily optimized for
fooling humans. This comes at the expense of
introducing statistical abnormalities that make
detection easy for automatic systems. We also
show that though both human and automatic
detector performance improve with longer ex-
cerpt length, even multi-sentence excerpts can
fool expert human raters over 30% of the time.
Our findings reveal the importance of using
both human and automatic detectors to assess
the humanness of text generation systems.

1 Introduction

State-of-the-art generative language models are
now capable of producing multi-paragraph ex-
cerpts that at a surface level are virtually indis-
tinguishable from human-written content (Zellers
et al., 2019; Radford et al., 2019; Adelani et al.,
2020). Often, only subtle logical fallacies or id-
iosyncrasies of language give away the text as
machine-generated, errors that require a close
reading and/or domain knowledge for humans to
detect.

Deceptive text, whether human- or machine-
generated, has entered the sphere of public con-
cern (Cooke, 2018). It propogates quickly
(Vosoughi et al., 2018), sets political agendas
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(Vargo et al., 2018), influences elections (Allcott
and Gentzkow, 2017), and undermines user trust
(Wang et al., 2012; Song et al., 2015). Recently,
Adelani et al. (2020) have shown that automati-
cally generated reviews are perceived to be as flu-
ent as human-written ones. As generative tech-
nology matures, authors, well-meaning or other-
wise, will increasingly employ it to augment and
accelerate their own writing. It is more impera-
tive now than ever for both humans and automated
systems to be able to detect and identify machine-
generated texts in the wild. However, there has
thus been little inquiry into the textual proper-
ties that cause humans to give generated text high
human-like ratings compared to those that cause
automatic systems to rate it highly.

To speak of texts produced by language mod-
els, we must first consider how these texts are
generated. A neural language model encodes a
probability distribution over the next word in a
sequence given the previous words.1 A decod-
ing strategy is an algorithm that generates se-
quences from a language model by determining
how words should get selected from this distribu-
tion. The field has largely moved toward prob-
abilistic decoding strategies that randomly sam-
ple from the output distribution token-by-token.
However, when many low-likelihood words cu-
mulatively contain quite a bit of probability mass,
choosing one of these words can lead to odd or
contradictory phrases and semantic errors. Hu-
mans are quick to notice these types of errors.

For this reason, it has become common to mod-
ify the language model’s output probability dis-
tribution to increase the chance of sampling to-
kens with high likelihood according to the lan-
guage model. Top-k random sampling, where
low-likelihood words are restricted from being

1Often these ‘words” are actually subword character se-
quences such as BPE tokens (Sennrich et al., 2016).



1809

generated, is one such method. A language model
that is only permitted to produce high-likelihood
words is less likely to make a poor choice and cre-
ate the type of mistakes that are easy for humans to
detect. Since humans are not proficient at identi-
fying when a model subtly favors some utterances
more often than a human author would, they don’t
notice the over-representation of high-likelihood
words in the generated text. In contrast, automatic
systems excel at identifying statistical anomalies
and struggle to build deeper semantic understand-
ing. Top-k in particular creates text that is easy
for machines to detect but very hard for humans.
Thus, we observe the general trend: as the num-
ber of unlikely words available to be chosen is in-
creased, humans get better at detecting fakes while
automatic systems get worse.

In this work, we study three popular random
decoding strategies—top-k, nucleus, and temper-
ature sampling—applied to GPT-2 (Radford et al.,
2019). We draw a large number of excerpts gener-
ated by each strategy and train a family of BERT-
based (Devlin et al., 2019) binary classifiers to
label text excerpts as human-written or machine-
generated. We find large differences in human
rater and classifier accuracy depending on the de-
coding strategy employed and length of the gen-
erated sequences. Regardless of strategy, we find
human raters achieve significantly lower accuracy
than the automatic discriminators. We also show
that when a decoding strategy severely modifies
the unigram token distribution, as top-k does, hu-
mans have trouble detecting the resultant gener-
ated text, but automatic classifiers find it the eas-
iest to discriminate. Worryingly, we further find
that classifiers are brittle; they generalize poorly
when trained to discriminate samples from one
strategy and then evaluated on samples from an-
other.

In summary, our contributions are:
• A comprehensive study of generated text de-

tection systems’ sensitivity to model struc-
ture, decoding strategy, and excerpt length.
• An analysis of human raters’ ability to iden-

tify machine-generated content, and how hu-
man raters differ from automatic detectors.

2 Related Work

Generative Language Models With a suffi-
ciently large training set and number of trainable
parameters, neural language models based on the

Transformer architecture (Vaswani et al., 2017)
are capable of generating convincing, human-like
excerpts up to several paragraphs in length. GPT-
2 (Radford et al., 2019), GROVER (Zellers et al.,
2019), and Transformer-DMCA (Liu et al., 2018)
are a few examples of large, publicly available
models with this ability. GROVER, in particular,
has been shown to generate fake news that is more
trustworthy than human-written fake news accord-
ing to human raters.

Human Detection The task of trying to guess
whether text is coming from a robot or a fellow
human was made famous by the Turing Test (Tur-
ing, 1950). It continues to be used is chatbot eval-
uation (Lowe et al., 2017). The related (but not
identical) task of asking human raters to judge the
quality of machine-generated excerpts remains the
gold-standard for evaluating open-domain genera-
tion systems (van der Lee et al., 2019). Kreps et al.
(2020), Gehrmann et al. (2019), and others have
stressed the importance of humans being able to
identify fake content on the web.

Automatic Detection The rise of machine-
generated content has led to the development of
automated systems to identify it. GROVER was
designed to not only generate convincing news ex-
cerpts but to also identify them using a fine-tuned
version of the generative model itself (Zellers
et al., 2019). GLTR, expecting attackers to use
sampling methods that favor high-likelihood to-
kens, aims to make machine-generated text de-
tectable by computing histograms over per-token
log likelihoods (Gehrmann et al., 2019). Bakhtin
et al. (2019) frame human-text detection as a rank-
ing task and evaluate their models’ cross-domain
and cross-model generalization, finding signifi-
cant loss in quality when training on one do-
main and evaluating on another. Schuster et al.
(2019) argue that the language distributional fea-
tures implicitly or explicitly employed by these
detectors are insufficient; instead, one should look
to explicit fact-verification models. Finally, dis-
criminators for whether text is machine-generated
are a promising research direction in adversarial
training (Lin et al., 2017; Li et al., 2017) and in
automatic evaluation of generative model quality
(Novikova et al., 2017; Kannan and Vinyals, 2017;
Lowe et al., 2017).

Natural Language Understanding Automatic
detection of machine-generated text benefits from
a semantic understanding of the text. Contradic-
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tions, falsehoods, and topic drift can all indicate
that an excerpt was machine-generated. Encoder-
only Transformer models such as BERT (Devlin
et al., 2019) have been shown to do very well at
tasks requiring this understanding. While we fine-
tune BERT for the task of classifying whether text
was machine-generated, others have used the con-
textual word embeddings from a pre-trained BERT
model without fine-tuning to compute a quality
score for generated text (Zhang et al., 2020). It
is worth noting that recent work has raised ques-
tions as to whether BERT truly builds a semantic
understanding to make its predictions, or whether
it merely takes advantage of spurious statistical
differences between the text of different classes
(Niven and Kao, 2019).

3 Task Definition

We frame the detection problem as a binary clas-
sification task: given an excerpt of text, label it
as either human-written or machine-generated. In
particular, we are interested in how variables such
as excerpt length and decoding strategy impact
performance on this classification task. We thus
create several datasets. Each is approximately
balanced between positive examples of machine-
generated text and negative examples of human-
written text. While they all share the same human-
written examples, each dataset contains a different
set of machine-generated examples sampled using
one particular decoding strategy. We also build ad-
ditional datasets by truncating all of the examples
to a particular sequence length,

By training a separate classifier on each dataset,
we are able to answer questions about which de-
coding strategy results in text that is the easiest to
automatically disambiguate from human-written
text. We are also able to answer questions about
how the length of the examples in the training set
impacts our ability to automatically classify ex-
cerpts of that same length as either human-written
or machine-generated.

4 Dataset Methodology

All of our generated text samples are drawn from
GPT-2, a state-of-the-art Transformer-based gen-
erative language model that was trained on text
from popular web pages (Radford et al., 2019).
While we use the GPT-2 LARGE model with
774M parameters, we found that similar trends
to those reported here hold in experiments with

smaller language models.
Given an autoregressive language model that

defines a probability distribution over the next to-
ken given the previous tokens in a sequence, a
decoding strategy generates text by deciding how
to output a token at each step based on the pre-
dicted distributions. Perhaps the most straightfor-
ward decoding strategy is to randomly choose a to-
ken with probability proportional to its likelihood.
A challenge with the random sampling approach
is that these probability distributions often contain
a long tail of vocabulary items that are individu-
ally low-probability but cumulatively comprise a
substantial amount of probability mass. Holtzman
et al. (2020) observe that choosing tokens from
this tail often leads to incoherent generations.

Top-k sampling, nucleus sampling, and (in the
extreme) beam search have all been proposed to
heuristically promote samples with higher per-
token likelihoods. Top-k and nucleus sampling
both do so by setting the likelihood of tokens in
the tail of the distribution to zero. Top-k restricts
the distribution to all but the k most likely tokens,
where k is a constant (Fan et al., 2018). Nucleus
sampling, also called top-p, truncates the distribu-
tion at each decoding step t to the kt-most-likely
next tokens such that the cumulative likelihood of
these tokens is no greater than a constant p (Holtz-
man et al., 2020).

We thus consider three different decoding strat-
egy settings:
• Sample from the untruncated distribution
• Top-k, choosing k=40 (Radford et al., 2019).
• Nucleus sampling (aka top-p), choosing
p=0.96 (Zellers et al., 2019).

In addition, we form “negative” examples of
human-written text by taking excerpts of web text
that come from the same distribution as GPT-2’s
training data.2 By picking text that resembles
GPT-2’s train set, we ensure that our classifiers
can’t simply take advantage of stylistic differences
between the human-written text corpus and the
kind of text GPT-2 was trained to generate.

For each decoding method, we construct a train-
ing dataset by pairing 250,000 generated samples
with 250,000 excerpts of web text. 5,000 addi-
tional paired samples are kept aside for validation
and test datasets. Lastly, we filter out excerpts
with fewer than 192 WordPiece tokens (Wu et al.,

2https://github.com/openai/
gpt-2-output-dataset

https://github.com/openai/gpt-2-output-dataset
https://github.com/openai/gpt-2-output-dataset
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2016) (excerpts might be quite short if the model
produces an end-of-text token early on). See Ap-
pendix 1 for final dataset sizes.

A crucial question when generating text with
a language model is whether or not to provide
a priming sequence which the language model
should continue. Unconditioned samples, where
no priming text is provided, in conjunction with
top-k sampling, lead to pathological behavior for
discriminators as the first token of the generated
text will always be one of k possible options. On
the other hand, if long sequences of human text
are used as priming, the space of possible gener-
ated sequences is larger, but the detection problem
shifts from one of “how human-like is the gener-
ated text?” to “how well does the generated text
follow the priming sequence?”.

Since in this study we are interested in the
former simpler question, we create two datasets,
one with no priming, and one with the minimum
amount of priming possible: a single token of web
text. This means that for every excerpt of web text
in the training set, there is an excerpt of machine-
generated text that starts with the same token. We
find that even with limited priming, the ability of
automatic detectors can be strongly impacted.

To study the effect of excerpt length, we con-
struct variations of the above datasets by truncat-
ing all excerpts to ten possible lengths ranging
from 2 to 192 WordPiece tokens (Wu et al., 2016).
In total, we obtain sixty dataset variations: one per
sampling method, truncation length, and choice of
priming or no priming.

5 Automatic Detection Method

The primary discriminator we employ is a fine-
tuned BERT classifier (Devlin et al., 2019). We
fine-tune one instance of BERT per dataset vari-
ation described above. For the longest sequence
length, n=192, we compare BERT’s performance
with several simple baselines that have been pro-
posed in other work.
Fine-tuned BERT We fine-tune BERT-LARGE

(cased) on the task of labeling a sentence as
human- or machine- generated. The models are
trained for 15 epochs, with checkpoints saved ev-
ery 1000 steps, and a batch size of 256. All results
are reported on the test set using the checkpoint
for which validation accuracy was highest.
Bag-of-Words For each sequence, we compute
a bag-of-words embedding where each dimension

corresponds to a token in GPT-2’s 50,000 token
BPE vocabulary (Sennrich et al., 2016), and we
count how many times that token appears in the
text sequence. We then train a logistic regression
binary classifier to predict human- or machine-
written given this 50,000-dimensional embedding.
We experimented with truncating embedding size
by removing entries for infrequent vocabulary
words, but this did not improve performance.
Histogram-of-Likelihood Ranks Following
GLTR (Gehrmann et al., 2019), we compute the
probability distribution of the next word given the
previous words in a text sequence according to
a trained language model (in our case the same
GPT-2 model that was used for generation). At
each sequence position, we rerank the vocabulary
words by likelihood, and record the rank of the
ground-truth next word within this list. These
ranks are then binned. GLTR uses four bins,
counting (1) the number of times the top 1 word
is seen, (2) the number of times words ranked
2 through 5 are seen, (3) words ranked 6-100,
and (4) words ranked >100. However, we
observe higher accuracy when 50 bins are spread
uniformly over the possible rankings. This means
that since there are 50,000 vocabulary words, the
first bin counts the number of times the actual
next word was within the 1,000 mostly likely next
words, the second bin counts the 1,001-2,000th,
and so on. We then train logistic regression binary
classifiers to predict human- or machine-written
given either the 4-dimensional histograms or
50-dimensional histograms as input.
Total Probability Solaiman et al. (2019) pro-
pose a very simple baseline consisting of a thresh-
old on the total probability of the text sequence.
An excerpt is predicted as machine-generated if
its likelihood according to GPT-2 is closer to the
mean likelihood over all machine-generated se-
quences than to the mean of human-written ones.

6 Human Detection Method

The human evaluation task is framed similarly to
the automatic one. We ask the raters to decide
whether a passage of text was written by a human
or by a computer algorithm. (Full instructions are
in the Appendix.) Raters are allowed to choose
between four options: “definitely” or “possibly”
machine-generated and “definitely” or “possibly”
human-written. They are first shown an excerpt
of length 16 WordPiece tokens. After they make
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BERT BagOfWords HistGLTRBuckets Hist50Buckets TotalProb Human
Method acc AUC acc AUC acc AUC acc AUC acc acc
k40-1wordcond 0.88 0.99 0.79 0.87 0.52 0.52 0.69 0.76 0.61 0.64
p0.96-1wordcond 0.81 0.89 0.60 0.65 0.53 0.56 0.54 0.56 0.63 0.77
p1.0-1wordcond 0.79 0.92 0.59 0.62 0.53 0.55 0.54 0.55 0.65 0.71

Table 1: Performance (accuracy and AUC) of the fine-tuned BERT classifier and several simple baselines on detect-
ing length-192 sequences generated with one word of priming (1worccond). Note that p1.0 refers to untruncated
random sampling, where we sample from 100% of the probability mass. The last column shows human perfor-
mance on the same task where accuracy with a 50% baseline is computed by randomly pairing samples from each
decoding strategy with a human-written sample.

a guess, the length of the excerpt is doubled, and
they are asked the same question again. This con-
tinues until the entire passage of length 192 tokens
is shown. Passages are equally likely to be human-
written or machine-generated, with the machine-
generated excerpts being evenly split between the
three sampling strategies considered in this paper.

Initially, Amazon Mechanical Turk (AMT)
raters were employed for this task, but rater accu-
racy was poor with over 70% of the “definitely”
votes cast for “human” despite the classes be-
ing balanced. Accuracy, even for the longest se-
quences, hovered around 50%. The same study
was then performed with university students who
were first walked through ten examples (see Ap-
pendix Table 4) as a group. Afterward, they were
asked to complete the same tasks that had been
sent to the AMT workers. No additional guid-
ance or direction was given to them after the ini-
tial walk-through. We will refer to this group as
the “expert raters.” Among them, 52.1% of “def-
initely” votes were cast for human, and accuracy
on the longest excerpt length was over 70%.

The human evaluation dataset consisted of 150
excerpts of web text and 50 excerpts each from
the three decoding strategies. Each question was
shown to at most three raters, leading to 900 total
annotations from the untrained workers and 475
from the expert raters. A more detailed breakdown
can be found in the Appendix.

7 Automatic Detection Results

Simple Baselines Table 1 shows the perfor-
mance of the baseline discriminators on length-
192 sequences, as compared with fine-tuned
BERT. Reassuringly, BERT far surpasses all sim-
ple baselines, indicating that it is not fully possi-
ble to solve the detection problem without com-
plex sequence-based understanding. The simplest
baseline, TotalProb, which makes a decision based
on the likelihood of the sequence, performs sur-

prisingly well (over 60% accuracy for all sampling
methods) relative to the methods which involve
training logistic regression models.

Logistic regression on bag-of-words is the best
of the baselines, beating out the histogram-based
methods. While Gehrmann et al. (2019) report an
AUC of 0.87 on classifying text as real or gener-
ated using logistic regression on the four buckets
of the GLTR system, we report AUC between 0.52
and 0.56 for this task. The discrepancy is likely
due to the fact that the human-written text in our
discriminator training set comes from the same
distribution as the text used to train the language
model, while in GLTR the human text comes from
children’s books, scientific abstracts, and news-
paper articles. The selection of training data for
learned detection systems is crucial. In real-world
applications, the choice ought to reflect the genres
that builders of text-generation systems are trying
to impersonate.
Fine-tuned BERT In Figure 1a, we begin by ob-
serving discriminator accuracy as a function of ex-
cerpt length and sampling method. As can be in-
tuitively expected, as sequence length increases,
so too does accuracy. For unconditioned text de-
coded with nucleus (p0.96) and untruncated (p1.0)
random sampling, we find discriminator accuracy
increases from 55%, near random, to about 81%
for the longest sequences tested. In contrast, dis-
criminators trained and evaluated on top-k achieve
over 80% accuracy even on 16-token excerpts.

Why are top-k’s samples so easy to detect? In
Figure 2b, we see the percentage of probability
mass concentrated in the k most common token
types for each sampling method. While random
sampling and nucleus sampling are very similar to
human-written texts, we see top-k concentrating
up to 80% of its mass in the first 500 most com-
mon tokens. The other sampling methods as well
as human-written texts require at least 1,100 token
types for the same. It is clear that top-k’s distribu-



1813

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 32 64 96 128 160 192

A
cc

ur
ac

y

Sequence length in tokens

Accuracy of BERT Fine-tuned Discriminator

k40-1wordcond k40-nowordcond
p0.96-1wordcond p0.96-nowordcond
p1.0-1wordcond p1.0-nowordcond

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 4 8 16 32 64 96 128 160 192
Sequence length in tokens

Fraction of BERT Discriminator Errors that are 
Machine-generated Labeled as Human-written

k40-1wordcond p0.96-1wordcond p1.0-1wordcond

(b)

Figure 1: In (a), accuracy increases as the length of the sequences used to train the discriminator is increased.
In (b), we see that the BERT fine-tuned discriminator predicts about the same number of false-positives as false-
negatives when trained with samples generated using top-p sampling. However, for top-k, it more often mistakes
machine-generated text to be human-written, while for untruncated random sampling the opposite is the case.

tion over unigrams strongly diverges from human-
written texts–an easy feature for discriminators to
exploit. In fact, See et al. (2019) note that it takes
setting k to 1000 to achieve about the same amount
of rare word usage and fraction of non-stopword
text as as human writing.3 This makes it very easy
for the model to pick out machine-generated text
based on these distributional differences.

One way to help resolve this problem is to add
priming text. Doing so causes more rare words
to be incorporated into the top-k of the unigram
distribution. Adding even a single human word
of priming significantly reduces the performance
of detectors trained with top-k random sampling.
Without priming, a discriminator trained on se-
quences of length 2 can classify with ∼90% ac-
curacy the provenance of the text (Figure 1a).
By adding one priming token, accuracy drops to
∼65%. Even on the longest 192-length sequences,
top-k discriminator accuracy is 6% lower on the
primed dataset than the unprimed one.

When generating with nucleus or untruncated
random sampling, adding a priming token is not
as impactful, as these methods are already sam-
pling from a large fraction (or all) of the probabil-
ity distribution. This is seen in Figure 2a where
at the very first step of unprimed generation, nu-
cleus sampling selects from 3075 possible vocab-
ulary words, and at later positions selects from on

3when decoding from the GPT-2 small model with 117M
parameters.

average more than 500. Untruncated random sam-
pling always selects from the entire 50,000 word
vocabulary, whereas top-k only selects from k.

Transferability In Table 2, we show how dis-
criminators trained with samples from one decod-
ing strategy can transfer at test time to detect-
ing samples generated using a different decoding
strategy. Unsurprisingly a discriminator trained on
top-k generalizes poorly to other sampling meth-
ods: accuracy drops to as low as 42.5%, worse
than chance. Conversely, training the discrimi-
nator with sequences sampled from the untrun-
cated distribution leads to little transferability to
detecting top-k samples. Only the discriminator
trained with nucleus sampling (a compromise be-
tween unmodified sampling and top-k) was able to
detect sequences from the other sampling strate-
gies without too much of a hit to accuracy. As ex-
pected, a discriminator trained on an equal portion
of data from each decoding method does reason-
ably at detecting all three.

Perhaps this lack of transferability is related to
each discriminator’s calibration. Indeed, the de-
gree to which a discriminator’s average predic-
tion deviates from 50% is a direct indicator of
its accuracy. In Table 3, we observe that of the
three BERT discriminators, only that trained on
top-p samples predicts ‘machine-generated’ on ap-
proximately 50% of in-domain examples as ex-
pected. This same discriminator’s behavior holds
on datasets generated by other sampling strategies
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Figure 2: In (a), the average (over sequences in the test set) k chosen at each step during generating with nucleus
sampling is plotted. Adding a single word of priming strongly impacts the ks chosen for the first few positions, but
this difference quickly dissipates. In (b), we consider the first token generated in each sequence by top-k, and plot
what fraction of these are captured by the k most common unique tokens from the vocabulary. Overall, at its first
step, top-k concentrates 80% of its probability mass in the 500 most common tokens from the vocabulary.
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Figure 3: (a) and (b) show human rater accuracy of correctly identifying an excerpt as human-written or machine-
written, shown with 80% confidence internals, in (a), broken up by decoding strategy and in (b), overall. Accuracy
increases as raters observe more tokens. (c) shows that for short excerpts, most rater mistakes are them incorrectly
thinking machine-generated text is human written. The two errors types become more balanced at longer lengths.

Eval
top-k nucleus random

Tr
ai

n top-k 90.1 57.1 43.8
nucleus 79.1 81.3 78.4
random 47.8 63.7 81.7
mixed 88.7 74.2 72.2

Table 2: Accuracy of BERT fine-tuned discriminator
when trained on samples from one strategy (rows) and
evaluated on another (columns). Trained on samples
with 192 tokens. The ‘mixed’ dataset is one containing
an equal portion of samples from each strategy.

as well. In contrast, we observe that discrimi-
nators trained on top-k and untruncated random
samples severely underestimate the percentage
of machine-generated excerpts in out-of-domain
datasets. Even within domain (Figure 1b), we find
both discriminators heavily favor a single class, in-

Eval
top-k nucleus random

Tr
ai

n top-k 60.9 27.9 14.5
nucleus 49.2 51.7 48.9
random 7.3 22.6 38.3

Table 3: Average probability of ‘machine-generated’
according to each length-192 discriminator. The ex-
pected in-domain probability is 0.5. One token of con-
ditioning.

creasingly so as the number of tokens increases.

Human Evaluation Overall human performance
across all sampling methods is shown in Figure
3b. Even with the multi-paragraph 192-length ex-
cerpts, human performance is only at 71.4%, in-
dicating that even trained humans struggle to cor-
rectly identify machine-generated text over a quar-
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EDIT:OKAY!, I guess that’ll work for now. > http://www.teamfortress.com/ and then
go buy the game and experience some of the best online gaming I have ever played.
ˆ ˆBoth girls had a really fun time and I had a GREAT time making both of these
costumes. Everything was altered even a little bit(dying the pants a darker grey and
painting the boots and shirts) But my piece de resistance would have to be my eldest’s
Medi-Gun.If you have any questions about the costumes, I would be happy to assist
you!Oh and here’s a video of my daughter before the costume was completed.Thanks!

Image copyright Getty Images Image caption Women mourn over the coffin of one of the
victim’s of Sunday’s bombing in Ankara ¶Who’d be in Turkey’s shoes right now? ¶Since
July last year, hundreds of soldiers and civilians have been killed in terrorist attacks. Suicide
bombs have torn into crowds of demonstrators and tourists. Military convoys have been
targeted in the heart of the capital. ¶A long-running Kurdish insurgency, once thought to
be close to resolution after years of painstaking efforts to build bridges, has erupted once
more. ¶The country is awash with Syrian and other refugees. The government has been
under pressure to stop them moving on into Europe and prevent would-be jihadis travelling
the other way. ¶How dangerous is Turkey’s unrest? ¶Tears and destruction amid PKK
crackdown ¶Turkey v Islamic State v the Kurds

Truth Raters p1.0 k40 p0.96 Truth Raters p1.0 k40 p0.96
M M H - - M M - - H
First off, this thread has done a pretty good job of describing in detail yet another broken
touchscreen. That’s the difference between a smartphone and a PC with no prying eyes
having to snap shots for the police to find. ¶What I would like to address is the mindset
that generally surrounds Chrome OS users. To me this is analogous to saying that Apple
does“hate their Windows”, or that HP does“hate their Macs” as if http://twitter.com/)
(and that quote is from two years ago), that anyone who covers smartphones and tablets
from a “PC” perspective is just jealous. ¶Chrome OS is for browsing the web, PC
processors can do stronger things in that regard, Windows is a juggernaut on those
fronts. This is how I see it. Yes, it can be slow. And yes, you need a fast CPU

FOR ALABAMA, GOOD WEEKS ¶AND A TOUR OF CAIRO ¶THE ALABAMA
COMMITTEE ON THE STUDY OF THE AMERICAN SECURITY AGENDA, ¶Amer-
ica’s future has been mapped out in carved stone. Metro Atlanta’s last US congressman,
Bill Posey, was a inextricable integral element of the Citadel project as it became another
metaphor for Atlanta’s transformation from an industry backwater into the finance and infor-
mation hub of the nation’s capital. Meanwhile, Cobb County – Atlanta’s geode of change –
is home to some of the largest industrial parks in the South, a regional cultural center, a 100-
year-old manufacturing town and a potent symbol of the former city’s cherished Georgian
past. The gentry still live there, the defunct industrial landscapes carry the names of

Truth Raters p1.0 k40 p0.96 Truth Raters p1.0 k40 p0.96
M H - - M M H - M -
Exidentia at Eurnari, is an upcoming Cryptopia event which is currently still in devel-
opment. Be a part of the first live stream of this year’s event on 15-16 January 2016!
¶Since the release of v1.22, Exidentia has received a fair amount of user feedback.
This event takes place in the underwater Cryptopia they have built. During this event,
you will learn about the ocean and areas around it, and be reached by a treasure hunter
that helps you explore the different areas. ¶There will be six different levels in this
event that you will become acquainted with: thought Polar Lava, Ocean Seared Cones
and Celestine Floors, Sea Damaged Aerie Bricks, coast Puddle (congipit stopping at red
water), Shaikh Swamp and Bugmite. At rotating points, you will learn how to access
various types of creatures

Ever since the opening of the North American College of Art Education in 1990, the demand
for art education in America has grown steadily, and in recent years we have seen the rise
of students that pursue art education not in the classroom but at art academies. This year
saw another 50 percent increase in the number of art academies in the United States offering
courses – with an additional 10 percent of students in 2017 taking art. ¶Some major changes
have occurred in recent years with regard to the art curriculum and the way students learn,
and we will explore each of these in coming months as we look at the various forms of art
education. There is no one-size-fits-all approach for this or any other field of study, and
students who begin a course in art education may change their plans based on what they
see that course, including what lessons they have completed and the resources available, to
create meaningful experiences of artistic creation. ¶One important area

Table 4: Some 192-token examples where at least two expert raters agreed with each other, but were not in agree-
ment with the automatic discriminators. The first row shows examples where the ground-truth was human-written,
the second shows machine-generated examples where the corresponding discriminator guessed incorrectly, and the
third shows machine-generated examples where the discriminator was correct, but raters got it wrong.

ter a time. However, it is worth noting that our best
raters achieved accuracy of 85% or higher, sug-
gesting that it is possible for humans to do very
well at this task. Further investigation is needed
into how educational background, comfort with
English, participation in more extensive training,
and other factors can impact rater performance.

To break up the accuracies by sampling method
in a way that is comparable to the results shown
for the automatic discriminators, we pair each
machine-generated example with a randomly se-
lected one of webtext to create a balanced dataset
for each sampling strategy. Performance is shown
in Figure 3a. Top-k produces the text that is hard-
est for raters to correctly distinguish, but as shown
in Section 7, it is the easiest for our automatic de-
tection systems. Samples from untruncated ran-
dom sampling and nucleus sampling with p=0.96
are equivalently difficult for raters to classify as
machine-generated. Our human evaluation results
suggest that much lower p-values than the 0.92 to
0.98 range proposed in Zellers et al. (2019) might
be necessary in order to generate text that is con-
sidered significantly more human-like to human
raters than the text produced by using the untrun-

cated distribution.
Table 4 gives several examples where human

raters and our BERT-based discriminators dis-
agreed. When raters incorrectly labeled human-
written text as machine-generated, often the ex-
cerpts contained formatting failures introduced
when the HTML was stripped out. In the mid-
dle two examples, topic drift and falsehoods such
as Atlanta being the “information hub of the na-
tion’s capital” allowed humans to correctly detect
the generated content. However, in the bottom
two examples, the high level of fluency left human
raters fooled.

Overall we find that human raters—even “ex-
pert” trained ones—have consistently worse ac-
curacy than automatic discriminators for all de-
coding methods and excerpt lengths. In our ex-
periments, randomly-selected pairs of raters agree
with each other on a mere 59% of excerpts on
average. (In comparison, raters and discrimina-
tors agree on 61% to 70% of excerpts depending
on the discriminator considered). We surmise that
the gap between human and machine performance
will only grow as researchers inevitably train big-
ger, better detection models on larger amounts of



1816

training data. While improved detection models
are inevitible, it is unclear how to go about im-
proving human performance. GLTR proposes pro-
viding visual aids to humans to improve their per-
formance at detecting generated-text, but it is un-
likely that their histogram-based color-coding will
continue to be effective as generative methods get
better at producing high-quality text that lacks sta-
tistical anomalies.

8 Conclusion

In this work, we study the behavior of auto-
mated discriminators and their ability to iden-
tify machine-generated and human-written texts.
We train these discriminators on balanced bi-
nary classification datasets where all machine-
generated excerpts are drawn from the same gener-
ative model but with different decoding strategies.
We find that, in general, discriminators transfer
poorly between decoding strategies, but that train-
ing on a mix of data from methods can help. We
also show the rate at which discriminator accuracy
increases as excerpts are lengthened.

We further study the ability of expert human
raters to perform the same task. We find that
rater accuracy varies wildly, but has a median of
74%, which is less than the accuracy of our best-
performing discriminator. Most interestingly, we
find that human raters and discriminators make de-
cisions based on different qualities, with humans
more easily noticing semantic errors and discrimi-
nators picking up on statistical artifacts. In our ex-
periments, these artifacts are most prominent with
top-k sampling. However, any strategy that over-
samples high-likelihood words is susceptible. As
the p in nucleus sampling is set increasingly lower
to achieve more fluent text (some systems are al-
ready using p as low as 0.5 (Miculicich et al.,
2019)), the distributional deviations that plague
top-k text will surface in nucleus sampling as well.

Holtzman et al. (2020) explain how a unique at-
tribute of human language is that it dips in and out
of low probability zones. This variance in likeli-
hood is what makes human-written text interest-
ing and exciting to read. Today’s generation sys-
tems have not yet solved the problem of mimick-
ing the human cadence without introducing poor
word choices that are easy for humans to detect.
Generation systems often optimize for fooling hu-
mans without acknowledging the trade-off that ex-
ists between human perception of quality and ease

of automatic detection. We therefore suggest three
prongs for future research:

1. Identifying ways to improve the language
models and decoding strategies we use in or-
der to generate text that is both exciting (ie.
unlikely) and semantically plausible.

2. Building better world understanding into au-
tomatic discriminators so that they are more
capable of detecting the types of errors that
humans notice.

3. Developing tools and educational materi-
als to improve humans’ ability to detect
machine-generated text. These may include
automatic detectors with components that ex-
plain their predictions.

Finally, we would like to note that all of our ex-
periments were performed with English language
models, and it remains an open question how the
trade-off between ease of human detection and
ease of automatic detection might differ for lan-
guages that are very different from English.
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A Appendix

A.1 Dataset Sizes
Table 5 shows the number of sequences used for
training and evaluating each of the automatic dis-
criminators. Recall that each discriminator is
trained for binary classification on an a dataset of
machine-generated (positive) and human-written
(negative) examples. Each dataset was constructed
by pairing the human-written excerpts (last row
of Table 5) with the machine-generated excerpts
drawn via a particular decoding algorithm (‘k40’,
‘p0.96’, or ‘p1.0’) and priming strategy (‘no-
cond’ or ‘1wordcond’). Originally the human-
written set and each machine-generated set con-
tained 250,000 training examples, 5,000 validation
examples, and 5,000 test examples. Table 5 shows
the resulting counts after after all excerpts with
sequence length shorter than 192 tokens were fil-
tered out. Thus, the final training, validation, and
test sets were almost, but not quite, balanced.

A.2 Further Details on Human Evaluation
The user interface for the human evaluation task is
shown in Figure 6. At each step, the rater is shown
additional text and asked to guess whether the
excerpt is human-written or machine-generated.
They are able to revise their guess at each subse-
quent step. The newly appended text at each step
is bolded in the UI. At the end, workers are told
whether or not they got the question correct.

To gauge worker attention levels, 10% of ques-
tions shown to workers explicitly stated what an-
swer ought to be specified. An example of one of
these “honeypot” questions is shown in Figure 7.
Amazon Mechanical Turk workers got 83% accu-
racy on these questions. Expert raters got 91.8%
accuracy. Table 8 shows the accuracy of each ex-
pert rater along with the number of annotations
they provided. Table 9 shows the example exerpts
that were used to “train” the expert raters.

For both the Amazon Mechanical Turk raters
and the expert raters initial predictions were biased
towards ‘possibly human,’ and only by observing
more tokens did their predictions become more
confident. Figure 4 shows that ‘possibly human’
is by far the most frequent answer upon observing
16 tokens, and as more tokens are observed raters
gravitate towards ‘definitely human’ or ‘definitely
machine.’ Even at 192 tokens, many raters are still
uncertain. Figure 4 also shows how raters for the
most part default to guessing short excerpts are

Figure 4: Number of votes expert raters made for each
label as a function of number of tokens observed. As
raters observe more tokens, their predictions become
more confident.

human-written, and as the excerpts are extended,
raters use the extra evidence available to revise
their guess. By the longest sequence length, votes
for “human-written” and “machine-generated” are
about balanced.

In Figure 5, we plot the frequency for each se-
quence length that raters converged on a single
guess (either human or machine) at that point. The
figure shows how it takes raters longer to converge
on a decision of “machine” than to converge on a
decision of “human.”

A.3 Automatic Detection Method Reliability
In order to quantify the variance of automatic
discriminator accuracy, we finetuned five in-
dependent BERT discriminators on a ‘mixed’
dataset comprising of 50% human-written exam-
ples and 50% machine-generated examples, where
machine-generated examples are equally split be-
tween top-k=40, top-p=0.96, and untruncated ran-
dom sampling. All sequences were exactly 192
tokens. The best performing model checkpoint,
according to an in-domain validation set, was then
used to evaluate out-of-domain binary classifica-
tion datasets as in Table 2 of the main paper.

The results are shown in Table 7. We find out-
of-domain accuracy to be extremely reliable with
a standard deviation of approximately 1% or less.
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Method # train # valid # test
large-744M-k40-1wordcond 211148 4226 4191
large-744M-k40-nocond 218825 4362 4360
large-744M-p0.96-1wordcond 210587 4248 4208
large-744M-p0.96-nocond 209390 4174 4185
large-744M-p1.0-1wordcond 209334 4169 4173
large-744M-p1.0-nocond 208219 4187 4168
human-written 201344 4031 4030

Table 5: The number of excerpts used for training, validation, and testing.

# Annotations Expert Raters AMT Workers
webtext 239 450
k0-1wordcond 87 150
k40-1wordcond 75 150
p0.96-1wordcond 74 150
total machine 236 450

Table 6: The number of human annotations collected. In total, there were 50 examples from each sampling strategy
and 150 examples of web text. Each example was shown to at most three raters.
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Figure 5: On average, it takes much less text for raters
to decide an excerpt is human-written than to decide an
excerpt is machine-generated.

Dataset µ σ
random sampling 72.47 1.02

top-k = 40 88.06 0.59
top-p = 0.96 74.4 0.76

Table 7: Average (µ) and standard deviation (σ) of ac-
curacy on out-of-domain datasets across five runs of au-
tomatic discriminator finetuning.

Accuracy Count
61.3% 83
57.8% 51
66.7% 51
69.8% 51
79.5% 48
84.6% 40
82.4% 39
65.6% 36
78.1% 34
84.0% 26
58.8% 18
92.3% 14
90.0% 11

100.0% 9
50.0% 8
60.0% 5

100.0% 5
100.0% 2

0.0% 2
0.0% 1

100.0% 1
0.0% 1

Table 8: Our expert rater pool consisted of 22 raters.
The average accuracy of each rater on the longest ex-
cerpt length (192 tokens) is shown here along with the
total number of excerpts they annotated.
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Human I recently got the chance to try the new Oil Essentials line. With six potent blends to choose from–at $13 each–these cute little bottles offer a great, affordable way to
partake in the skin and hair care oil craze.
I tested each product in the line, massaging them onto my face every night before bed and running any leftover oil through my hair to tame frizziness. You could also
add a few drops to your bath, favorite moisturizer, or even your shampoo and conditioner.
Here’s a quick rundown of each oil.
Revitalize: Omega 3, 6, 9 & Evening Primrose
This was the first one I tried (I went in ROYGBIV order to keep things straight) and my first impression was that it smells lovely but a little strong. The fragrance
smells genuinely like flowers.

Machine Red Lanterns, the lead exposure to a movie starring the Batman solo movie alum Margot Robbie taken under Wonder Woman’s wing have reignited that rivalry with
their whispery premiere. They played it as much as they possibly could, even though people who didn’t ever watch Justice League or might have missed it waiting in
line for the theater were still talking about as I spilled coffee.
The gist? An overextended (OK, a sore) Adam West films set up a Legion of Super-Heroes situation. How aggro? Super laws and paramilitary groups watch over the
world’s superheroes, which is a mix of that schtick ending, Planet Of The Apes II bit, and the Batman/Venom bit of last appeared in The Seventh Seal when Chris
O’Donnell infiltrated one of the teams at some point, also wearing Staff.

Machine He is considered to be the most terrifying man on the planet and people stay away from him. A guy asks him to do something and he says, ”My girlfriend’s so
important to me... I don’t need to fight her any more.” And then, boom, there’s some in a corner crying inappropriately.
Men: It’s gone in five minutes. Why do I have to be so sad? It’s cute,” says female member, who asks to remain anonymous. ”It’s what grew up to drive me crazy
when I was a kid, seeing these women become the nurturing, wealthy things they are in this professional world I truly love.”
And it’s nothing to do with her success. These men still actively fear being around the idea of a woman who might win Oscars, make movies or be audacious drivers.

Human Dropbox and Google Drive are very different services that appeal to different users. While Drive is connected to the entire Google Apps (now known as G Suite)
ecosystem, Dropbox is a lightweight, simple alternative for file storage. While both are useful, users need to look beyond features, and make sure the service they
choose can adequately protect their data. Here’s how Dropbox encryption and Google Drive encryption stack up.
Dropbox and Google Drive Encryption
To their credit, both Dropbox and Google Drive protect user files with encryption. Both also allow users to enable two-step verification, which requires an extra code
texted to the user’s phone to access the account, making it harder for hackers to access a user’s data.

Human EVE Isk Per Hour(Eveiph) is hands down the best tool I’ve ever used to make isk in New Eden. It is a market helper program that is able to do a great deal of the work
that is typically done by a traders spreadsheet. I’ve used it to go from a 200m/month trading income to 3b/month on my main trading character.
Above you can see the blueprint manufacturing page which is located on the first tab of Eveiph. Here you can see the components required to make an item, the
settings for the blueprint, and a brief market analysis of what you can expect to make manufacturing the item and selling it at the market you’ve selected. You can
enter the amount of runs you want to make, the ME and PE of your blueprint and click add to shopping list, and it will be added to a list of items to purchase when
you are next at a trade hub.

Machine So, not only was the speech a thoroughly mediocre diatribe about what he now thinks we should do for the next 45 minutes, but also how much credit we should give
to Mumford and Sons for bringing Obama to the campaign trail. Behold:
At the DNC, we drew strength from something even more powerful than the power of words. We drew strength from the power of families in this country. We drew
strength from the power of family values. We drew strength from the power of a common purpose–We drew strength from our shared commitment to fighting against
everything that undermines our potential in this country and our freedom. It is with that same conviction that we launch this campaign today and we urge every
American in America to join us tonight.
To allow the same attempt to succeed in this election.

Machine The year is twenty-eight, and the boy is Harry, the sixth year at Hogwarts School of Witchcraft and Wizardry. He can’t walk without spells covering his feet (or in his
case, his feet are so badly burned that he, for practical purposes, can’t even walk for that long without them) and he’s just starting to feel more secure about things.
This is a pretty dull aspect of the book, I’d say. They probably spent way too much time on the fact that he can’t use the stick of silver from his wand, despite his
friends bewitching all the knives they had.
Harry had been having some difficulty getting to sleep until Hermione pulled him out of his state of near-death-conversation. Thanks to Hermione’s meddling, he’s
gotten some sleep for the past two days. They also learnt a fair amount about getting used to his new surroundings.

Machine Coincidentally, just a few days after the first tweet came out, a fellow named Kevin McReynolds sent out an interview with GQ to promote their upcoming issue.
McReynolds describes himself as ”a conservative Catholic” who ”cannot fathom this guy being a real person and should be ashamed that he was able to be elected
president.”
It’s true. If you believe Hillary Clinton gave away 20 percent of the American Uranium to Russia, then you should be ashamed that you voted for Trump. No one
should be able to give or receive anything that’s not supposed to, so long as they have a warrant. If you’ve been in a relationship for more than six months with a
person who’s also convicted of being a felon (or convicted of stealing), that’s just stupid, especially as a married man. If you’re married to someone convicted of a
crime, and they go on their honeymoon with you, that’s a felony, not a honeymoon.

Human CHIP DESIGNER Texas Instruments unveiled a family of system on chip (SoC) processors aimed at automakers today, which are designed for use in self-driving cars.
Named the TDA2x, the SoC family integrates safety features, such as aiding auto designers to create advanced driver assistance systems (ADAS), which in turn help
”reduce the number of collisions on the road and enable autonomous driving experiences”.
”TDA2x device family combines an optimal mix of high performance, vision analytics, video, graphics and general purpose processing cores in a low power envelope,
enabling a broad range of ADAS applications including front camera, surround view and sensor fusion,” Texas Instruments said in its release.

Machine Description
This classic blend of coffee, cream, and sugar is the perfect drink! It is a smooth and creamy coffee with hints of cream and sweet sugar that can be enjoyed even after
a full day of work or playing! The sugar provides a wonderful texture to the coffee beans, so that it can be scooped out into a cup.
Available in four flavours: vanilla cream, caramel cream, coffee creme, and chocolate cream.
Note: Coffee can be prepared in less than 120 minutes. Note: Serves one.

Table 9: The 10 examples that “expert” raters were guided through before they were asked to perform the detection
task. These are hand-selected to showcase the spectrum of generated text and human-written text.
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Figure 6: The interface of the task used for human evaluation. Each time the user presses next, the passage’s length
is doubled. On the left, we show the first step of evaluation, on the right, the second to last.

Figure 7: For some of the questions, the text ”Dear AMT Worker: to show you’re reading, please select definitely
[X] for this one.” was inserted into the last text segment, and ”Did you read carefully?” was appended to the end.


