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Abstract

Predicting reading time has been a subject of
much previous work, focusing on how differ-
ent words affect human processing, measured
by reading time. However, previous work
has dealt with a limited number of partici-
pants as well as word level only predictions
(i.e. predicting the time to read a single word).
We seek to extend these works by examining
whether or not document level predictions are
effective, given additional information such as
subject matter, font characteristics, and read-
ability metrics. We perform a novel experi-
ment to examine how different features of text
contribute to the time it takes to read, distribut-
ing and collecting data from over a thousand
participants. We then employ a large num-
ber of machine learning methods to predict a
user’s reading time. We find that despite ex-
tensive research showing that word level read-
ing time can be most effectively predicted by
neural networks, larger scale text can be eas-
ily and most accurately predicted by one factor,
the number of words.

1 Introduction

Understanding how we read and process text
has proven a large area of both cognitive science
and natural language processing (NLP) research
(Graesser et al., 1980; Liversedge et al., 1998;
Frank et al., 2013a; Busjahn et al., 2014; Weller
and Seppi, 2019, 2020). Online content providers
and consumers are also interested in this research;
in the increasingly busy world of today, consumers
lack the time to read long articles, prompting con-
tent creators to aim for specific reading lengths.
Many providers1 have even examined traffic pat-
terns in order to determine the ideal content length,
with the general consensus finding 3-7 minutes of

Work done as part of a capstone course with Adobe
1Medium’s study can be found here.

content optimal. Thus, having established the op-
timal content length, article writers now face the
next hurdle: when has their post reached the ideal
length? A news article about last night’s football
game may be easier to read than a technical post
about NLP. Perhaps the font type or size influences
the consumer’s comprehension, slowing down the
reading process. There are many factors, both tex-
tual and stylistic, that quickly come to mind when
considering the potential reading time of an article.

Although there has been an extensive body of
work on reading time prediction applied to single
words (Frank, 2017; Willems et al., 2015; Shain,
2019; van Schijndel and Linzen, 2018), to the best
of our knowledge there has been no research into
understanding these effects on document sized text.
In this paper, we seek to address this area by build-
ing models to predict, understand, and interpret fac-
tors that could affect an article’s reading time. Our
contributions to this area include a methodically
designed statistical study, consisting of 1130 exper-
imental trials and 32 different articles, experimental
results for a broad collection of machine learning
algorithms on this novel task, and discussion of
potential reasons why more complex models fail.
To the best of our knowledge, this is the largest
experimental study for reading time research, in
terms of participants and breadth of factors. All
code and datasets are publicly available.2

2 Related Work

Researchers have made significant progress in pre-
dicting the reading time of single words, illustrating
the effect of different words on the human brain
(Frank et al., 2013b; Shain, 2019; Goodkind and
Bicknell, 2018) for many different texts (Futrell
et al., 2018; Kennedy et al., 2003). Although this

2The code and datasets for our experiments can be found
at http://github.com/orionw/DocumentReadingTime

https://medium.com/data-lab/the-optimal-post-is-7-minutes-74b9f41509b
http://github.com/orionw/DocumentReadingTime
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effort is focused more on the cognitive effects of
words, these results show that scientists can accu-
rately predict the reading time of individual words
in context. With the rise in popularity of machine
learning techniques, many scientists have found the
most success through these methods, with the most
recent research showing significant improvements
from combining neural networks as language mod-
els with linear mixed models (LMMs) (Goodkind
and Bicknell, 2018; de Vries et al., 2018; van Schi-
jndel and Linzen, 2018). However, all previous
research has been confined to the effect of a spe-
cific word in context, which naturally leads to the
question of how this research generalizes.

A separate but similar line of research, readabil-
ity, measures the reading difficulty of a body of
text. This research area has investigated effects of
readability in a plethora of areas: online vs paper
(Kurniawan and Zaphiris, 2001), color and contrast
(Legge et al., 1990), and writing style (Bostian,
1983). The most famous readability metric for En-
glish, the Flesch–Kincaid (Kincaid et al., 1975),
uses the number of syllables and words to deter-
mine readability. Other scientists have attempted to
improve upon this simple metric, showing success
in reading level classification with unigram lan-
guage models (Si and Callan, 2001) or SVM mod-
els built on top of these basic textual characteristics
(Pitler and Nenkova, 2008). As previous metrics
seem to be sufficient, recent research has focused
on evaluating and comparing the diverse metrics on
different domains (Sugawara et al., 2017; Redmiles
et al., 2019). We use these readability works to in-
fluence our choice of features, as readability seems
inherently interwoven with reading time. We em-
ploy the py-readability-metrics package to include
7 state-of-the-art metrics that we add to our data
for the modeling task (Section 4, Appendix B).

3 Experimental Design

We collected our reading time data from a statistical
survey performed on Amazon’s Mechanical Turk.
Since we were not physically present to observe the
respondents we took a number of precautions and
controls to ensure data quality. We note however,
that the inclinations of Mechanical Turk users align
with our target audience: we would expect most
readers of online content to be of a younger de-
mographic, tech-savy, and prone to read as fast as
possible. In this section we will discuss our survey
design, validation, and results.

3.1 Survey Design

In order to gather the maximum amount of infor-
mation from a survey design, we implemented our
survey following Fractional Factorial Design (FFD)
(Box et al., 2005). This method of survey collection
allows us to exploit the sparsity-of-effects principle,
gleaning the most information while only using a
fraction of the effort of a full factorial design, in
terms of experimental runs and resources. This
method works by defining two levels for each fac-
tor: for example, our factor font size had the levels
12 point and 16 point. We extracted 8 factors with 2
levels, consisting of 28 unique surveys (28−3 = 32
using FFD) to design. When choosing factors and
levels, we focused on areas that would provide the
most contrast in order to illustrate potential differ-
ences in reading time.

Although there are an almost endless number
of factors that could potentially influence article
reading time, the number of surveys needed to ex-
plore those factors increases exponentially; thus,
we chose eight crucial factors. Levels of the factor
are indicated in parenthesis if applicable: font size
(12 vs 16 point), font type (sans vs serif), subject
matter (health vs. technology), genre (blog post vs
news article), average syllables per word, number
of words, average words per sentence, and average
unigram frequency. We note that we further col-
lected the original article’s text so that additional
factors could be easily extracted for future analysis.
Again, these factors are not exhaustive but instead
were chosen to give a representative sample for a
specific area of online articles, while still showing
contrast between documents (e.g. news articles vs
blog posts or small vs large font).

To define the levels of our numeric features, such
as unigram frequency or the average number of syl-
lables, we collected 200 articles for the week of
March 4th 2019, aggregating from different news
and blog sources, but taking a maximum of three
articles from each source (see a more comprehen-
sive list on Github, as there are too many to list).
We took these articles, extracted our feature charac-
teristics, and found the median of the distribution.
This number was then used as the cutoff between
the two levels for that factor. Unigram frequencies
were computed using the wordfreq library, aggre-
gating frequencies from numerous sources.3

3Details on which text corpora were aggregated can be
found at https://github.com/LuminosoInsight/wordfreq/

https://github.com/LuminosoInsight/wordfreq/
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Figure 1: Left: boxplots for the results of each survey, with reading time in seconds. Right: a plot of the number of
words vs. reading time. Note that lines in the x-axis are due to each of the 32 surveys having around 40 respondents
each, for a total of 1130 respondents.

3.2 Survey Construction

With the requirements for each survey defined by
the FFD, we gathered additional articles and parsed
their features. We then matched each one of the 32
combinations from the FFD to a unique article that
contained those features.

In order to gather a large audience with similar
characteristics to online readership, we distributed
our survey through Amazon’s Mechanical Turk
using the Qualtrics platform. Our survey flow con-
sisted of five short demographic questions includ-
ing age, gender, education level, familiarity with
the article subject matter (health or technology)
and their perception of their reading speed on a five
point Likert scale (slow to fast). They were then
instructed to read the next page of the survey unin-
terrupted at their normal reading pace, after which
they would be asked several basic comprehension
questions for validation. Each comprehension ques-
tion was created to be easily answered if the user
had read the article but non-trivial for those that
had not. See Appendix A for examples of compre-
hension questions. If the user failed to answer any
of the control questions correctly, the survey was
terminated and the data was not used.

3.3 Survey Validation and Controls

Due to the nature of Mechanical Turk, we em-
ployed various controls to ensure the quality of our
data. Many Mechanical Turk workers are prone to
take multiple surveys concurrently, leave the page
of the survey open for long periods of time, or rush
through surveys in order to maximize their earn-

ings. However, the inclination to read through an
article quickly is similar to that of online readers,
thus, a crowdsourcer’s work is acceptable as long
as they pass our validation.

In order to control for these tendencies, we in-
cluded many checks throughout each stage of the
survey. If the answers to the demographic questions
were unrealistic (such as age greater than 90 or less
than 18), we rejected the survey. If the user failed
to answer a validation question, such as asking the
user to select a certain box before proceeding to the
next page, they were disqualified. If the user spent
an unrealistic amount of time on the reading page
due to any reason (less than two minutes or greater
than ten minutes4 for a long article, as an exam-
ple) or failed to answer any of the comprehension
questions, their data was not used.

3.4 Experimental Results

The results from our surveys are plotted in Figure
1, consisting of 1130 respondents. Note that the
results have significant variance, especially as the
length of the article increases. More plots of the
data can be found in our Github repository.

4 Modeling

With the data gathered and readability metrics cal-
culated (see Section 2), we explore the results
from a variety of different models. We employ
three categories of models: models that only use

4These times were found by initially performing this sur-
vey on a limited number of respondents with no limits and
then extending the min/max by an additional two minutes.
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extracted features, models that only use the text,
and models that stack textual-only models with
model features. Basic extracted feature models in-
clude a vanilla Linear Regression (LR) with only
the number of words variable (“word”), a Linear
Regression model with all variables (“all”), Ran-
dom Forests, K-Nearest Neighbors (KNN), and a
Multi-Layered Perceptron (MLP). As using the en-
tire article as input for the text only models is not
computationally feasible, we use modern neural
networks to embed the text as a document embed-
ding, using a linear output layer for regression. We
tried various state-of-the-art embedding models in-
cluding roBERTa (Liu et al., 2019; Devlin et al.,
2018), XLNet (Yang et al., 2019), and ELMo (Pe-
ters et al., 2018). The stacked models combine the
document embedding with the extracted features,
feeding them both into an MLP. Embeddings use
the Flair (Akbik et al., 2018) and HuggingFace
(Wolf et al., 2019) libraries.

We use two baselines: a commonly used rule-of-
thumb for online reading estimates, 240 words per
minute (WPM), and the sum of the word-level pre-
dictions (Surprisal-Sum) from a surprisal model in
order to compare with recent works (van Schijndel
and Linzen, 2018; Shain, 2019). For the Surprsial-
Sum baseline predictions, we employ the model
used in (van Schijndel and Linzen, 2018), where
predictions are made by training a Linear Mixed
Model over surprisal data.

5 Results

The results from our experiments are found in Table
1. We see that the most effective models were the
simplest: the 240 WPM baseline, linear regression,
k-nearest neighbors, and random forests. Using
the word count only linear model, because of its
easy interpretability, shows us an R2 value of 0.40,
meaning that 40% of the variance of reading time
can be explained by the number of words in the
article. We also see that scaling a regression model
to include demographic and textual information
(the “all” linear regression model) does not seem
to provide significant improvements in prediction.

Given the amount of empirical evidence from
word level reading time prediction, we were sur-
prised to see a dearth of similar results for docu-
ment level prediction. Models that provide strong
results in word level prediction, such as varieties
of neural networks, fail to be as effective as the
simpler models. Perhaps this is due to the length of

Features Only: RMSE (sd) MAE (sd)
240 WPM 66.0 10.7 52.1 8.3
Surprisal-Sum 141.5 42.8 118.4 35.8
MLP 84.8 10.5 67.2 7.0
Random Forest 64.3 7.7 50.2 5.6
LR (word) 65.5 10.7 51.1 7.9
LR (all) 65.7 9.8 51.6 8.0
KNN 70.1 9.6 54.3 7.1

Text-Only: RMSE (sd) MAE (sd)
XLNet 81.0 8.6 62.8 6.6
ELMo 84.3 13.1 66.7 8.6
roBERTa 83.2 13.9 66.3 9.1

Stacked: RMSE (sd) MAE (sd)
XLNet/MLP 80.3 10.4 62.9 8.0
ELMo/MLP 83.2 13.7 66.4 9.4
roBERTa/MLP 83.5 10.5 66.1 6.9

Table 1: Results on the reading time prediction task.
RMSE and MAE are reported in seconds for the mean
of a 10-fold cross validation. “sd” indicates one stan-
dard deviation for the previous metric. Best results in
each column are in bold.

the document - small changes in word level reading
time simply get evened out at the document level
(for example, see the Surprisal-Sum model). Al-
ternatively, the level of surprisal in online articles
may remain constant with the number of words.

6 Conclusion

Given previous work in single word reading time
prediction, we conducted a large novel study to
test whether document level reading time could be
predicted. We carefully designed an experiment
containing a myriad of potential factors to measure
reading time, distributed the survey to more than a
thousand people, and collected the results into the
first dataset of its kind. We then employed machine
learning techniques to predict the time to read, find-
ing that simpler models were the most competitive,
with the number of words as the sole critical factor
in predicting reading time. We hope this resource
can benefit future research into developing tech-
niques to model and understand human responses
to document sized text.
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A Comprehension Questions

We designed our comprehension questions such
that the answer would not be trivially obvious to
those who did not read the article. In this exam-
ple, an article about Minecraft Mods, we ask two
questions that would even require someone famil-
iar with Minecraft to read the article: asking them
what the author’s opinion was and what the term
mod stood for in this specific context. We further
put these questions on the page after the reading
section of the survey and did not allow respondents
to go back to re-read the text.

Figure 2: Example comprehension questions for an ar-
ticle about Minecraft

B Readability Metrics

We use the following metrics calculated from the
py-readability-metrics package:

• Flesch-Kincaid (Kincaid et al., 1975)

• Flesch (Flesch, 1948)

• Gunning-Fog (Gunning et al., 1952)

• Coleman-Liau (Coleman and Liau, 1975)

• Dale-Chall (Chall and Dale, 1995)

• Ari (Smith and Senter, 1967)

• Linsear Write (Klare, 1974)
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