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Abstract

With the advent of powerful neural language
models over the last few years, research atten-
tion has increasingly focused on what aspects
of language they represent that make them
so successful. Several testing methodologies
have been developed to probe models’ syntac-
tic representations. One popular method for
determining a model’s ability to induce syn-
tactic structure trains a model on strings gen-
erated according to a template then tests the
model’s ability to distinguish such strings from
superficially similar ones with different syntax.
We illustrate a fundamental problem with this
approach by reproducing positive results from
a recent paper with two non-syntactic baseline
language models: an n-gram model and an
LSTM model trained on scrambled inputs.

1 Introduction

In recent years, RNN-based systems have proven
excellent at a wide range of NLP tasks, sometimes
achieving or even surpassing human performance
on popular benchmarks. Their success stems from
the complex but hard to interpret, representations
that they learn from data. Given that syntax plays
a critical role in human language competence, it
is natural to ask whether part of what makes these
models successful on language tasks is an ability
to encode something akin to syntax.

This question pertains to syntax “in the meaning-
ful sense,” that is, the latent, hierarchical, largely
context-free phrase structure underpinning human
language as opposed to superficial or shallow is-
sues of word order (Chomsky, 1957; Marcus, 1984;
Everaert et al., 2015; Linzen et al., 2016). Clearly,
syntactic information can be explicitly incorporated
into neural systems to great effect (e.g., Dyer et al.,
2016; Swayamdipta et al., 2018). Less certain is
whether such systems induce something akin to hi-
erarchical structure (henceforth, “syntax”) on their
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own when not explicitly taught to do so.

Uncovering what an RNN actually represents is
notoriously difficult, and several methods for prob-
ing RNNs’ linguistic representations have been de-
veloped to approach the problem. Most directly,
one can extract finite automata (e.g., Weiss et al.,
2017) from the network or measure its state as it
processes inputs to determine which neurons attend
to what features (e.g., Shi et al., 2016; Linzen et al.,
2016; Tenney et al., 2019). Alternatively, one can
present a task which only a syntactic model should
be able to solve, such as grammaticality discrim-
ination or an agreement task, and then infer if a
model has syntactic representations based on its
behavior (Linzen et al., 2016; Ettinger et al., 2018;
Gulordava et al., 2018; Warstadt et al., 2019).

In practice, simple sentences far outnumber the
ones that require syntax in any natural corpus,
which may obscure evaluation (Linzen et al., 2016).
One way around this, referred to here as template-
based probing, is to either automatically generate
sentences with a particular structure or extract just
the relevant ones from a much larger corpus. Tem-
plates have been used in a wide range of studies,
including grammaticality prediction (e.g., Warstadt
et al., 2019), long-distance dependency resolution,
and agreement prediction tasks (e.g., Gulordava
et al., 2018). By focusing on just relevant struc-
tures that match a given template rather than the
gamut of naturally occurring sentence, template-
based probing offers a controlled setting for evalu-
ating specific aspects of a model’s representation.

The crux of behavioral evaluation is the asser-
tion that the chosen task effectively distinguishes
between a model that forms syntactic representa-
tions and one which does not. This must be demon-
strated for each task — if a model that does not
capture syntax can pass the evaluation, then there
is no conclusion to be drawn. However, this step is
often omitted (but not always, e.g., Gulordava et al.,
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2018; Warstadt et al., 2019). Moreover, template-
based generation removes the natural sparse and
diverse distribution of sentence types, increasing
the chance that a system might pick up on non-
syntactic patterns in the data, further increasing the
importance of a clear baseline.

This problem is most clearly illustrated with
an example. In the following sections, we intro-
duce Prasad et al.’s (2019) novel psycholinguistics-
inspired template-based probe of relative clause
types, which was taken as evidence in support of
syntactic representation in LSTMs. We then pass
PvSL’s test with two non-syntactic baselines: an
n-gram LM which can only capture short-distance
word order of concrete types (Section 3), and an
LSTM trained on scrambled inputs (Section 4).
These baselines show that a combination of col-
location and lexical representation can account for
PvSL’s results, which highlights a critical flaw in
that experimental design. Following that, we argue
that it is unlikely that LSTMs induce syntactic rep-
resentations given current evidence and suggest an
alternative angle for the question (Section 5).

2 Prasad, van Schijndel, & Linzen 2019

Prasad et al. (PvSL; 2019) leverage an analogy
from psycholinguistic syntactic priming to test
whether an LSTM is able to distinguish between
sentences with different syntactic structures. When
human subjects are primed by receiving an exam-
ple of some input, their expectation of receiving
similar subsequent input will temporarily increase
relative to their expectation of other inputs. This
can be used to test questions about syntax because
once one is primed with sentences with a specific
structure, subsequent sentences with shared struc-
ture will tend to show decreased surprisal responses
relative to those with different structures.

PvSL observe that this procedure may be applied
to neural networks as well. Since a model’s sur-
prisal upon receiving some input decreases as it
receives subsequent similar inputs, one could cu-
mulatively “prime” a model by adapting it toward
a certain class of input (van Schijndel and Linzen,
2018). As the reasoning goes, if the model can
be primed for a particular syntactic structure, that
implies that it is able to recognize that structure
and therefore has learned a representation for it.

This paradigm is used to assess an LSTM’s abil-
ity to distinguish between five superficially similar
but structurally distinct sentences types: those con-

taining an unreduced object relative clause (RC),
reduced object RC, unreduced passive subject RC,
unreduced passive subject RC, and active subject
RC, as well as two types matched for lexical con-
tent: passive subj./obj. RC-matched coordination
sentences and active subj. RC-matched coordi-
nation. (1-2) present an example object RC and
subject RC sentence to illustrate the structures. !
These are distinguished syntactically by the origin
of their subjects. In the first case, the subject of
the sentence, ‘the cake,’ is also the object of the
relative clause (position indicated by underscore),
but in the second case, the sentence subject, ‘the
baker, is also the subject of the relative clause.

(1) unreduced obj. RC: The cake; [that the
baker baked __;] impressed the customers.

(2) unreduced subj. RC: The baker; [that _;
baked the cake] impressed the customers.

As PvSL note, if a model were able to track the
position of the implicit syntactic origin, it would
be able to distinguish these sentence types, so one
would expect the model to exhibit a greater adap-
tation effect (greater decrease in surprisal) when
primed and tested on the same sentence type than
if primed on one type and tested on the other.

2.1 Main Experiment

PvSL populated templates to generate five sets of
20 adaptation and 50 test sentences for each sen-
tence type with lexical items chosen to minimize
lexical overlap between corresponding adaptation
and test sets. Modifiers were optionally inserted
in order to vary surface word order somewhat, and
generated sentences were constrained to be felici-
tous, that is, they all made plausible semantic sense.

They trained 75 LSTM language models (van
Schijndel and Linzen, 2018) on five splits of the
WikiText-103 corpus. Average surprisal was com-
puted for each model for each test set, then each
model was adapted to (“primed for”’) each sentence
type. They were then retested on the same test sets.
The difference between pre- and post-adaptation
surprisal (“adaptation effect”) for each adaptation
sentence type/test type pair was recorded, and adap-
tation effects were averaged across all models for
each sentence type.

They establish a consistently and significantly
stronger adaptation effect for same-type adapta-
tion and test runs than different-type runs (PvSL

"More examples can be found in PvSL §4.1.
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Figure 1: Average same-type vs. different-type adap-
tation effects for n-gram models. All differences are
statistically significant except for object coordination.

§5.2), a stronger effect for RCs tested on models
adapted for RCs rather than coordination sentences
and vice-versa (PvSL §5.3), and for runs matched
for passive voice over mismatched runs and for
runs matched for reduction over mismatched runs
(PvSL §5.4). Altogether, this is consistent with
their hypothesis that the LSTM LMs are capturing
abstract syntactic properties of their inputs.
Although the results are impressive, there are
potential issues with their suggested interpretation.
Namely, there may still be sufficient superficial
word order information to achieve the effect de-
spite the addition of optional modifiers (e.g., if
unreduced object RCs often contain the bigram
“that the,” but unreduced subject RCs never do).
Also, the felicity constraint means that the lexical
items that appear in each sentence type should pat-
tern together in the training data (i.e., verbs that are
more likely to appear in object RCs are likely to
pattern similarly in other constructions too). We
test both possibilities in the following sections.

3 N-Gram Model

We begin by training an n-gram language model
(through 4-grams) with Knesser-Ney smoothing
(Ney et al., 1994) with the NLTK toolkit to de-
termine whether it could be primed to distinguish
PvSL’s sentence types. An n-gram LM can only
learn surface collocations and so cannot capture
(hierarchical) syntax, so if it produces a significant
differential adaptation effect, then the experiment
is not able to discriminate between models which
capture syntax from those which do not.
Adaptation and testing were carried out with
PvSL’s adaptation and test sets, and LM training
was modified slightly to address n-gram models’
characteristics. They have no recency bias, unlike
RNNs, which diminishes the impact of adaptation.
As such, 20 smaller models were trained on disjoint
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Figure 2: Average RC vs. coordination adaptation ef-
fects for n-gram models. Adapt on coord. is significant

subsets of WikiText-2 rather than the full-sized
WikiText-103 subsets.

Plotting and statistical analysis were carried out
with PvSL’s code®. Figure 1 shows the average
adaptation effect observed when the models are
adapted and tested on the same sentence type or dif-
ferent sentence types. Importantly, the same-type
adaptation effect is greater than the different-type
effect for six of seven sentence types (unreduced
passive RC is reversed). Although the adaptation ef-
fect is uniformly weaker than observed for PvSL’s
LSTM LMs, there is a statistically significant dif-
ference between the same-type and different-type
effects for six of seven sentence types.

Figure 2 compares the adaptation effect over
RCs compared to coordination sentences. The n-
gram models show a significantly greater same-
type adaptation effect for coordination but not for
RCs. A small but significant increase in voice-
and reduction-matched adaptation over unmatched
combinations was found (matched-passive matched
reduction: 0.610, matched-passive mismatched-
reduction: 0.594, mismatched-passive matched-
reduction: 0.575, mismatched-passive mismatched-
reduction: 0.572).

4 Scrambled-Input Model

Next, the same van Schijndel and Linzen (2018)
trained LSTM LMs which PvSL employed were
adapted on altered versions of their adaptation sets
in which the word order of each sentence was
scrambled to destroy the sentence’s syntax while
retaining its lexical content, then tested on the orig-
inal non-scrambled test sets. Even though PvSL
minimize the amount of lexical overlap in the adap-
tation and test sets, it may be the case that the
models pick up on lexical similarities because of
the felicity constraint which was imposed on them.

Zhttps://github.com/grushaprasad/RNN-Priming, with mi-
nor aesthetic changes to plots

1759



Unred. Object RC 4
Reduced Object RC

Unred. Passive RC 4 Adapt/Test Sets

. Same

Different

Reduced Passive RC 4
Active Subject RC 4
Object Coord. 4
Subject Coord. q

0.00 025 050 0.75
Adaptation Effect (bits of surprisal)

Figure 3: Average same-type vs. different-type adap-
tation effects for scrambled LSTM models. All differ-
ences are significant.

Scrambling was random on a sentence-by-
sentence basis. Results were averaged across all
the adaptation sets and models (as they were in
PvSL), so the effect of any individual accidentally
grammatical scramble was diminished.

Figure 3 shows the average differential adapta-
tion effects on these scrambled annotation runs.
The same-type adaptation effect is significantly
greater than different-type for six of seven sen-
tence types (except subject coord.), and the largest
relative difference is seen for unreduced passive
RCs, the only type for which the n-gram models
produced a reverse effect. Overall, the adaptation
effect is an order of magnitude larger than for the
n-gram models’ but still smaller than PvSL’s.

Figure 4 shows differential adaptation effects
for RC and coordination sentences. A backward
effect is observed for sentences adapted on coor-
dination, but a large positive effect is found for
those adapted on RC sentences. This is the com-
plement of what was found for n-gram models. A
significant positive difference was found between
sentence types matched and unmatched in passives
and reduction (matched-passive matched reduc-
tion: 0.65, matched-passive mismatched-reduction:
0.53, mismatched-passive matched-reduction: 0.53,
mismatched-passive mismatched-reduction: 0.43).

5 Discussion

These results call into question the van Schijndel
and Linzen (2018) and Prasad et al. (2019) syntac-
tic priming paradigm’s ability to distinguish mod-
els which represent syntax from those which rely
on shallow phenomena by achieving a positive re-
sult with two non-syntactic baseline models. First,
success in the priming paradigm is measured by
whether or not adaptation reduces surprisal, but not
by how much, so even though both baseline mod-
els tested here reduce surprisal by less than PvSL’s
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Test on RCs A H

Adapt on RC

Test on coord. 4 H
Teston RCs+ [N
0.0 01 02 03 0.4 05
Adaptation effect (bits of surprisal)

Figure 4: Average RC vs. coord. adaptation effects for
scrambled LSTM models. Differences are significant.

models on average, they still pass the success crite-
rion. To put it another way, PvSL report quantita-
tive results but do not actually establish what would
constitute a meaningful effect size. Even though
the effect sizes of both our baseline replications
were smaller, PvSL could have reported the results
from our baseline models instead of their actual
model and drawn the same conclusions.

Second, the fact that our surface word order n-
gram model and lexical similarity-only scrambled
LSTM LMs also show surprisal effects draws into
question the basic claim that only a syntactic model
would respond to adaptation: it is our hypothesis
that the combined effect of word order and lexical
similarity are what drive the LSTM models’ larger
effect. This is upheld, especially when it is noted
that the adaptation effects of both baselines com-
plement each other. Both alternative sources of
information are well known in the community and
have been tested in the past (Bernardy and Lappin,
2017; Gulordava et al., 2018). This reiterates the
need for proper baseline testing in computational
linguistics and for informative evaluations.

This highlights a more general problem with
template-based probing, namely, that the unnatural
lack of sentence diversity imposed by the templates
imposes unintended regularity for models to latch
onto. Given the well-known observation that neural
models will “take the easy way out” given the pres-
ence of this unintended surface information (Jia
and Liang, 2017; Naik et al., 2018; Sennhauser and
Berwick, 2018), and other work suggesting that
LSTMs do not necessarily induce syntactic struc-
ture (Gupta and Lewis, 2018; McCoy et al., 2018;
Warstadt et al., 2019), one must take successes
in template-based probing studies with a grain of
salt. The evaluation of non-syntactic baselines is an
easy-to-implement way to combat the tendency of
these behavioral probes to overestimate language
models’ abilities.
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To improve the priming paradigm in particular,
one would need to establish a success metric that
discriminates between baselines and alter the exper-
imental setup to mitigate information side channels.
One possibility would be to include infelicitous
“colorless green ideas” sentences with grammatical
syntax (cf. Gulordava et al., 2018), which might
decrease the lexical similarity problem. Remov-
ing the issue altogether could require enforcing
completely lexically disjoint training, adaptation,
and test sets, but we cannot reasonably expect a
model to function when it has no generalizations
to work with, and demanding lexically distinct sets
(including function words) greatly limits the set of
phenomena that could be studied.

5.1 An Alternative Approach

As a more radical alternative, we suggest extend-
ing behavioral analysis into “consequence-based”
analysis. The two have similar reasoning: from an
engineering perspective, a family of models that
is capable of inducing syntax is useful because
it may be expected to improve performance on
downstream tasks. Marcus (1984) discusses in a
theory-independent way which kinds of sentences
a model capturing syntax should be able to parse
but a “no-explicit-syntax” model (in the modern
context, probably a baseline RNN) should not (cf.
Chomsky, 1957; Rimell et al., 2009; Nivre et al.,
2010; Bender et al., 2011; Everaert et al., 2015). It
follows then that no-explicit- and explicit-syntax
models should exhibit quantitatively different be-
havior on tasks that require parsing such sentences.
A model that solves problems that only one capa-
ble of inducing syntactic structure can solve may
as well have induced syntactic structure from a
practical standpoint.

Consequence-based analysis would be imple-
mented over naturalistic data rather than templates
by embedding it in higher level tasks like question
answering to mitigate the unnaturalness problem
and demonstrate a model’s practical utility. The
possibility of side-channel information is already
known in relation to these higher-level tasks (e.g.,
Poliak et al., 2018; Geva et al., 2019), and various
challenge data sets have been constructed to mit-
igate it in different ways (Levesque et al., 2011;
Chao et al., 2017; Dua et al., 2019; Lin et al., 2019;
Dasigi et al., 2019). Uniting these with a collection
of hard sentence types (e.g., Marvin and Linzen,
2018; Warstadt et al., 2019) in something like a

syntax-focused QA challenge set would provide
new insights into which families of models capture
the practical benefits of true hierarchical syntactic
representation.
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