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Abstract
Most neural machine translation models only
rely on pairs of parallel sentences, as-
suming syntactic information is automati-
cally learned by an attention mechanism.
In this work, we investigate different ap-
proaches to incorporate syntactic knowledge
in the Transformer model and also propose
a novel, parameter-free, dependency-aware
self-attention mechanism that improves its
translation quality, especially for long sen-
tences and in low-resource scenarios. We
show the efficacy of each approach on WMT
English↔German and English→Turkish, and
WAT English→Japanese translation tasks.

1 Introduction

Research in neural machine translation (NMT) has
mostly exploited corpora consisting of pairs of par-
allel sentences, with the assumption that a model
can automatically learn prior linguistic knowledge
via an attention mechanism (Luong et al., 2015).
However, Shi et al. (2006) found that these models
still fail to capture deep structural details, and sev-
eral studies (Sennrich and Haddow, 2016; Eriguchi
et al., 2017; Chen et al., 2017, 2018) have shown
that syntactic information has the potential to im-
prove these models. Nevertheless, the majority of
syntax-aware NMT models are based on recurrent
neural networks (RNNs; Elman 1990), with only a
few recent studies that have investigated methods
for the Transformer model (Vaswani et al., 2017).

Wu et al. (2018) evaluated an approach to incor-
porate syntax in NMT with a Transformer model,
which not only required three encoders and two
decoders, but also target-side dependency rela-
tions (precluding its use to low-resource target lan-
guages). Zhang et al. (2019) integrate source-side
syntax by concatenating the intermediate represen-
tations of a dependency parser to word embeddings.

∗Work done while at Tokyo Institute of Technology.

In contrast to ours, this approach does not allow to
learn sub-word units at the source side, requiring
a larger vocabulary to minimize out-of-vocabulary
words. Saunders et al. (2018) interleave words
with syntax representations which results in longer
sequences – requiring gradient accumulation for ef-
fective training – while only leading to +0.5 BLEU

on WAT Ja-En when using ensembles of Transform-
ers. Finally, Currey and Heafield (2019) propose
two simple data augmentation techniques to incor-
porate source-side syntax: one that works well on
low-resource data, and one that achieves a high
score on a large-scale task. Our approach, on the
other hand, performs equally well in both settings.

While these studies improve the translation qual-
ity of the Transformer, they do not exploit its prop-
erties. In response, we propose to explicitly en-
hance the its self-attention mechanism (a core com-
ponent of this architecture) to include syntactic in-
formation without compromising its flexibility. Re-
cent studies have, in fact, shown that self-attention
networks benefit from modeling local contexts by
reducing the dispersion of the attention distribu-
tion (Shaw et al., 2018; Yang et al., 2018, 2019),
and that they might not capture the inherent syntac-
tic structure of languages as well as recurrent mod-
els, especially in low-resource settings (Tran et al.,
2018; Tang et al., 2018). Here, we present parent-
scaled self-attention (PASCAL): a novel, parameter-
free local attention mechanism that lets the model
focus on the dependency parent of each token when
encoding the source sentence. Our method is sim-
ple yet effective, improving translation quality with
no additional parameter or computational overhead.

Our main contributions are:
• introducing PASCAL: an effective parameter-

free local self-attention mechanism to incor-
porate source-side syntax into Transformers;
• adapting LISA (Strubell et al., 2018) to sub-

word representations and applying it to NMT;
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Figure 1: Parent-Scaled Self-Attention (PASCAL) head for the input sequence “The monkey eats a banana”.

• similar to concurrent work (Pham et al., 2019),
we find that modeling linguistic knowledge
into the self-attention mechanism leads to bet-
ter translations than other approaches.

Our extensive experiments on standard En↔De,
En→Tr and En→Ja translation tasks also show that
(a) approaches to embed syntax in RNNs do not
always transfer to the Transformer, and (b) PASCAL

consistently exhibits significant improvements in
translation quality, especially for long sentences.

2 Model

In order to design a neural network that is effi-
cient to train and that exploits syntactic informa-
tion while producing high-quality translations, we
base our model on the Transformer architecture
(Vaswani et al., 2017) and upgrade its encoder
with parent-scaled self-attention (PASCAL) heads
at layer ls. PASCAL heads enforce contextualiza-
tion from the syntactic dependencies of each source
token, and, in practice, we replace standard self-
attention heads with PASCAL ones in the first layer
as its inputs are word embeddings that lack any con-
textual information. Our PASCAL sub-layer has the
same number H of attention heads as other layers.

Source syntax Similar to previous work, instead
of just providing sequences of tokens, we supply
the encoder with dependency relations given by an
external parser. Our approach explicitly exploits
sub-word units, which enable open-vocabulary
translation: after generating sub-word units, we
compute the middle position of each word in terms
of number of tokens. For instance, if a word in po-
sition 4 is split into three tokens, now in positions 6,
7 and 8, its middle position is 7. We then map each
sub-word of a given word to the middle position of
its parent. For the root word, we define its parent
to be itself, resulting in a parse that is a directed

graph. The input to our encoder is a sequence of T
tokens and the absolute positions of their parents.

2.1 Parent-Scaled Self-Attention
Figure 1 shows our parent-scaled self-attention sub-
layer. Here, for a sequence of length T , the input
to each head is a matrix X ∈ RT×dmodel of token
embeddings and a vector p ∈ RT whose t-th entry
pt is the middle position of the t-th token’s depen-
dency parent. Following Vaswani et al. (2017), in
each attention head h, we compute three vectors
(called query, key and value) for each token, result-
ing in the three matrices Kh ∈ RT×d, Qh ∈ RT×d,
and Vh ∈ RT×d for the whole sequence, where
d = dmodel/H . We then compute dot products be-
tween each query and all the keys, giving scores of
how much focus to place on other parts of the input
when encoding a token at a given position. The
scores are divided by

√
d to alleviate the vanishing

gradient problem arising if dot products are large:

Sh = Qh Kh>/
√
d. (1)

Our main contribution is in weighing the scores of
the token at position t, st, by the distance of each
token from the position of t’s dependency parent:

nhtj = shtj d
p
tj , for j = 1, ..., T, (2)

where nh
t is the t-th row of the matrix Nh ∈ RT×T

representing scores normalized by the proximity
to t’s parent. dptj = dist(pt, j) is the (t, j)th entry
of the matrix Dp ∈ RT×T containing, for each
row dt, the distances of every token j from the
middle position of token t’s dependency parent pt.
In this paper, we compute this distance as the value
of the probability density of a normal distribution
centered at pt and with variance σ2, N

(
pt, σ

2
)
:

dist(pt, j) = fN
(
j
∣∣pt, σ2) =

1√
2πσ2

e−
(j−pt)

2

2σ2 .

(3)
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Finally, we apply a softmax function to yield a
distribution of weights for each token over all the
tokens in the sentence, and multiply the resulting
matrix with the value matrix Vh, obtaining the final
representations Mh for PASCAL head h.

One of the major strengths of our proposal is
being parameter-free: no additional parameter is
required to train our PASCAL sub-layer as Dp is
obtained by computing a distance function that only
depends on the vector of tokens’ parent positions
and can be evaluated using fast matrix operations.

Parent ignoring Due to the lack of parallel cor-
pora with gold-standard parses, we rely on noisy
annotations from an external parser. However, the
performance of syntactic parsers drops abruptly
when evaluated on out-of-domain data (Dredze
et al., 2007). To prevent our model from overfitting
to noisy dependencies, we introduce a regulariza-
tion technique for the PASCAL sub-layer: parent
ignoring. In a similar vein as dropout (Srivastava
et al., 2014), we disregard information during the
training phase. Here, we ignore the position of the
parent of a given token by randomly setting each
row of Dp to 1 ∈ RT with some probability q.

Gaussian weighing function The choice of
weighing each score by a Gaussian probability den-
sity is motivated by two of its properties. First, its
bell-shaped curve: It allows us to focus most of
the probability density at the mean of the distribu-
tion, which we set to the middle position of the
sub-word units of the dependency parent of each
token. In our experiments, we find that most words
in the vocabularies are not split into sub-words,
hence allowing PASCAL to mostly focus on the
actual parent. In addition, non-negligible weights
are placed on the neighbors of the parent token,
allowing the attention mechanism to also attend to
them. This could be useful, for instance, to learn
idiomatic expressions such as prepositional verbs
in English. The second property of Gaussian-like
distributions that we exploit is their support: While
most of the weight is placed in a small window of
tokens around the mean of the distribution, all the
values in the sequence are actually multiplied by
non-zero factors; allowing a token j farther away
from the parent of token t, pt, to still play a role in
the representation of t if its score shtj is high.

PASCAL can be seen as an extension of the local
attention mechanism of Luong et al. (2015), with
the alignment now guided by syntactic information.

Yang et al. (2018) proposed a method to learn a
Gaussian bias that is added to, instead of multiplied
by, the original attention distribution. As we will
see next, our model significantly outperforms this.

3 Experiments

3.1 Experimental Setup

Data We evaluate the efficacy of our approach
on standard, large-scale benchmarks and on low-
resource scenarios, where the Transformer was
shown to induce poorer syntax. Following Bast-
ings et al. (2017), we use News Commentary v11
(NC11) with En-De and De-En tasks to simulate
low resources and test multiple source languages.
To compare with previous work, we train our
models on WMT16 En-De and WAT En-Ja tasks,
removing sentences in incorrect languages from
WMT16 data sets. For a thorough comparison with
concurrent work, we also evaluate on the large-
scale WMT17 En-De and low-resource WMT18
En-Tr tasks. We rely on Stanford CoreNLP (Man-
ning et al., 2014) to parse source sentences.1

Training We implement our models in PyTorch
on top of the Fairseq toolkit.2 Hyperparameters, in-
cluding the number of PASCAL heads, that achieved
the highest validation BLEU (Papineni et al., 2002)
score were selected via a small grid search.

We report previous results in syntax-aware NMT
for completeness, and train a Transformer model as
a strong, standard baseline. We also investigate the
following syntax-aware Transformer approaches:1

• +PASCAL: The model presented in §2. The
variance of the normal distribution was set
to 1 (i.e., an effective window size of 3) as
99.99% of the source words in our training
sets are at most split into 7 sub-words units.
• +LISA: We adapt LISA (Strubell et al., 2018)

to NMT and sub-word units by defining the
parent of a given token as its first sub-word
(which represents the root of the parent word).
• +MULTI-TASK: Our implementation of the

multi-task approach by Currey and Heafield
(2019) where a standard Transformer learns
to both parse and translate source sentences.
• +S&H: Following Sennrich and Haddow

(2016), we introduce syntactic information
in the form of dependency labels in the em-
bedding matrix of the Transformer encoder.

1For a detailed description, see Appendix A.
2https://github.com/e-bug/pascal.

https://github.com/e-bug/pascal
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Figure 2: Analysis by sentence length: ∆BLEU with the Transformer (above) and percentage of data (below).

Method NC11 NC11 WMT18 WMT16 WMT17 WAT
En-De De-En En-Tr En-De En-De En-Ja [B] En-Ja [R]

Eriguchi et al. (2016) 34.9 81.58
Bastings et al. (2017) 16.1
Hashimoto and Tsuruoka (2017) 39.4 82.83
Bisk and Tran (2018) 30.3 24.3
SE+SD-NMT† (Wu et al., 2018) 24.7 36.4 81.83
SE+SD-Transformer† (Wu et al., 2018) 26.2
Mixed Enc. (Currey and Heafield, 2019) 9.6 31.9 26.0
Multi-Task (Currey and Heafield, 2019) 10.6 29.6 23.4
Transformer 25.0 26.6 13.1 33.0 25.5 43.1 83.46

+ PASCAL 25.9⇑ 27.4⇑ 14.0⇑ 33.9⇑ 26.1⇑ 44.0⇑ 85.21⇑
+ LISA 25.3 27.1 13.6 33.6 25.7 43.2 83.51
+ MULTI-TASK 24.8 26.7 14.0 32.4 24.6 42.7 84.18
+ S&H 25.5 26.8 13.0 31.9 25.1 42.8 83.88

Table 1: Test BLEU (and RIBES for En-Ja) scores on small-scale (left) and large-scale (right) data sets. Models that
also require target-side syntax information are marked with †, while ⇑ indicates statistical significance (p < 0.01)
against the Transformer baseline via bootstrap re-sampling (Koehn, 2004).

3.2 Results

Table 1 presents the main results of our experi-
ments. Clearly, the base Transformer outperforms
previous syntax-aware RNN-based approaches,
proving it to be a strong baseline in our experi-
ments. The table shows that the simple approach
of Sennrich and Haddow (2016) does not lead to no-
table advantages when applied to the embeddings
of the Transformer model. We also see that the
multi-task approach benefits from better parameter-
ization, but it only attains comparable performance
with the baseline on most tasks. On the other hand,
LISA, which embeds syntax in a self-attention
head, leads to modest but consistent gains across
all tasks, proving that it is also useful for NMT.
Finally, PASCAL outperforms all other methods,
with consistent gains over the Transformer baseline
independently of the source language and corpus
size: It gains up to +0.9 BLEU points on most tasks
and a substantial +1.75 in RIBES (Isozaki et al.,
2010), a metric with stronger correlation with hu-

man judgments than BLEU in En↔Ja translations.
On WMT17, our slim model compares favorably to
other methods, achieving the highest BLEU score
across all source-side syntax-aware approaches.3

Overall, our model achieves substantial gains
given the grammatically rigorous structure of En-
glish and German. Not only do we expect perfor-
mance gains to further increase on less rigorous
sources and with better parses (Zhang et al., 2019),
but also higher robustness to noisier syntax trees
obtained from back-translated with parent ignoring.

Performance by sentence length As shown in
Figure 2, our model is particularly useful when
translating long sentences, obtaining more than +2
BLEU points when translating long sentences in all
low-resource experiments, and +3.5 BLEU points
on the distant En-Ja pair. However, only a few
sentences (1%) in the evaluation datasets are long.

3Note that modest improvements in this task should not be
surprising as Transformers learn better syntactic relationships
from larger data sets (Raganato and Tiedemann, 2018).
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SRC In a cooling experiment , only a tendency agreed
BASE 冷却実験では，わわわずずずかかかななな傾向が一致した
OURS 冷却実験では傾向のののみみみ一致した

SRC Of course I don’t hate you
BASE Natürlich hasste ich dich nicht
OURS Natürlich hasse ich dich nicht

SRC What are those people fighting for?
BASE Was sind die Menschen, für die kämpfen?
OURS Wofür kämpfen diese Menschen?

Table 2: Example of correct translation by PASCAL.

Qualitative performance Table 2 presents ex-
amples where our model correctly translated the
source sentence while the Transformer baseline
made a syntactic error. For instance, in the first
example, the Transformer misinterprets the adverb
“only” as an adjective of “tendency:” the word
“only” is an adverb modifying the verb “agreed.”
In the second example, “don’t” is incorrectly trans-
lated to the past tense instead of present.

PASCAL layer When we introduced our model,
we motivated our design choice of placing PASCAL

heads in the first layer in order to enrich the repre-
sentations of words from their isolated embeddings
by introducing contextualization from their parents.
We ran an ablation study on the NC11 data in order
to verify our hypothesis. As shown in Table 3a, the
performance of our model on the validation sets is
lower when placing Pascal heads in upper layers; a
trend that we also observed with the LISA mecha-
nism. These results corroborate the findings of Ra-
ganato and Tiedemann (2018) who noticed that, in
the first layer, more attention heads solely focus
on the word to be translated itself rather than its
context. We can then deduce that enforcing syntac-
tic dependencies in the first layer effectively leads
to better word representations, which further en-
hance the translation accuracy of the Transformer
model. Investigating the performance of multiple
syntax-aware layers is left as future work.

Gaussian variance Another design choice we
made was the variance of the Gaussian weighing
function. We set it to 1 in our experiments moti-
vated by the statistics of our datasets, where the
vast majority of words is at most split into a few
tokens after applying BPE. Table 3b corroborates
our choice, showing higher BLEU scores on the
NC11 validation sets when the variance equals 1.
Here, “parent-only” is the case where weights are
only placed to the middle token (i.e. the parent).

Layer En-De De-En

1 23.2 24.6
2 22.5 20.1
3 22.5 23.8
4 22.6 23.8
5 22.9 23.8
6 22.4 23.9

(a)

Variance En-De De-En

Parent-only 22.5 22.4
1 23.2 24.6
4 22.7 24.3
9 22.8 24.3
16 22.7 24.4
25 22.8 24.1

(b)

Table 3: Validation BLEU as a function of PASCAL
layer (a) and Gaussian’s variance (b) on NC11 data.

Sensitivity to hyperparameters Due to the
large computational cost required to train Trans-
former models, we only searched hyperparameters
in a small grid. In order to estimate the sensitivity
of the proposed approach to hyperparameters, we
trained the NC11 De-En model with the hyperpa-
rameters of the En-De one. In fact, despite being
trained on the same data set, we find that more
PASCAL heads help when German (which has a
higher syntactic complexity than English) is used
as the source language. In this test, we only find
−0.2 BLEU points with respect to the score listed
in Table 1, showing that our general approach is
effective regardless of extensive fine-tuning.

Additional analyses are reported in Appendix B.

4 Conclusion

This study provides a thorough investigation of
approaches to induce syntactic knowledge into
self-attention networks. Through extensive eval-
uations on various translation tasks, we find that
approaches effective for RNNs do not necessar-
ily transfer to Transformers (e.g. +S&H). Con-
versely, dependency-aware self-attention mecha-
nisms (LISA and PASCAL) best embed syntax, for
all corpus sizes, with PASCAL consistently outper-
forming other all approaches. Our results show that
exploiting core components of the Transformer to
embed linguistic knowledge leads to higher and
consistent gains than previous approaches.
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Corpus Train Filtered Train Valid Test

NC11 En-De 238,843 233,483 2,169 2,999
WMT18 En-Tr 207,373 3,000 3,007
WMT16 En-De 4,500,962 4,281,379 2,169 2,999
WMT17 En-De 5,852,458 2,999 3,004
WAT En-Ja 3,008,500 1,790 1,812

Table 4: Number of sentences in each data set.

A Experiment details

Data preparation We follow the same pre-
processing steps as Vaswani et al. (2017). Unless
otherwise specified, we first tokenize the data with
Moses (Koehn et al., 2007) and remove sentences
longer than 80 tokens in either source or target side.

Following Bastings et al. (2017), we train on
News Commentary v11 (NC11) data set with
English→German (En-De) and German→English
(De-En) tasks so as to simulate low-resource cases
and to evaluate the performance of our models for
different source languages. We also train on the full
WMT16 data set for En-De, using newstest2015
and newstest2016 as validation and test sets, re-
spectively, in each of these experiments. Moreover,
we notice that these data sets contain sentences
in different languages and use langdetect4 to
remove sentences in incorrect languages.

We also train our models on WMT18
English→Turkish (En-Tr) as a standard low-
resource scenario. Models are evaluated on new-
stest2016 and tested on newstest2017.

Previous studies on syntax-aware NMT have
commonly been conducted on the WMT16 En-
De and WAT English→Japanese (En-Ja) tasks,
while concurrent approaches are evaluated on the
WMT17 En-De task. In order to provide a generic
and comprehensive evaluation of our proposed ap-
proach on large-scale data, we also train our models
on the latter tasks. We follow the WAT18 pre-
processing steps5 for experiments on En-Ja but
use Cabocha6 to tokenize target sentences. On
WMT17, we use newstest2016 and newstest2017
as validation and test sets, respectively.

Table 4 lists the final sizes of each data set.

Baselines We evaluate the impact of syntactic
information with the following approaches:
• Transformer: We train a base Transformer
4https://pypi.org/project/langdetect.
5http://lotus.kuee.kyoto-u.ac.jp/WAT/

WAT2018/baseline/dataPreparationJE.html.
6https://taku910.github.io/cabocha/.
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Figure 3: Weights of normal probability density with
σ2 = 1 and the means at positions 5 (left) or 4.5 (right).

model as a strong, standard baseline using
the hyperparameters in the latest Ten-
sor2Tensor (Vaswani et al., 2018) version (3).
• +S&H: Following Sennrich and Haddow

(2016), we introduce syntactic information in
the form of dependency labels in the embed-
ding matrix of the Transformer encoder. More
specifically, each token is associated with its
dependency label which is first embedded
into a vector representation of size 10 and
then used to replace the last 10 embedding
dimensions of the token embedding, ensuring
a final size that matches the original one.
• +MULTI-TASK: Our implementation of the

multi-task approach by Currey and Heafield
(2019) where a standard Transformer learns
to both parse and translate source sentences.
Each source sentence is first duplicated
and associated its linearized parse as target
sequence. To distinguish between the two
tasks, a special tag indicating the desired task
is prepended and appended to each source
sentence. Finally, parsing and translation
training data is shuffled together.
• +LISA: We adapt Linguistically-Informed

Self-Attention (LISA; Strubell et al. 2018) to
NMT. In one attention head h, Qh and Kh are
computed through a feed-forward layer and
the key-query dot product to obtain attention
weights is replaced by a bi-affine operator U.
These attention weights are further supervised
to attend to each token’s parent by interpreting
each row t as the distribution over possible par-
ents for token t. Here, we extend the authors’
approach to BPE by defining the parent of a
given token as its first sub-word unit (which
represents the root of the parent word). The
model is trained to maximize the joint proba-
bility of translations and parent positions.

https://pypi.org/project/langdetect
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2018/baseline/dataPreparationJE.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2018/baseline/dataPreparationJE.html
https://taku910.github.io/cabocha/
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Component NC11 En-De NC11 De-En WMT18 En-Tr WMT16 En-De WMT17 En-De WAT En-Ja

Transformer 22.6 23.8 12.6 29.0 31.5 42.2
+ data filtering 22.8 (+0.2) 24.0 (+0.2) 28.7 (-0.3)
+ PASCAL 23.0 (+0.2) 24.6 (+0.6) 13.6 (+1.0) 29.2 (+0.5) 31.6 (+0.1) 43.5 (+1.3)
+ parent ignoring 23.2 (+0.2) 13.7 (+0.1) 32.1 (+0.6)

Table 5: Validation BLEU when incrementally adding each component used by our best-performing models.

Corpus Transformer +PASCAL

NC11 En-De 4,134.1 4,188.8
NC11 De-En 4,276.6 4,177.4
WMT18 En-Tr 3,559.7 3,621.1

WMT16 En-De 23,186.3 23,358.8
WMT17 En-De 23,604.1 24,083.6
WAT En-Ja 23,005.8 23,073.0

Table 6: Training times (in seconds) for the Trans-
former baseline and Transformer+PASCAL on each
data set. PASCAL adds negligible overhead.

Corpus lr (β1, β2) hP q

NC11 En-De 0.0007 (0.9, 0.997) 2 0.4
NC11 De-En 0.0007 (0.9, 0.997) 8 0.0
WMT18 En-Tr 0.0007 (0.9, 0.980) 7 0.3

WMT16 En-De 0.0007 (0.9, 0.980) 5 0.0
WMT17 En-De 0.0007 (0.9, 0.997) 7 0.3
WAT En-Ja 0.0007 (0.9, 0.997) 7 0.0

Table 7: Hyperparameters for the reported models.
lr denotes the maximum learning rate, (β1, β2) are
Adam’s decay rates, hP is the number of PASCAL
heads, and q is the parent ignoring probability.

Training details All experiments are based on
the base Transformer architecture and optimized
following the learning schedule of Vaswani et al.
(2017) with 8, 000 warm-up steps. Similarly, we
use label smoothing εls = 0.1 (Szegedy et al.,
2016) during training and employ beam search with
a beam size of 4 and length penalty α = 0.6 (Wu
et al., 2016) at inference time. We use a batch size
of 32K tokens and run experiments on a cluster of
4 machines, each having 4 Nvidia P100 GPUs. See
Table 6 for the training times of each experiment.

For each model, we run a small grid search over
the hyperparameters and select the ones giving the
highest BLEU scores on validation sets (Table 7).

We use the SACREBLEU (Post, 2018) tool to
compute case-sensitive BLEU scores.7 When eval-
uating En-Ja translations, we follow the procedure
employed at WAT by computing BLEU scores after
tokenizing target sentences using KyTea.8

7Signature: BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.2.12.
8http://www.phontron.com/kytea/.

Following Vaswani et al. (2017), we train
Transformer-based models for 100K steps on large-
scale data. On small-scale data, we train for 20K
steps and use a dropout probability Pdrop = 0.3 as
they let the Transformer baseline achieve higher
performance on this size of data. For instance, in
WMT18 En-Tr, our baseline outperforms the one
in Currey and Heafield (2019) by +3.5 BLEU.

B Analysis

Multiplication vs. addition In Equation (2), we
calculated the weighing scores by multiplying the
self-attention scores by the distance to the parent
token. Multiplication is, in fact, the standard way
to weight values (e.g., the gating mechanism of
LSTMs and GRUs). In our case, it introduces
sparseness in the attention scores for non-parent
tokens. Moreover, it weights gradients in back-
propagation: Let x and y be the attention score and
dependency weight, respectively. Consider a loss
l = f(z) where z = xy and dl/dx = df(z)/dz ∗y.
The attention score receive gradients more on de-
pendent pairs (larger y) than non-dependent ones
(smaller y), which is sound for dependency in-
formation. In contrast, addition cannot obtain
such an effect because it does not affect gradients:
dl/dx = df(z)/dz when z = x+ y. For complete-
ness, we trained our best NC11 models replacing
multiplication by addition. We find that BLEU

scores still improve upon the baseline, meaning
that our approach is robust, but find them to be
slightly lower (−0.2) than with multiplication.

Ablation We introduced different techniques to
improve neural machine translation with syntax
information. Table 5 lists the contribution of each
technique, in an incremental fashion, whenever
they were used by the models reported in Table 1.

While removing sentences whose languages do
not match the translation task can lead to better
performance (NC11), the precision of the detec-
tion tool assumes a major role at large scale. In
WMT16, langdetect removes more than 200K
sentences and leads to performance losses. It would

http://www.phontron.com/kytea/
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also drop 19K pairs on the clean WAT En-Ja data.
The proposed PASCAL mechanism is the compo-

nent that most improves the performance of the
models, achieving up to +1.0 and +1.3 BLEU

on the distant En-Tr and En-Ja pairs, respectively.
With the exception of NC11 En-De, we find par-
ent ignoring useful on the noisier WMT18 En-Tr
and WMT17 En-De datasets. In the former, low-
resource case, the benefits of parent ignoring are
minimal, but it proves fundamental on the large-
scale WMT17 data, where it leads to significant
gains when paired with the PASCAL mechanism.9

Finally, looking at the number of PASCAL heads
in Table 7, we notice that most models rely on a
large number of syntax-aware heads. Raganato and
Tiedemann (2018) found that only a few attention
heads per layer encoded a significant amount of
syntactic dependencies. Our study shows that the
Transformer model can be improved by having
more attention heads learn syntactic dependencies.

9Note that this ablation is obtained by stripping away each
component from the best performing models and hence only
seeing +0.1 for PASCAL on WMT17 En-De does not mean
that PASCAL is not helpful in this task but rather that com-
bining it with parent ignoring gives better performance (our
second best model achieved +0.5 by using PASCAL only).


