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Abstract

Word alignment was once a core unsuper-
vised learning task in natural language pro-
cessing because of its essential role in train-
ing statistical machine translation (MT) mod-
els. Although unnecessary for training neu-
ral MT models, word alignment still plays an
important role in interactive applications of
neural machine translation, such as annotation
transfer and lexicon injection. While statisti-
cal MT methods have been replaced by neu-
ral approaches with superior performance, the
twenty-year-old GIZA++ toolkit remains a key
component of state-of-the-art word alignment
systems. Prior work on neural word alignment
has only been able to outperform GIZA++ by
using its output during training. We present
the first end-to-end neural word alignment
method that consistently outperforms GIZA++
on three data sets. Our approach repurposes
a Transformer model trained for supervised
translation to also serve as an unsupervised
word alignment model in a manner that is
tightly integrated and does not affect transla-
tion quality.

1 Introduction

Although word alignments are no longer necessary
to train machine translation (MT) systems, they
still play an important role in applications of neu-
ral MT. For example, they enable injection of an
external lexicon into the inference process to en-
force the use of domain-specific terminology or
improve the translations of low-frequency content
words (Arthur et al., 2016). The most important
application today for word alignments is to trans-
fer text annotations from source to target (Müller,
2017; Tezcan and Vandeghinste, 2011; Joanis et al.,
2013; Escartın and Arcedillo, 2015). For exam-
ple, if part of a source sentence is underlined, the
corresponding part of its translation should be un-
derlined as well. HTML tags and other markup

must be transferred for published documents. Al-
though annotations could in principle be generated
directly as part of the output sequence, they are
instead typically transferred via word alignments
because example annotations typically do not exist
in MT training data.

The Transformer architecture provides state-of-
the-art performance for neural machine translation
(Vaswani et al., 2017). The decoder has multiple
layers, each with several attention heads, which
makes it difficult to interpret attention activations as
word alignments. As a result, the most widely used
tools to infer word alignments, namely GIZA++
(Och and Ney, 2003) and FastAlign (Dyer et al.,
2013), are still based on the statistical IBM word
alignment models developed nearly thirty years ago
(Brown et al., 1993). No previous unsupervised
neural approach has matched their performance.
Recent work on alignment components that are
integrated into neural translation models either un-
derperform the IBM models or must use the output
of IBM models during training to outperform them
(Zenkel et al., 2019; Garg et al., 2019).

This work combines key components from
Zenkel et al. (2019) and Garg et al. (2019) and
presents two novel extensions. Statistical align-
ment methods contain an explicit bias towards con-
tiguous word alignments in which adjacent source
words are aligned to adjacent target words. This
bias is expressed in statistical systems using a hid-
den Markov model (HMM) (Vogel et al., 1996), as
well as symmetrization heuristics such as the grow-
diag-final algorithm (Och and Ney, 2000b; Koehn
et al., 2005). We design an auxiliary loss function
that can be added to any attention-based network
to encourage contiguous attention matrices.

The second extension replaces heuristic sym-
metrization of word alignments with an activa-
tion optimization technique. After training two
alignment models that translate in opposite direc-
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Figure 1: Word alignment generated by a human anno-
tator.

tions, we infer a symmetrized attention matrix that
jointly optimizes the likelihood of the correct out-
put words under both models in both languages.
Ablation experiments highlight the effectiveness
of this novel extension, which is reminiscent of
agreement-based methods for statistical models
(Liang et al., 2006; Graça et al., 2008; DeNero
and Macherey, 2011).

End-to-end experiments show that our system is
the first to consistently yield higher alignment qual-
ity than GIZA++ using a fully unsupervised neural
model that does not use the output of a statistical
alignment model in any way.

2 Related Work

2.1 Statistical Models
Statistical alignment models directly build on the
lexical translation models of Brown et al. (1993),
known as the IBM models. The most popular sta-
tistical alignment tool is GIZA++ (Och and Ney,
2000b, 2003; Gao and Vogel, 2008). For optimal
performance, the training pipeline of GIZA++ re-
lies on multiple iterations of IBM Model 1, Model
3, Model 4 and the HMM alignment model (Vogel
et al., 1996). Initialized with parameters from pre-
vious models, each subsequent model adds more
assumptions about word alignments. Model 2 intro-
duces non-uniform distortion, and Model 3 intro-
duces fertility. Model 4 and the HMM alignment
model introduce relative distortion, where the like-
lihood of the position of each alignment link is
conditioned on the position of the previous align-
ment link. While simpler and faster tools exist such
as FastAlign (Dyer et al., 2013), which is based on
a reparametrization of IBM Model 2, the GIZA++
implementation of Model 4 is still used today in
applications where alignment quality is important.

In contrast to GIZA++, our neural approach
is easy to integrate on top of an attention-based
translation network, has a training pipeline with
fewer steps, and leads to superior alignment quality.

Moreover, our fully neural approach that shares
most parameters with a neural translation model
can potentially take advantage of improvements to
the underlying translation model, for example from
domain adaptation via fine-tuning.

2.2 Neural Models

Most neural alignment approaches in the literature,
such as Tamura et al. (2014) and Alkhouli et al.
(2018), rely on alignments generated by statistical
systems that are used as supervision for training
the neural systems. These approaches tend to learn
to copy the alignment errors from the supervising
statistical models.

Zenkel et al. (2019) use attention to extract align-
ments from a dedicated alignment layer of a neural
model without using any output from a statistical
aligner, but fail to match the quality of GIZA++.

Garg et al. (2019) represents the current state of
the art in word alignment, outperforming GIZA++
by training a single model that is able to both trans-
late and align. This model is supervised with a
guided alignment loss, and existing word align-
ments must be provided to the model during train-
ing. Garg et al. (2019) can produce alignments
using an end-to-end neural training pipeline guided
by attention activations, but this approach under-
performs GIZA++. The performance of GIZA++
is only surpassed by training the guided alignment
loss using GIZA++ output. Our method also uses
guided alignment training, but our work is the first
to surpass the alignment quality of GIZA++ with-
out relying on GIZA++ output for supervision.

Stengel-Eskin et al. (2019) introduce a discrim-
inative neural alignment model that uses a dot-
product-based distance measure between learned
source and target representation to predict if a given
source-target pair should be aligned. Alignment
decisions condition on the neighboring decisions
using convolution. The model is trained using gold
alignments. In contrast, our approach is fully unsu-
pervised; it does not require gold alignments gener-
ated by human annotators during training. Instead,
our system implicitly learns reasonable alignments
by predicting future target words as part of the
translation task, but selects attention activations us-
ing an auxiliary loss function to find contiguous
alignment links that explain the data.
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3 Background

3.1 The Alignment Task
Given a source-language sentence x = x1, . . . , xn
of length n and its target-language translation y =
y1, . . . , ym of length m, an alignment A is a set of
pairs of source and target positions:

A ⊆ {(s, t) : s ∈ {1, . . . , n}, t ∈ {1, . . . ,m}}

Aligned words are assumed to correspond to each
other, i.e. the source and the target word are trans-
lations of each other within the context of the sen-
tence. Gold alignments are commonly generated
by multiple annotators based on the Blinker guide-
lines (Melamed, 1998). The most commonly used
metric to compare automatically generated align-
ments to gold alignments is alignment error rate
(AER) (Och and Ney, 2000b).

3.2 Attention-Based Translation Models
Bahdanau et al. (2015) introduced attention-based
neural networks for machine translation. These
models typically consist of an encoder for the
source sentence and a decoder that has access to
the previously generated target tokens and gener-
ates the target sequence from left to right. Before
predicting a token, the decoder “attends” to the
position-wise source representations generated by
the encoder, and it produces a context vector that
is a weighted sum of the contextualized source em-
beddings.

The Transformer (Vaswani et al., 2017) attention
mechanism uses a query Q and a set of k key-value
pairs K,V with Q ∈ Rd and V,K ∈ Rk×d. Atten-
tion logits AL computed by a scaled dot product
are converted into a probability distribution A us-
ing the softmax function. The attention A serves as
mixture weights for the values V to form a context
vector c:

AL = calcAttLogits(Q,K) =
Q ·KT

√
d

A = calcAtt(Q,K) = softmax(AL)

c = applyAtt(A, V ) = A · V

A state-of-the-art Transformer includes multiple
attention heads whose context vectors are stacked
to form the context activation for a layer, and the
encoder and decoder have multiple layers. For all
experiments, we use a downscaled Transformer
model trained for translation with a 6-layer en-
coder, a 3-layer decoder, and 256-dimensional hid-
den states and embedding vectors.

For the purpose of word alignment, this trans-
lation Transformer is used as-is to extract repre-
sentations of the source and the target sequences,
and our alignment technique does not change the
parameters of the Transformer. Therefore, improve-
ments to the translation system can be expected to
directly carry over to alignment quality, and the
alignment component does not affect translation
output in any way.

3.3 Alignment Layer
To improve the alignment quality achieved by in-
terpreting attention activations, Zenkel et al. (2019)
designed an additional alignment layer on top
of the Transformer architecture. In the align-
ment layer, the context vector is computed as
applyAtt(A, V ), just as in other decoder layers,
but this context vector is the only input to predict-
ing the target word via a linear layer and a softmax
that gives a probability distribution over the target
vocabulary. This design forces attention onto the
source positions that are most useful in predicting
the target word. Figure 2 depicts its architecture.

This alignment layer uses the learned represen-
tations of the underlying translation model. Align-
ments can be extracted from the activations of this
model by running a forward pass to obtain the at-
tention weights A from the alignment layer and
subsequently selecting the maximum probability
source position for each target position as an align-
ment link: {(argmaxi (Ai,j) , j) : j ∈ [1,m]}.

The alignment layer predicts the next target to-
ken yi based on the source representations x ex-
tracted from the encoder of the Transformer and
all past target representations y<i extracted from
the decoder. Thus the probability is conditioned
as p(yi|x, y<i). The encoder representation used
as key and value for the attention component is
the sum of the input embeddings and the encoder
output. This ensures that lexical and context infor-
mation are both salient in the input to the attention
component.

3.4 Attention Optimization
Extracting alignments with attention-based models
works well when used in combination with greedy
translation inference (Li et al., 2019). However, the
alignment task involves predicting an alignment
between a sentence and an observed translation,
which requires forced decoding. When a token in
the target sentence is unexpected given the preced-
ing target prefix, attention activations computed
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Figure 2: Architecture of the alignment layer. During
inference the attention logitsAL of the sub-network At-
tention Optimization are optimized towards predicting
the next word correctly.

during forced decoding are not reliable because
they do not explicitly condition on the target word
being aligned.

Zenkel et al. (2019) introduce a method called
attention optimization, which searches for attention
activations that maximize the probability of the out-
put sequence by directly optimizing the attention
activations A in the alignment layer using gradient
descent for the given sentence pair (x, y) to maxi-
mize the probability of each observed target token
yi while keeping all other parameters of the neural
network M fixed:

argmaxA p(yi|y<i, x, A;M)

Attention optimization yields superior alignments
when used during forced decoding when gradient
descent is initialized with the activations from a
forward pass through the alignment layer.

3.5 Full Context Model with Guided
Alignment Loss

The models described so far are based on autore-
gressive translation models, so they are limited
to only attend to the left context of the target se-
quence. However, for the word alignment task the
current and future target context is also available
and should be considered at inference time. Garg
et al. (2019) train a single model to both predict the
target sentence and the alignments using guided
alignment training. When the model is trained to
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Figure 3: Alignment layer with additional unmasked
self attention sublayer to use the full decoder context.

predict alignments, the full target context can be
used to obtain improved alignment quality.

The alignment loss requires supervision by a set
of alignment links for each sentence pair in the
training data. These alignments can be generated
by the current model or can be provided by an
external alignment system or human annotators.
Assuming one alignment link per target token, we
denote the alignment source position for the target
token at position t as at.1 The guided alignment
loss La, given attention probabilities Aat,t for each
source position at and target position t for a target
sequence of length m, is defined as:

La(A) = − 1

m

m∑
i=1

log(Aat,t)

As depicted in Figure 3, we insert an additional self-
attention component into the original alignment
layer, and leave the encoder and decoder of the
Transformer unchanged. In contrast to Garg et al.
(2019), this design does not require updating any
translation model parameters; we only optimize the
alignment layer parameters with the guided align-
ment loss. Adding an alignment layer for guided
alignment training has a small parameter overhead
as it only adds a single decoder layer, resulting in
an increase in parameters of less than 5%.2

Unlike the standard decoder-side self-attention
layers in the Transformer architecture, the current
and future target context are not masked in the

1For the purpose of the guided alignment loss we assume
target tokens that do not have an alignment link to be aligned
to the end-of-sentence (EOS) token of the source sequence.

2The translation model contains 15 million parameters,
while the additional alignment layer has 700 thousand param-
eters.
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alignment layer self-attention component in order
to provide the full target sentence as context. Align-
ment layer parameters are trained using the guided
alignment loss.

4 Contiguity Loss

Contiguous alignment connections are very com-
mon in word alignments, especially for pairs of
Indo-European languages. That is, if a target word
at position t is aligned to a source word at position
s, the next target word at position t + 1 is often
aligned to s− 1, s or s+ 1 (Vogel et al., 1996).

Our goal is to design a loss function that encour-
ages alignments with contiguous clusters of links.

The attention activations form a 2-dimensional
matrix A ∈ Rn×m, where n is the number of
source tokens and m the number of target tokens:
each entry represents a probability that specifies
how much attention weight the network puts on
each source word to predict the next target word.
By using a convolution with a static kernel K over
these attention scores, we can measure how much
attention is focused on each rectangle within the
two dimensional attention matrix:

Ā = conv(A,K)

LC = −
m∑
t=1

log( max
s∈{1,...,n}

(Ās,t))

We use a 2 × 2 kernel K ∈ R2×2 with each
element set to 0.5. Therefore, Ā ∈ Rn×m will
contain the normalized attention mass of each 2×2
square of the attention matrix A. The resulting
values after the convolution will be in the inter-
val [0.0, 1.0]. For each target word we select the
square with the highest attention mass, encourag-
ing a sparse distribution over source positions in
Ā and thus effectively training the model towards
strong attention values on neighboring positions.
We mask the contiguity loss such that the end of
sentence symbol is not considered during this pro-
cedure. We apply a position-wise dropout of 0.1 on
the attention logits before using the softmax func-
tion to obtain A, which turned out to be important
to avoid getting stuck in trivial solutions during
training.3

Optimizing the alignment loss especially encour-

3A trivial solution the network converged to when adding
the contiguity loss without dropout was to align each target
token to the same source token.

Figure 4: Example of alignment patterns that lead to a
minimal contiguity loss.

ages diagonal and horizontal patterns4 as visual-
ized in Figure 4. These correspond well to a large
portion of patterns appearing in human alignment
annotations as shown in Figure 1.

5 Bidirectional Attention Optimization

A common way to extract word alignments is to
train two models, one for the forward direction
(source to target) and one for the backward direc-
tion (target to source). For each model, one can
extract separate word alignments and symmetrize
these using heuristics like grow-diagonal (Och and
Ney, 2000b; Koehn et al., 2005).

However, this approach uses the hard word align-
ments of both directions as an input, and does not
consider any other information of the forward and
backward model. For attention-based neural net-
works it is possible to adapt attention optimization
as described in Section 3.4 to consider two models
at the same time. The goal of attention optimiza-
tion is to find attention activations that lead to the
correct prediction of the target sequence for a sin-
gle neural network. We extend this procedure to
optimize the likelihood of the sentence pair jointly
under both the forward and the backward model,
with the additional bias to favor contiguous align-
ments. Figure 5 depicts this procedure.

5.1 Initialization

Since attention optimization uses gradient de-
scent to find good attention activations, it is im-
portant to start with a reasonable initialization.
We extract the attention logits (attention before
applying the softmax) from the forward (AL)F
and the backward model (AL)B and average
these to get a starting point for gradient descent:
(AL)init = 1

2((AL)F + (AL)TB).

5.2 Optimization

Our goal is to find attention logits AL that lead
to the correct prediction for both the forward MF

4Vertical patterns are not encouraged, as it is not possible
to have an attention probability above 0.5 for two source words
and the same target word, because we use the softmax function
over the source dimension.
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Figure 5: Bidirectional Attention Optimization. We op-
timize the attention logits towards the correct predic-
tion of the next token when used for both the forward
and backward model. The attention values VF and VB
extracted from the forward and backward model remain
static. Additionally, the attention logits are biased to-
wards producing contiguous alignments.

and the backward model MB , while also represent-
ing contiguous alignments. We will use the cross
entropy loss CE for a whole target sequence y of
length m to define the loss, given probabilities for
each target token p(yt|At;M) under model param-
eters M and a given attention activation vector At:

CE(p(y|A;M)) =
m∑
t=1

− log(p(yt|At;M))

Let x, y be the source and target sequence, so
that we can define a loss function for each com-
ponent with the interpolation parameter λ for the
contiguity loss LC as follows:

LF = CE(p(y|softmax(AL);MF ))

LB = CE(p(x|softmax(AT
L);MB))

L = LF + LB + λLC

We apply gradient descent to optimize all losses
simultaneously, thus approximating a solution of
argminAL

L(x, y|AL,MF ,MB).

5.3 Alignment Extraction
After optimizing the attention logits, we still have
to decide which alignment links to extract, i.e. how
to convert the soft attentions into hard alignments.
For neural models using a single direction a com-
mon method is to extract the alignment with the
highest attention score for each target token. For
our bidirectional method we use the following ap-
proach:

We merge the attention probabilities extracted
from both directions using element-wise multipli-
cation, where ⊗ denotes a Hadamard product:

AF = softmax(AL)

AB = softmax(AT
L)T

AM = AF ⊗AM

This favors alignments that effectively predict ob-
served words in both the source and target sen-
tences.

Given the number of source tokens n and tar-
get tokens m in the sentence, we select min(n,m)
alignments that have the highest values in the
merged attention scores AM . In contrast to se-
lecting one alignment per target token, this allows
unaligned tokens, one-to-many, many-to-one and
many-to-many alignment patterns.

6 Experiments

6.1 Data
We use the same experimental setup5 as de-
scribed by Zenkel et al. (2019) and used by
Garg et al. (2019). It contains three language
pairs: German→English, Romanian→English and
English→French (Och and Ney, 2000a; Mihalcea
and Pedersen, 2003). We learn a joint byte pair
encoding (BPE) for the source and the target lan-
guage with 40k merge operation (Sennrich et al.,
2016). To convert from alignments between word
pieces to alignments between words, we align a
source word to a target word if an alignment link
exists between any of its word pieces.

Using BPE units instead of words also improved
results for GIZA++ (e.g., 20.9% vs. 18.9% for
German→English in a single direction). Therefore,
we use the exact same input data for GIZA++ and
all our neural approaches. For training GIZA++
we use five iterations each for Model 1, the HMM
model, Model 3 and Model 4.

6.2 Training
Most of the language pairs do not contain an ade-
quately sized development set for word alignment
experiments. Therefore, rather than early stopping,
we used a fixed number of updates for each training
stage across all languages pairs: 90k for training
the translation model, 10k for the alignment layer
and 10k for guided alignment training (batch-size:

5https://github.com/lilt/
alignment-scripts

https://github.com/lilt/alignment-scripts
https://github.com/lilt/alignment-scripts
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36k words). Training longer did not improve or
degrade test-set AER on German→English; the
AER only fluctuated by less than 1% when training
the alignment layer for up to 20k updates while
evaluating it every 2k updates.

We also trained a base transformer with an align-
ment layer for German→English, but achieved sim-
ilar results in terms of AER, so we used the smaller
model described in sub-section 3.2 for other lan-
guage pairs. We adopted most hyperparameters
from Zenkel et al. (2019), see the Supplemental
Material for a summary. We tuned the interpolation
factor for the contiguity loss on German→English.

6.3 Contiguity Loss
Results of ablation experiments for the contiguity
loss can be found in Table 1. Our first experiment
uses the contiguity loss during training and we
extract the alignments from the forward pass using
a single direction without application of attention
optimization. We observe an absolute improvement
of 6.4% AER (34.2% to 27.8%) after adding the
contiguity loss during training.

Afterwards, we use the model trained with con-
tiguity loss and use attention optimization to ex-
tract alignments. Adding the contiguity loss during
attention optimization further improves the AER
scores by 1.2%. Both during training and attention
optimization we used an interpolation coefficient
of λ = 1.0 for the contiguity loss.

By visualizing the attention activations in Figure
7 we see that the contiguity loss leads to sparse
activations. Additionally, by favoring contiguous
alignments it disambiguates correctly the alignment
between the words “we” and “wir”, which appear
twice in the sentence pair. In the remaining experi-
ments we use the contiguous loss for both training
and attention optimization.

While we used a kernel of size 2x2 in our ex-
periments, we also looked at different sizes. Using
a 1x1 kernel6 during attention optimization leads
to an AER of 22.8%, while a 3x3 kernel achieves
the best result with an AER of 21.2%, compared to
21.5% of the 2x2 kernel. Larger kernel sizes lead
to slightly worse results: 21.4% for a 4x4 kernel
and 21.5% for a 5x5 kernel.

6.4 Bidirectional Attention Optimization
The most commonly used methods to merge align-
ments from models trained in opposite direc-

6A 1x1 only encourages sparse alignments, and does not
encourage contiguous alignments.

Method No Contiguity Contiguity
Forward 34.2% 27.8%
Att. Opt 22.7% 21.5%

Table 1: AER results with and without using the conti-
guity loss when extracting alignments from the forward
pass or when using attention optimization for the lan-
guage pair German→English.

AER
DeEn 21.5%
EnDe 25.6%
Grow-diag 19.6%
Grow-diag-final 19.7%
Bidir. Att. Opt 17.9%

Table 2: Comparison of AER scores between bidi-
rectional attention optimization and methods to merge
hard alignments.

tions are variants of grow-diagonal. We extract
hard alignments for both German→English and
English→German with (monolingual) attention op-
timization, which leads to an AER of 21.5% and
25.6%, respectively. Merging these alignments
with grow-diagonal leads to an AER of 19.6%,
while grow-diagonal-final yields an AER of 19.7%.

We tuned the interpolation factor λ for the con-
tiguity loss during bidirectional optimization. A
parameter of 1.0 leads to an AER of 18.2%, 2.0
leads to 18.0% while 5.0 leads to 17.9%. Com-
pared to unidirectional attention optimization it
makes sense to pick a higher interpolation factor
for the contiguity loss, as it is applied with the loss
of the forward and backward model.

For the remaining experiments we use 5.0 as the
interpolation factor. Bidirectional attention opti-
mization improves the resulting alignment error
rate compared to the grow-diagonal heuristic by up
to 1.8% for German→English. These results are
summarized in Table 2.

Variants of grow-diagonal have to rely on the
hard alignments generated by the forward and the
backward model. They only choose from these
alignment links and therefore do not have the abil-
ity to generate new alignment links.

In contrast, bidirectional attention optimization
takes the parameters of the underlying models into
account and optimizes the underlying attention log-
its simultaneously for both models to fit the sen-
tence pair. In the example in Figure 8 bidirectional
attention optimization is able to correctly predict
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Figure 6: AER with respect to gradient descent steps
during attention optimization for German→English.
Both unidirectional (Unidir) and bidirectional (Bidir)
optimization benefit from the contiguity loss (CL).
Without the contiguity loss AER slightly degrades af-
ter more than three optimization steps.

an alignment link between “übereinstimmend” and
“proven” that did not appear at all in the individual
alignments of the forward and backward model.

We plot the behavior of attention optimization
with a varying number of gradient descent steps in
Figure 6. For both unidirectional and bidirectional
models attention optimization leads to steadily im-
proving results. Without using the additional con-
tiguity loss, the lowest AER appears after three
gradient descent steps and slightly increases after-
wards. When using the contiguity loss AER results
continue to decrease with additional steps. The
contiguity loss seems to stabilize optimization and
avoids overfitting of the optimized attention activa-
tions when tuning them for a single sentence pair.

6.5 Guided Alignment Training

We now use the alignment layer with the full de-
coder context by adding an additional self-attention
layer that does not mask out the future target con-
text. We extract alignments from the previous mod-
els with bidirectional attention optimization and
use those alignments for guided alignment train-
ing.

This works surprisingly well. While the align-
ments used for training yielded an AER of 17.9%
after bidirectional attention optimization (Table 4),
the full context model trained with these alignments
further improved the AER to 16.0% while using a

Method DeEn EnFr RoEn
Att. Opt. 21.5% 15.0% 29.2%
+Guided 16.0% 6.6% 23.4%

Zenkel et al. (2019) 26.6% 23.8% 32.3%
GIZA++ 18.9% 7.9% 27.3%

Table 3: Comparison of unidirectional models with
GIZA++.

Method DeEn EnFr RoEn
Bidir. Att. Opt. 17.9% 8.4% 24.1%

+Guided 16.3% 5.0% 23.4%
Zenkel et al. (2019) 21.2% 10.0% 27.6%
Garg et al. (2019) 20.2% 7.7% 26.0%

GIZA++ 18.7% 5.5% 26.5%

Table 4: Comparison of neural alignment approaches
with GIZA++ after using symmetrization of the for-
ward and backward model.

single model for German→English (Table 3). Af-
ter guided alignment training is complete, we do
not apply attention optimization, since that would
require a distribution over target words, which is
not available in this model.

6.6 End-to-End Results

We now report AER results across all three lan-
guage pairs. Precision and recall scores are in-
cluded in the Supplemental Material. We first
extract alignments from a unidirectional model,
a common use case where translations and align-
ments need to be extracted simultaneously. Table 3
compares our results to GIZA++ and Zenkel et al.
(2019).7 We observe that guided alignment training
leads to gains across all language pairs. In a single
direction our approach consistently outperforms
GIZA++ by an absolute AER difference between
1.3% (EnFr) and 3.9% (RoEn).

Table 4 compares bidirectional results after sym-
metrization. We compare to purely neural and
purely statistical systems.8 For symmetrizing align-
ments of the guided model and GIZA++, we use
grow-diagonal. Bidirectional attention optimiza-
tion is already able to outperform GIZA++ and
Garg et al. (2019) on all language pairs except
English→French. Using guided alignment training
further improves results across all language pairs

7Garg et al. (2019) only report bidirectional results after
symmetrization.

8For additional comparisons including neural models boot-
strapped with GIZA++ alignments, see the Supplemental Ma-
terial.
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(a) Without Contiguity Loss (b) With Contiguity Loss

Figure 7: Attention activations of the alignment layer after attention optimization. Using the contiguity loss during
training leads to sparse activations, the correct alignment of the two occurrences of “we”-“wir” and to correct
alignment of the period.

(a) Intersection/Union (b) Bidir. Optimization (c) Gold Alignments

Figure 8: Example of symmetrization with bidirectional attention optimization. We show all alignments extracted
from the forward and backward direction with unidirectional attention optimization in Subfigure 8a (alignments
that are only present in one direction are grey). Bidirectional attention optimization is able to extract the correct
alignment between “übereinstimmend“ and “proven” which did neither appear as an alignment link in the forward
nor in the backward direction.

and leads to a consistent AER improvement com-
pared to GIZA++ and neural results reported by
Garg et al. (2019).

These results show that it is possible to outper-
form GIZA++ both in a single direction and after
symmetrization without using any alignments gen-
erated from statistical alignment systems to boot-
strap training.

7 Conclusion

This work presents the first end-to-end neural ap-
proach to the word alignment task which consis-
tently outperforms GIZA++ in terms of alignment
error rate. Our approach extends a pre-trained state-
of-the-art neural translation model with an addi-
tional alignment layer, which is trained in isolation
without changing the parameters used for the trans-

lation task. We introduce a novel auxiliary loss
function to encourage contiguity in the alignment
matrix and a symmetrization algorithm that jointly
optimizes the alignment matrix within two models
which are trained in opposite directions. In a final
step the model is re-trained to leverage full target
context with a guided alignment loss. Our results
on three language pairs are consistently superior to
both GIZA++ and prior work on end-to-end neural
alignment. As the resulting model repurposes a
pre-trained translation model without changing its
parameters, it can directly benefit from improve-
ments in translation quality, e.g. by adaptation via
fine-tuning.
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A Supplemental Material

Table 5 and Table 6 summarize the hyperparam-
eters used for the translation model and the addi-
tional alignment layer. In Table 7 we report both
AER results and precision and recall for all lan-
guage pairs.

Hyperparameter Value
Dropout Rate 0.1
Embedding Size 256
Hidden Units 512
Encoder Layers 6
Decoder Layers 3
Attention Heads Per Layer 8

Table 5: Hyperparameters of the translation model.

Hyperparameter Value
Dropout Rate 0.1
Embedding Size 256
Hidden Units 256
Attention Heads 1

Table 6: Hyperparameters of the alignment layer.
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Method DeEn EnDe Bidir EnFr FrEn Bidir RoEn EnRo Bidir

Att. Opt.
21.5% 25.6% 17.9% 15.0% 14.3% 8.4% 29.2% 28.8% 24.1%
76/81 73/76 85/79 81/92 82/93 90/95 74/68 74/69 85/69

Guided
16.0% 16.6% 16.3% 6.6% 6.3% 5.0% 23.4% 23.1% 23.4%
88/80 89/78 93/76 92/95 93/95 96/94 88/68 90/67 93/65

GIZA++
word

20.9% 23.1% 21.4% 8.0% 9.8% 5.9% 28.7% 32.2% 27.9%
86/72 87/69 94/67 91/93 92/88 98/90 83/63 80/59 94/59

GIZA++
subword

18.9% 20.4% 18.7% 7.9% 8.5% 5.5% 27.3% 29.4% 26.5%
89/74 88/72 95/71 92/93 93/89 98/91 85/64 83/62 93/61

Zenkel et al.
(2019)

26.6% 30.4% 21.2% 23.8% 20.5% 10.0% 32.3% 34.8% 27.6%

Garg et al. (2019) n/a n/a 20.2% n/a n/a 7.7% n/a n/a 26.0%
+ GIZA++ n/a n/a 16.0% n/a n/a 4.6% n/a n/a 23.1%

Table 7: AER and—when available—precision/recall scores in percentage in the following row. The Bidir col-
umn reports results for the DeEn, EnFr and RoEn translation direction, respectively, and uses grow-diagonal for
all columns except when attention optimization is used. For attention optimization we merge alignments with
bidirectional attention optimization.


