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Abstract

Reliably evaluating Machine Translation (MT)
through automated metrics is a long-standing
problem. One of the main challenges is the
fact that multiple outputs can be equally valid.
Attempts to minimise this issue include met-
rics that relax the matching of MT output and
reference strings, and the use of multiple ref-
erences. The latter has been shown to sig-
nificantly improve the performance of evalu-
ation metrics. However, collecting multiple
references is expensive and in practice a sin-
gle reference is generally used. In this paper,
we propose an alternative approach: instead
of modelling linguistic variation in human ref-
erence we exploit the MT model uncertainty
to generate multiple diverse translations and
use these: (i) as surrogates to reference transla-
tions; (ii) to obtain a quantification of transla-
tion variability to either complement existing
metric scores or (iii) replace references alto-
gether. We show that for a number of popu-
lar evaluation metrics our variability estimates
lead to substantial improvements in correlation
with human judgements of quality by up 15%.

1 Introduction

Translation is an open-ended task with multiple
valid solutions. There are often multiple equiva-
lent translations for the same source sentence. This
is due to inherent differences between languages
and various sources of ambiguity, which is often
impossible to solve without access to additional
context. Furthermore, the source might suffer sub-
stantial changes in translation due to translator’s
need to adapt it to the target audience. With rare
exceptions, translations are not literal, they can
differ from the source text at any linguistic level
– lexical, syntactic, semantic or even discourse –
and still be considered correct. The ability to pro-
duce non-literal, more natural translations is one of
the goals in the field of Machine Translation (MT).

Neural MT (NMT) approaches have certainly made
significant progress in this direction.

However, the diversity of possible outcomes
makes it harder to evaluate MT models. Evaluation
metrics (or humans in the case of monolingual man-
ual evaluation) are given a single reference trans-
lation against which to compare the MT output.
Fomicheva and Specia (2016) found differences
of up to 1 point on a 1-5 point quality scale (i.e.
20%) between groups of annotators who use differ-
ent references for manual evaluation. In automatic
evaluation, which computes a similarity score be-
tween MT output and human reference, they found
differences of up to 6 BLEU points depending on
the reference used, showing that metrics strongly
penalise perfectly correct translations that happen
to be different from the reference provided.

Dreyer and Marcu (2012) showed that if multi-
ple human translations are used, any automatic MT
evaluation metric achieves a substantially higher
correlation with human judgments. However, mul-
tiple translations are hardly ever available in prac-
tice due to the cost of collecting them.

Alternatives strategies for modelling linguistic
variation in automatic MT evaluation include using
paraphrasing, synonyms, or comparing linguistic
structures of MT output and the reference transla-
tion (e.g. semantic role labels) instead of surface
forms (§2). It is worth noticing that this line of
work focuses on varying the reference translation.
No existing work accounts for the diversity of pos-
sible MT outputs.

Instead of using multiple references or relaxing
the string matching process, we use the MT system
to generate multiple additional hypotheses repre-
senting potentially valid translation variations. We
do so by exploring model uncertainty in output
probability distributions.1 To generate a diverse set

1We focus on sentence-level evaluation, as system-level
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Figure 1: Hypothetical similarity space where a low-quality MT output (left) and a high-quality MT output (right)
are equally distant from the reference but can be distinguished based on the similarity to additional MT hypotheses.

of hypotheses from neural MT (NMT) systems, we
leverage recent work on uncertainty quantification
for neural networks (§3).

The additional hypotheses produced for a given
source sentence are then used for evaluation with or
without human references. Intuitively, if some of
the hypotheses match the reference, it is probable
that the MT output under evaluation is also of high
quality.2 Furthermore, we posit that the differences
between system hypotheses produced for the same
source capture uncertainty. The more similar they
are among themselves, the higher the confidence
of the model. As illustrated in Figure 1, this could
provide additional information for discriminating
translation quality when measuring the distance
to the reference translation does not suffice. We
devise various new metrics based on this intuition
and obtain large improvements in correlation with
human judgments over traditional reference-based
metrics.

Our main contributions are as follows: (1) We
study different ways to generate additional MT hy-
potheses by exploring uncertainty in NMT models.
We show that a light-weight Bayesian approxima-
tion method – Monte Carlo Dropout, which allows
for uncertainty quantification by using dropout
at inference time (Gal and Ghahramani, 2016) –
works the best for the purpose of automatic MT
evaluation; (2) We devise methods to effectively
explore multiple MT hypotheses to better evaluate
MT output quality with existing evaluation metrics.
On two different datasets, we achieve a large im-
provement in correlation with human judgments

automatic evaluation can be by and large considered a solved
problem (Ma et al., 2019a).

2The goal of this paper is not to evaluate the search space
of the MT system, but to improve the evaluation of the given
MT output by using additional hypotheses. Evaluating the
NMT search space beyond the generated output could be an
interesting direction to explore in future work.

over using both single reference and multiple ref-
erences. To the best of our knowledge, this is the
first work to leverage NMT model uncertainty for
automatic MT evaluation.

2 Related Work

Meteor (Banerjee and Lavie, 2005) was the first
MT evaluation metric to relax the exact match con-
straint between MT system output and reference
translation by allowing matching of lemmas, syn-
onyms or paraphrases. However, this requires lin-
guistic resources which do not exist for most lan-
guages. Character-based metrics (Popović, 2015;
Wang et al., 2016) also relax the exact word match
constraint by allowing the matching of characters.
However, ultimately they still assume a surface-
level similarity between reference and MT.

A more recent direction compares MT and refer-
ence sentences in the embedding space. Chen and
Guo (2015) extract word embedding representa-
tions for the two sentences and measure the (cosine)
similarity between them. Similarly, in (Fomicheva
et al., 2015; Servan et al., 2016; Tättar and Fishel,
2017) two words are considered to match if their
cosine distance in the embedding space is above a
certain threshold. The embeddings are thus used
to provide a binary decision. MEANT 2.0 (Lo,
2017) and YISI (Lo, 2019) also relies on match-
ing of words in the embedding space, but this is
only used to score the similarity between pairs of
words that have already been aligned based on their
semantic roles, rather than to find the alignments
between words. Finally, Chow et al. (2019) and
Echizen’ya et al. (2019) perform the alignment in
the embedding space using Earth Mover’s Distance
with some special treatment for word order. All of
these metrics are however still limited to variance
in the words used (even in the continuous space),



1220

rather than more general stylistic or structural vari-
ations which can only be captured with multiple
references.

Another way of incorporating linguistic variation
is pseudo-reference approach by Albrecht and Hwa
(2007). They leverage various off-the-shelf MT
systems to generate additional imperfect references
and use them instead or alongside the original refer-
ence during evaluation. Evaluation scores obtained
using each of the pseudo references and the avail-
able human references are combined as features
by training a classifier to predict human judgments.
Thus, this line of work implicitly learns the quality
of the MT systems used to generate pseudo refer-
ences. We revisit this idea in our paper by having
pseudo-references as one type of diverse MT out-
put.

3 Generating Diverse Hypotheses

We posit that using multiple MT hypotheses can
help automatic MT evaluation in two ways. First,
the difference between them may reflect model
confidence and potential ambiguity or complexity
of the source. Second, they provide an additional
point of comparison with the reference, such that if
the initial MT output is different from the provided
reference due to acceptable linguistic variation, the
risk of over-penalising this translation is lower.

3.1 Neural MT

Most recent work on NMT is based on the
sequence-to-sequence approach with encoder and
decoder networks (Bahdanau et al., 2014; Luong
et al., 2015; Vaswani et al., 2017b). In these mod-
els probability of generating the output sequence
~y given the input sequence ~x is decomposed as
follows:

p(~y|~x, θ) =
J∏

j=1

p(yj |~y<j , ~x, θ)

where θ represents model parameters. The
decoder produces the probability distribution
p(yj |~y<j , ~x, θ) over system vocabulary at each
time step using softmax function.

In this work we use state-of-art Transformer
architecture proposed by Vaswani et al. (2017b),
an encoder-decoder model that uses stacked self-
attention and fully connected layers for both en-
coder and decoder.

3.2 Search Algorithm
One way to obtain multiple MT hypotheses is by
taking top MT hypotheses resulting from the search
algorithms used in NMT for decoding.

Beam Search. Hypotheses spaces in NMT are
very large and it is not feasible to explore them
exhaustively. Beam search is traditionally used for
decoding in NMT by exploring the search space
in a greedy left-to-right manner retaining the top-
N candidates with the highest probability. While
effective to select a likely translation, beam search
tends to result in a list of N-best translations which
lack linguistic diversity (Vijayakumar et al., 2016).

Diverse Beam Search. Vijayakumar et al.
(2016) proposed the Diverse Beam Search algo-
rithm to improve the diversity of top hypotheses.
The algorithm promotes diversity by optimising a
diversity-augmented objective.

3.3 Uncertainty
We propose that a better method for obtaining di-
verse MT hypotheses for automatic MT evaluation
is by exploiting uncertainty in NMT. For the intu-
ition, consider three different cases. First, if there
is only one correct translation at each time step, the
output probabilities will have “peakier” distribu-
tions with low entropy and a single word receiving
a large portion of the probability mass. In this
case, there is very little variation in the hypotheses
space. Second, if there are various correct transla-
tion options at a given generation step, the output
probability distribution will have higher entropy,
with multiple target words receiving similar prob-
abilities. In this case, generating hypotheses from
the model will result in similar sentences contain-
ing synonyms or paraphrases. Finally, if the NMT
model has not seen enough data during training
for a given combination of words, we would ex-
pect output probabilities to exhibit high entropy,
approximating a uniform probability distribution.
In this case, generating MT hypotheses from the
model should result in a highly diverse set with
lower quality translations.

Below we explore various approaches to uncer-
tainty quantification in neural networks in order
to generate a set of additional hypotheses for MT
evaluation.

Monte Carlo Dropout. It has been shown that
softmax function used in neural networks to gener-
ate output probability distribution does not properly
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capture uncertainty as it produces overconfident
predictions (Gal and Ghahramani, 2016). Most
of the work on uncertainty quantification in deep
learning relies on Bayesian formalism (MacKay,
1992; Graves, 2011; Welling and Teh, 2011; Gal
and Ghahramani, 2016; Tran et al., 2019). Repre-
senting uncertainty through Bayesian neural net-
works usually comes with prohibitive computa-
tional costs and various approximations have been
developed to alleviate this issue. One such approx-
imation by Gal and Ghahramani (2016) is called
Monte Carlo (MC) dropout. Dropout is a method
developed to reduce overfitting when training neu-
ral models Srivastava et al. (2014). It consists
in randomly masking neurons to zero based on
Bernoulli distribution. Gal and Ghahramani (2016)
use dropout at test time before every weight layer.
They perform N forward passes through the net-
work and collect posterior probabilities generated
by the model with parameters perturbed by dropout:
{p̂(~y|~x, θ̂)Ni=1}where θ̂ represents the perturbed pa-
rameters. They show that this is equivalent to an
approximation to the probabilistic deep Gaussian
process. Previous work has applied this method
to quantify model uncertainty by taking the vari-
ance of the resulting probability distribution (Dong
et al., 2018; Wang et al., 2019). We instead look at
the linguistic differences between MT hypotheses
generated as a result of N forward passes through
the model with perturbed parameters. If the top
MT output for a given source sentence is of high
quality, it is probable that other hypotheses will be
similar.

Ensembling. Ensemble model combination is an-
other strategy commonly used for estimating pre-
dictive uncertainty (Lakshminarayanan et al., 2017;
Pearce et al., 2018; Liu et al., 2019). We take an
ensembling strategy typically applied in NMT to
improve translation quality: we train four NMT
models initialised with different random seeds. At
decoding time, prediction distributions from the
four models are combined by averaging. To gen-
erate additional hypotheses, the four models in the
ensemble are used separately, each generating an
independent set of translations.

Mixture of Experts. Shen et al. (2019) applied
mixture of experts (MoE) framework to capture the
inherent uncertainty of the MT task and generate
diverse hypotheses. A mixture model introduces
a multinomial latent variable z ∈ 1, ...,K. The

marginal likelihood is then decomposed as:

p(~y|~x; θ) =
K∑
z=1

p(~y, z|~x; θ)

=

K∑
z=1

p(z|~x; θ)p(~y|z, ~x; θ)

The model is trained with the EM algorithm where
the E-step estimates the responsibilities of each
mixture component (“expert”) and M-step updates
parameters θ with gradients weighted by their re-
sponsibilities. For our experiments, one of the mix-
ture components was randomly selected to produce
the MT output for human evaluation and the rest
of them were used for the generation of additional
hypotheses (§5).

3.4 Pseudo-Reference Translations
Here we revisit the approach previously used for
statistical MT (Albrecht and Hwa, 2007) where out-
puts of other off-the-shelf MT systems are used as
additional reference translations, with some differ-
ences. First, NMT outputs on average have substan-
tially higher quality. Second, to avoid the need for
labelled data, we do not rely on supervised train-
ing and treat the outputs of other MT systems in
the same way we treat additional hypotheses that
were produced using the methods described in the
previous sections. We use publicly available online
NMT systems (§5).

4 Scoring with Multiple Hypotheses

Using the methods described above we are able
to produce a set of MT hypotheses for each given
source segment. The final dataset which we use for
evaluation contains a human reference translation
(r), the top MT output (o) and this set of alternative
N MT hypotheses (H = {h1..hN}). We devise
the following ways of combining similarities be-
tween possible translations and between these and
the reference to obtain more accurate evaluation.
This accuracy will be measured by Pearson correla-
tion with a direct assessment (DA) score collected
for the o translation, as is common practice in the
evaluation metrics field (Ma et al., 2019b).

4.1 Addressing Linguistic Variation
Here we compute the similarity against the refer-
ence translation for the set of all generated trans-
lation candidates, including the initial MT output
and additional hypotheses, and take the average
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similarity score (micro-average). If the MT output
is of high quality but does not match the provided
human reference due to acceptable linguistic varia-
tion, other hypotheses may serve as paraphrases to
match the reference.

However, it is important to assign a higher
weight to the MT output that was actually eval-
uated (o), as compared to the alternative MT hy-
potheses. This is done using a simple variant of the
above metric where we first take an average of the
hypotheses-reference similarities, and then average
this score with the MT output-reference similarity
score (macro-average). This results in two metrics:

hyp-ref∗micro = N−1
N+1∑
i=1

sim(h′i, r), h
′
i ∈ H ′

hyp-ref∗macro=
N−1

∑N
i=1sim(hi, r)+sim(o, r)

2

where H ′ = {h′1..h′N , o} is a set including addi-
tional hypotheses and the MT output, and sim
corresponds to a similarity function of choice
(§4.3). The ∗ represents different ways of com-
bining hypotheses-reference similarities: average
(as shown in the equations above), minimum (i.e.
choosing the score for the most distant hypothe-
sis) and maximum (i.e. choosing the score of the
closest hypotheses).

4.2 Incorporating Model Uncertainty
As discussed in Section §3.3, similarity between
translation hypotheses capture model confidence
and could thus be indicative of translation qual-
ity. We propose two metric variants to capture this
idea. First, we compute the similarity between
all translations candidates including the additional
hypotheses and the MT output:

hyp-self∗ =
1

C

|H′|∑
i=1

|H′|∑
j=1

sim(h′i, h
′
j)

where h′i ∈ H ′, i6= j and C = 2−1|H ′|(|H ′|−1)
is the number of pairwise comparisons for H ′ hy-
potheses. As before, ∗ corresponds to different
ways of combining similarity scores: average, min-
imum and maximum.

Second, as before, we give a higher weight to
the MT output whose quality we wish to evaluate
(o). To that end we compare the MT output against
additional generated hypotheses. This comparison

indirectly captures the similarity between MT hy-
potheses themselves:

hyp-mt∗ = N−1
N∑
i=1

sim(hi, o)

Both of these variants can be used with and with-
out reference translation. Interestingly, as will be
shown in §6.2, they perform comparably to other
methods even without the reference, putting into
question the need for human reference in MT eval-
uation. As in the previous section, to add human
reference translations into the mix, we average the
results as follows:

hyp-mt∗-ref =
N−1

∑N
i=1 sim(hi, o)+sim(o, r)

2

Figure 2 summarises the methods discussed
above.

Figure 2: Methods to explore similarities between MT
output, system hypotheses and references.

4.3 Similarity Functions
To measure similarity amongst hypotheses and
against the reference(s), we experiment with the
following standard MT evaluation metrics:3

sentBLEU (Papineni et al., 2002). BLEU mea-
sures the similarity between MT and the reference
translation based on the number of matching n-
grams. We use a smoothed version of BLEU as
described by Lin and Och (2004) with N = 4.

3We use these metrics out of the box. Better results could
possibly be achieved by adapting them to our settings, e.g.
by changing the weight of precision and recall depending
on the direction of the comparison between MT output, hy-
potheses and the reference. For instance, when using BLEU
as similarity function for computing hyp-mt∗, we are eval-
uating recall on the MT output, whereas BLEU is designed
as a precision-oriented metric. But the choice of similarity
function is orthogonal to the goal of this paper, and we leave
further refinements in this direction to future work.
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TER (Translation Edit Rate) (Snover et al.,
2006). TER computes the edit distance defined as
the minimum number of word substitutions, dele-
tions, insertions and shifts that are needed to con-
vert MT into the reference.

ChrF (Popović, 2015). ChrF calculates the F-
score of character n-grams of maximum length 6.

Meteor (Denkowski and Lavie, 2014). Meteor
aligns MT output to the reference translation us-
ing synonyms and paraphrases besides exact word
matching. The similarity is based on the propor-
tion of aligned words in the candidate and in the
reference and a fragmentation penalty.

BERTScore. (Zhang et al., 2019). We also
looked at this very recent metric (published after
the submission of this paper), which uses pow-
erful pre-trained embeddings. BERTScore com-
putes a cosine similarity score for each token in
the MT output with each token in the reference
sentence using contextual embeddings from BERT
(Devlin et al., 2019), which can generate differ-
ent vector representations for the same word de-
pending on the context, thus better capturing mean-
ing. Maximum similarity values for MT and refer-
ence words are then used to compute a soft F1-
score. We use the implementation available at
https://github.com/Tiiiger/bert score.

5 Experimental Settings

To test whether our methods improve correlation
with human judgments, we need to have access to
the NMT model and human judgments for the trans-
lations generated by this model. This data is not
generally readily available in evaluation campaigns
such as Metrics Task at WMT conferences. Below
we describe two datasets that satisfy these condi-
tions. They cover two different language pairs and
two different domains.

News English-Czech dataset. We use available
data from the WMT19 News Translation Task. We
focus on the University of Edinburgh’s submission
(Bawden et al., 2019) to the English-Czech trans-
lation task, since its NMT model is available. The
system was trained using the MarianMT toolkit
with a standard Transformer architecture (Vaswani
et al., 2017a). Details on model training and ar-
chitecture are described in (Bawden et al., 2019).
For producing pseudo-references, we use all five

“online” systems whose submissions were provided
as part of the WMT19 Translation Task.

Human judgments were collected in the form of
Direct Assessments (DA) following the method-
ology proposed by Graham et al. (2015), which
suggests that 15 segment-level DA judgements are
required for trustworthy correlation analysis. How-
ever the number of DA judgements in the WMT19
Metrics Task was much smaller. We select seg-
ments with at least two DA annotations (795 seg-
ments with an average DA score of 80.22) to min-
imise this issue, but the results reported here for
English-Czech should be interpreted with caution.

Wikipedia Estonian-English dataset. This is a
new dataset we collected which contains 1K sen-
tences randomly selected from Wikipedia articles
in Estonian and translated into English. Two hu-
man reference translations were generated indepen-
dently by two professional translators.

All the NMT models were trained using the
Fairseq toolkit based on the standard Transformer
architecture (Vaswani et al., 2017a) and the train-
ing settings described in Ott et al. (2018). We used
publicly available parallel datasets for training the
models: the Rapid corpus of EU press releases
(Rozis and Skadiņš, 2017) and Europarl (Koehn,
2005), which amount to around 4M parallel sen-
tences in total.

A set of 400 segments were translated by the
model variants described in §3 to assess the im-
pact of uncertainty types. The following settings
were used for model variants. For MC dropout we
use dropout rate of 0.3, same as for training the
basic Transformer model. Additional hypotheses
were produced by performing N stochastic for-
ward passes through the network with dropout, as
described in §3. For this analysis we use N = 30,
which was shown to perform well for uncertainty
quantification (Dong et al., 2018). We also test
how the number of hypotheses affects the results
(see Appendix B). For MoE we use hard mixture
model with uniform prior and K = 5 mixture com-
ponents. To produce the translations we generate
from a randomly chosen component with greedy
search following the settings in Shen et al. (2019).
For generating additional hypotheses with beam
search the top-K sentences K ∈ [2..5] from the
beam were used (K = 1 corresponds to the initial
MT output). For pseudo-reference approach we use
three online systems: Systran, Google and Bing.

Human judgements were given by professional

https://github.com/Tiiiger/bert_score
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translators following the FLORES setup (Guzmán
et al., 2019) which presents a form of DA judge-
ments (Graham et al., 2013). The annotators were
asked to rate each sentence from 0–100 according
to the perceived translation quality. Specifically,
the 0–10 range represents an incorrect translation;
11–29, a translation with few correct keywords, but
the overall meaning is different from the source;
30–50, a translation with major mistakes; 51–69,
a translation which is understandable and conveys
the overall meaning of the source but contains ty-
pos or grammatical errors; 70–90, a translation
that closely preserves the semantics of the source
sentence; and 90–100, a perfect translation. Each
segment was annotated by up to 6 translators. Raw
scores were converted into z-scores, i.e. standard-
ised according to each individual annotator’s over-
all mean and standard deviation. The scores col-
lected for each segment were averaged to obtain
the final score.

The judgments were collected for the 1K seg-
ments translated by the standard Transformer
model and for the 400 segments produced by four
MT model variants in §3, resulting in a total of
1000 + 4 ∗ 400 = 2600 source-MT pairs anno-
tated with DA judgments. The distribution of DA
scores for English-Czech and 1K Estonian-English
datasets is shown in the Appendix A.4

6 Results

In this section, we present the results of our exper-
iments for generating additional MT hypotheses
(§6.1) and the methods for exploiting similarities
between them (§6.2).

6.1 Diverse MT Generation Approaches

We start by comparing the different strategies for
generating multiple MT hypotheses described in §3
for the Estonian-English dataset. Note that some
variants also produce different top MT outputs (o),
as they were trained using different architectures or
decoding algorithms. As a result we have four sets
of DA annotations collected for 400 segments for
system variants with different MT outputs: stan-
dard Transformer, Transformer with diverse beam
search, MoE and ensembling. MT outputs for beam
search and MC dropout variants correspond to the
same underlying NMT model.

4The dataset and the NMT models required to re-
produce our results are available at https://github.com/
facebookresearch/mlqe/tree/master/data-multi-hyp.

Table 1 presents the results. First, beam search
performs the poorest. This is in line with the
well known fact that beam suffers from low di-
versity of produced hypotheses (Vijayakumar et al.,
2016). As expected, diverse beam search results in
a higher difference in correlation compared to mt-
ref. However, it is still outperformed by all other
methods that capture model uncertainty, with MC
dropout achieving the highest difference in correla-
tion against mt-ref. We note that this is not related
to the number of generated hypotheses (see Ap-
pendix B for details). We suggest that this is due
to the fact that linguistic differences between addi-
tional hypotheses for high vs. low-quality MT out-
puts is more discriminating when the hypotheses
are generated using MC dropout for representing
model uncertainty (see example in Table 3). The
difference in correlation observed between differ-
ent system variants is not related with the quality
of MT outputs, as demonstrated by the average DA
scores in Table 1. Pseudo-references also perform
very well, potentially due to the high quality of
the MT systems used to generate them. We se-
lect MC dropout and pseudo-references as the two
best performing options to conduct a more detailed
analysis below.

6.2 Scoring Approaches

Table 2 shows the results for the 1K Estonian-
English dataset and for English-Czech dataset.5

mt-ref stands for the standard reference-based eval-
uation. The remaining methods correspond to those
described in §4. The methods pseudo-mt-max and
pseudo-mt-max-ref are equivalent to the hyp-mt-
* and hyp-mt-*-ref but instead of dropout-based
hypotheses, the outputs of other MT systems are
used.

For Estonian-English, since we have two human
references we compute the correlation for each of
them separately (mt-ref-1 and mt-ref-2), as well as
in a multi-reference scenario (mt-ref-multi).6 We
use mt-ref-1 to calculate all the remaining methods
that involve a reference translation.

Significance of the differences in correlation for
the proposed methods with respect to mt-ref-1 and
mt-ref-multi is assessed using Hotelling-Williams

5For the full set of results see the Appendix C.
6In the multi-reference scenario, BLEU score is computed

by counting the n-gram matches between the MT output and
all references as in (Papineni et al., 2002). For the rest of
the metrics, the closest reference is used for each segment to
compute the score, as in (Denkowski and Lavie, 2014).

https://github.com/facebookresearch/mlqe/tree/master/data-multi-hyp
https://github.com/facebookresearch/mlqe/tree/master/data-multi-hyp
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Top-5 Beam Top-5 Diverse Beam MC-dropout MoE Ensemble Pseudo

mt-ref 0.316 0.340 0.316 0.286 0.312 0.316

hyp-ref-avgmacro 0.325 0.345 0.323 0.310 0.354 0.167
hyp-ref-avgmicro 0.327 0.345 0.319 0.316 0.372 0.223

hyp-mt-avg-ref 0.275 0.380 0.438 0.371 0.413 0.408
hyp-mt-avg 0.022 0.340 0.433 0.352 0.388 0.424

Average DA 58.88 55.12 58.88 51.20 61.19 58.88

Table 1: Pearson correlation with human judgments for single reference (mt-ref) and the metrics based on MT
hypotheses in §4 for the different MT systems generating diverse MT in §3 for the Estonian-English dataset, using
BLEU as similarity function. The last row shows the average absolute DA scores for each model variant.

Estonian-English English-Czech

BLEU TER ChrF Meteor BERT BLEU TER ChrF Meteor BERT

mt-ref-1 0.417 -0.413 0.508 0.550 0.653 0.312 -0.335 0.346 0.380 0.422
mt-ref-2 0.432 -0.436 0.521 0.521 0.662 - - - - -
mt-ref-multi 0.494 -0.497 0.554 0.547 0.688 - - - - -

pseudo-mt-max 0.526 -0.350 0.589 0.550 0.672 0.271 -0.219 0.285 0.279 0.350
pseudo-mt-max-ref 0.539 -0.453 0.600 0.607 0.699 0.352 -0.346 0.398 0.388 0.473

hyp-ref-avgmacro 0.448 -0.445 0.532 0.580 0.671 0.319 -0.334 0.348 0.382 0.423
hyp-ref-avgmicro 0.455 -0.454 0.532 0.583 0.658 0.320 -0.328 0.346 0.380 0.419

hyp-mt-avg-ref 0.553 -0.543 0.601 0.638 0.700 0.378 -0.382 0.389 0.431 0.464
hyp-mt-avg 0.562 -0.548 0.597 0.610 0.665 0.296 -0.281 0.288 0.334 0.326
hyp-self-avg 0.557 -0.567 0.589 0.614 0.660 0.313 -0.306 0.309 0.351 0.355

Table 2: Pearson correlation with human judgments for single reference (mt-ref-1/2), multiple references (mt-ref-
multi) and the metrics based on MT hypotheses in §4 for the Estonian-English 1K dataset and English-Czech
dataset. Results significantly improving on single-reference evaluation are underlined, and those significantly
improving on multi-reference evaluation are marked in bold. We use Hotelling-Williams test (Williams, 1959) for
significant differences in correlation.

type text info

hi
gh

-q
ua

lit
y

Source Siis aga võib tekkida seesmise ja välise vaate vahele lõhe. DA = 75
Reference This could however lead to a split between the inner and outer view. ME = 0.262
MT Output Then there may be a split between internal and external viewpoints.

Dropout

Then, however, there may be a split between internal and external viewpoints.

HY = 0.532Then, however, there may be a gap between internal and external viewpoints.
Then there may be a split between internal and external viewpoints.
Then there may be a split between internal and external viewpoints.

Beam

Then there may be a split between internal and external viewpoints.
Then there may be a gap between internal and external viewpoints.
Then there may be a split between internal and external viewpoints.
Then there may be a gap between internal and external viewpoints.

lo
w

-q
ua

lit
y

Source Kant on see, kellele kuulub see teene, et ta täiustas mateeria käsitust seeläbi, et ta vaatles seda tõukumise ja tõmbumise
ühtsusena.

DA = 3

Reference It is Kant who has the merit of refining the concept of matter by seeing it as a unity of pushing and pulling. ME = 0.304
MT Output It is the person who owes it to the merit of pardoning it by looking at it as a unity of push and withdrawal.

Dropout

It is the person who owes it to the merit of pardoning this approach by looking at it as a unity of push and withdrawal.

HY = 0.182It is Mrs Kant who owes to the fact that he has perfected his approach by looking at it as a unity of impetus and
resignation.
It is the one who owes the service that he has perfected his approach by seeing it as a catalyst and a stand-alone.
It is the person who owes it to the merit of perfecting this approach by looking at it as a means of push and withdrawal.

Beam

It is the person who owes it to the merit of pardoning it by seeing it as a unity of push and withdrawal.
It is the person who owes it to the merit of pardonating the concept by looking at it as a unity of push and withdrawal.
It is the person who owes it to the merit of pardoning it by looking at it as a unity of impetus and withdrawal.
It is the person who owes it to the merit of pardoning it by seeing it as a unity of impetus and withdrawal.

Table 3: Example of MC dropout and beam search hypotheses for a high-quality and a low-quality MT output. The
last column shows the DA score for these two translations, as well as the Meteor score (ME) and our hyp-mt-avg-ref
(HY) score obtained for them.
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test (Williams, 1959), as described in Graham et al.
(2015).

First, we observe that the methods based on the
similarity against the reference (hyp-ref-*) do not
perform as well as those relying more on the rela-
tion between MT hypotheses (hyp-mt-*). As dis-
cussed in §4, the latter capture the uncertainty of
NMT models when generating the output for a
given source sentence. Overall, hyp-mt-avg-ref
consistently outperforms all the other variants by a
large margin, for all automatic evaluation metrics
considered. Logically, the improvement is larger
for exact-matching metrics, but also significant for
Meteor, ChrF and BERTScore, which attempt to
capture linguistic variation.

Surprisingly, hyp-mt-avg-ref performs better
than the mt-ref-multi. Reasons may be that it can
potentially cover a larger number of paraphrases
than one additional reference translation, and that
besides computing similarity to a reference trans-
lation, it incorporates information on model uncer-
tainty.

Interestingly, our reference-free metric hyp-mt-
avg, which only compares the MT output against
additional generated hypotheses and does not rely
on human references, also performs competitively.
This result confirms the important role played by
the model confidence component in measuring MT
quality. Note that for Estonian-English dataset it
performs better than the evaluation with single ref-
erence, indicating that model confidence alone can
be more reliable for assessing MT quality than us-
ing a single reference translation.

Finally, we observe that using translations from
online MT systems also outperforms reference-
based evaluation. The differences are larger for
Estonian-English. This could be because for into-
English translation the quality of pseudo-references
is higher, making them as good as actual refer-
ence translations, while yet closer to the MT out-
put under evaluation. For English-Czech, pseudo-
references are closer to mt-ref and generally worse
than hyp-mt-avg-ref.

Table 3 illustrates the advantage of our
uncertainty-aware evaluation over standard
reference-based scoring. We show MC dropout
and top beam hypotheses for a high quality and
for a low quality MT output. First, note that
MC dropout hypotheses are very different for
a low-quality MT output and fairly similar for
good-quality translation. By contrast, beam

hypotheses are similar or the same in both
cases. Second, the evaluation scores obtained
using MC dropout hypotheses result in a large
difference between low-quality and high-quality
MT outputs, whereas Meteor assigns a higher
score to the low-quality example due to surface
word and synonym matches that are in this case
not indicative of MT quality.

The proposed approach has some limitations.
First, it requires access to the NMT system that
was used to generate the translations. Second, we
note that this idea works better if the NMT model
is reasonably well trained, as additional hypotheses
could be less informative otherwise. Finally, it is
not clear how the methods presented here would
work for comparing the output quality of different
MT systems, but this is a different application of
our proposed approach and we leave this question
to future work.

7 Conclusions

We proposed to explore NMT model uncertainty
to generate additional hypotheses for MT evalu-
ation. We showed that by exploiting similarities
in the space of translation hypotheses generated
by the model, along with methods to effectively
combine information from these multiple hypothe-
ses, we can achieve more accurate estimation on
the quality of MT output than standard reference-
based comparison, including cases with multiple
references. This suggests that model uncertainty
alone can be more reliable for assessing MT quality
than standard reference-based evaluation.

This work can be extended in numerous ways.
First, we plan to test whether similar observations
will hold for more language pairs and text domains.
Second, the score combination strategies could be
improved by learning weights for each component.
Finally, we would like to test this approach for
comparing different MT systems.
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A Distribution of DA Scores

Figure 3 shows the distribution of DA scores for
Estonian-English 1K and English-Czech datasets.

B Number of MC Dropout Hypotheses

Figure 4 Pearson correlation with human judg-
ments for hyp-mt-avg-ref with sentBLEU metric
as a function of the number of stochastic forward
passes with MC dropout. The improvements in
correlation become small after 10 hypotheses for
both Estonian-English and English-Czech.

C Combination Methods

Tables 4 and 5 show a full set of Pearson correla-
tion results for the scoring approaches described in
Section 3.2.
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Figure 3: Distribution of DA scores for Estonian-English 1K and English-Czech datasets

Figure 4: Pearson correlation with human judgments for hyp-mt-avg-ref with sent-BLEU metric as a function of
the number of stochastic forward passes with MC dropout

BLEU TER ChrF Meteor BERT
mt-ref1 0.417 -0.413 0.508 0.550 0.653
mt-ref2 0.432 -0.436 0.521 0.521 0.662
mt-ref-multi 0.494 -0.497 0.554 0.547 0.688
pseudo-mt-avg 0.494 -0.485 0.541 0.545 0.547
pseudo-mt-min 0.363 -0.531 0.396 0.400 0.289
pseudo-mt-max 0.526 -0.350 0.589 0.550 0.672
pseudo-mt-avg-ref 0.508 -0.506 0.570 0.604 0.657
pseudo-mt-min-ref 0.445 -0.531 0.505 0.547 0.493
pseudo-mt-max-ref 0.539 -0.453 0.600 0.607 0.699
hyp-ref-avgmacro 0.448 -0.445 0.532 0.580 0.671
hyp-ref-minmacro 0.438 -0.443 0.514 0.586 0.667
hyp-ref-maxmacro 0.446 -0.440 0.536 0.548 0.648
hyp-ref-avgmicro 0.455 -0.454 0.532 0.583 0.658
hyp-ref-minmicro 0.388 -0.429 0.460 0.555 0.622
hyp-ref-maxmicro 0.427 -0.415 0.525 0.497 0.591
hyp-mt-avg-ref 0.553 -0.543 0.601 0.638 0.700
hyp-mt-min-ref 0.479 -0.536 0.550 0.615 0.676
hyp-mt-max-ref 0.577 -0.505 0.617 0.614 0.686
hyp-mt-avg 0.562 -0.548 0.597 0.610 0.665
hyp-mt-min 0.421 -0.546 0.479 0.550 0.593
hyp-mt-max 0.549 -0.423 0.571 0.528 0.595
hyp-self-avg 0.557 -0.567 0.589 0.614 0.660

Table 4: Pearson correlation with human judgments for single reference (mt-ref), multiple references (mt-ref-multi)
and the metrics based on MT hypotheses described in Section 3.2 for Estonian-English dataset
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BLEU TER ChrF Meteor BERT
mt-ref 0.312 -0.335 0.346 0.380 0.422
pseudo-mt-avg 0.283 -0.293 0.304 0.304 0.375
pseudo-mt-min 0.214 -0.272 0.221 0.258 0.280
pseudo-mt-max 0.271 -0.219 0.285 0.279 0.350
pseudo-mt-avg-ref 0.356 -0.385 0.394 0.404 0.476
pseudo-mt-min-ref 0.325 -0.382 0.347 0.381 0.425
pseudo-mt-max-ref 0.352 -0.346 0.398 0.388 0.473
hyp-ref-avgmacro 0.319 -0.334 0.348 0.382 0.423
hyp-ref-minmacro 0.322 -0.334 0.344 0.391 0.429
hyp-ref-maxmacro 0.326 -0.339 0.346 0.379 0.412
hyp-ref-avgmicro 0.320 -0.328 0.346 0.380 0.419
hyp-ref-minmicro 0.310 -0.320 0.324 0.382 0.421
hyp-ref-maxmicro 0.321 -0.328 0.333 0.362 0.391
hyp-mt-avg-ref 0.378 -0.382 0.389 0.431 0.464
hyp-mt-min-ref 0.329 -0.357 0.339 0.371 0.448
hyp-mt-max-ref 0.359 -0.373 0.375 0.422 0.438
hyp-mt-avg 0.296 -0.281 0.288 0.334 0.326
hyp-mt-min 0.225 -0.218 0.199 0.246 0.295
hyp-mt-max 0.240 -0.248 0.228 0.260 0.204
hyp-self-avg 0.313 -0.306 0.309 0.351 0.355

Table 5: Pearson correlation with human judgments for single reference (mt-ref) and the metrics based on MT
hypotheses described in Section 3.2 for English-Czech dataset


