
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1095–1105
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

1095

Exclusive Hierarchical Decoding for Deep Keyphrase Generation

Wang Chen1, Hou Pong Chan1, Piji Li2, Irwin King1

1The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
2Tencent AI Lab

1{wchen, hpchan, king}@cse.cuhk.edu.hk
2pijili@tencent.com

Abstract

Keyphrase generation (KG) aims to summa-
rize the main ideas of a document into a set
of keyphrases. A new setting is recently in-
troduced into this problem, in which, given
a document, the model needs to predict a
set of keyphrases and simultaneously deter-
mine the appropriate number of keyphrases to
produce. Previous work in this setting em-
ploys a sequential decoding process to gen-
erate keyphrases. However, such a decoding
method ignores the intrinsic hierarchical com-
positionality existing in the keyphrase set of a
document. Moreover, previous work tends to
generate duplicated keyphrases, which wastes
time and computing resources. To overcome
these limitations, we propose an exclusive hi-
erarchical decoding framework that includes
a hierarchical decoding process and either a
soft or a hard exclusion mechanism. The
hierarchical decoding process is to explicitly
model the hierarchical compositionality of a
keyphrase set. Both the soft and the hard ex-
clusion mechanisms keep track of previously-
predicted keyphrases within a window size
to enhance the diversity of the generated
keyphrases. Extensive experiments on multi-
ple KG benchmark datasets demonstrate the ef-
fectiveness of our method to generate less du-
plicated and more accurate keyphrases1.

1 Introduction

Keyphrases are short phrases that indicate the core
information of a document. As shown in Figure 1,
the keyphrase generation (KG) problem focuses on
automatically producing a keyphrase set (a set of
keyphrases) for the given document. Because of
the condensed expression, keyphrases can benefit
various downstream applications including opinion
mining (Berend, 2011; Wilson et al., 2005), doc-

1Our code is available at https://github.com/
Chen-Wang-CUHK/ExHiRD-DKG.

Input Document: … A noninvasive diagnostic device was developed to

assess the vascular origin and severity of penile dysfunction. It was

designed and studied using both a mathematical model of penile

hemodynamics and preliminary experiments on healthy young volunteers.

… Simulations using a mathematical model show that the device is

capable of differentiating between arterial insufficiency and venous leak

and indicate the severity of each. …

Keyphrases:

{erectile dysfunction; arterial insufficiency; venous leak; veno-occlusive

mechanism; mathematical model; hemodynamics}

Figure 1: An example of an input document and its ex-
pected keyphrase output for keyphrase generation prob-
lem. Present keyphrases that appear in the document
are underlined.

ument clustering (Hulth and Megyesi, 2006), and
text summarization (Wang and Cardie, 2013).

Keyphrases of a document can be categorized
into two groups: present keyphrase that appears
in the document and absent keyphrase that does
not appear in the document. Recent generative
methods for KG apply the attentional encoder-
decoder framework (Luong et al., 2015; Bahdanau
et al., 2014) with copy mechanism (Gu et al.,
2016; See et al., 2017) to predict both present
and absent keyphrases. To generate multiple
keyphrases for an input document, these methods
first use beam search to generate a huge number
of keyphrases (e.g., 200) and then pick the top N
ranked keyphrases as the final prediction. Thus, in
other words, these methods can only predict a fixed
number of keyphrases for all documents.

However, in a practical situation, the appropri-
ate number of keyphrases varies according to the
content of the input document. To simultaneously
predict keyphrases and determine the suitable num-
ber of keyphrases, Yuan et al. (2018) adopts a se-
quential decoding method with greedy search to
generate one sequence consisting of the predicted
keyphrases and separators. For example, the pro-
duced sequence may be “hemodynamics [sep] erec-
tile dysfunction [sep] ...”, where “[sep]” is the sep-

https://github.com/Chen-Wang-CUHK/ExHiRD-DKG
https://github.com/Chen-Wang-CUHK/ExHiRD-DKG

1096

arator. After producing an ending token, the decod-
ing process terminates. The final keyphrase predic-
tions are obtained after splitting the sequence by
separators. However, there are two drawbacks to
this method. First, the sequential decoding method
ignores the hierarchical compositionality existing
in a keyphrase set (a keyphrase set is composed of
multiple keyphrases and each keyphrase consists of
multiple words). In this work, we examine the hy-
pothesis that a generative model can predict more
accurate keyphrases by incorporating the knowl-
edge of the hierarchical compositionality in the
decoder architecture. Second, the sequential decod-
ing method tends to generate duplicated keyphrases.
It is simple to design specific post-processing rules
to remove the repeated keyphrases, but generating
and then removing repeated keyphrases wastes time
and computing resources. To address these two
limitations, we propose a novel exclusive hierarchi-
cal decoding framework for KG, which includes
a hierarchical decoding process and an exclusion
mechanism.

Our hierarchical decoding process is designed to
explicitly model the hierarchical compositionality
of a keyphrase set. It is composed of phrase-level
decoding (PD) and word-level decoding (WD). A
PD step determines which aspect of the document
to summarize based on both the document con-
tent and the aspects summarized by previously-
generated keyphrases. The hidden representation
of the captured aspect is employed to initialize the
WD process. Then, a new WD process is conducted
under the PD step to generate a new keyphrase
word by word. Both PD and WD repeat until meet-
ing the stop conditions. In our method, both PD
and WD attend the document content to gather con-
textual information. Moreover, the attention score
of each WD step is rescaled by the corresponding
PD attention score. The purpose of the attention
rescaling is to indicate which aspect is focused on
by the current PD step.

We also propose two kinds of exclusion mech-
anisms (i.e., a soft one and a hard one) to avoid
generating duplicated keyphrases. Either the soft
one or the hard one is used in our hierarchical
decoding process. Both of them are used in the
WD process of our hierarchical decoding. Besides,
both of them collect the previously-generated K
keyphrases, where K is a predefined window size.
The soft exclusion mechanism is incorporated in
the training stage, where an exclusive loss is em-

ployed to encourage the model to generate a differ-
ent first word of the current keyphrase with the first
words of the collected K keyphrases. However, the
hard exclusion mechanism is used in the inference
stage, where an exclusive search is used to force
WD to produce a different first word with the first
words of the collected K keyphrases. Our motiva-
tion is from the statistical observation that in 85%
of the documents on the largest KG benchmark,
the keyphrases of each individual document have
different first words. Moreover, since a keyphrase
is usually composed of only two or three words, the
predicted first word significantly affects the predic-
tion of the following keyphrase words. Thus, our
exclusion mechanisms can boost the diversity of
the generated keyphrases. In addition, generating
fewer duplications will also improve the chance
to produce correct keyphrases that have not been
predicted yet.

We conduct extensive experiments on four pop-
ular real-world benchmarks. Empirical results
demonstrate the effectiveness of our hierarchical
decoding process. Besides, both the soft and the
hard exclusion mechanisms significantly reduce
the number of duplicated keyphrases. Furthermore,
after employing the hard exclusion mechanism,
our model consistently outperforms all the SOTA
sequential decoding baselines on the four bench-
marks.

We summarize our main contributions as follows:
(1) to our best knowledge, we are the first to design
a hierarchical decoding process for the keyphrase
generation problem; (2) we propose two novel ex-
clusion mechanisms to avoid generating duplicated
keyphrases as well as improve the generation accu-
racy; and (3) our method consistently outperforms
all the SOTA sequential decoding methods on mul-
tiple benchmarks under the new setting.

2 Related Work

2.1 Keyphrase Extraction

Most of the traditional extractive methods (Witten
et al., 1999; Mihalcea and Tarau, 2004) focus on
extracting present keyphrases from the input docu-
ment and follow a two-step framework. They first
extract plenty of keyphrase candidates by hand-
crafted rules (Medelyan et al., 2009). Then, they
score and rank these candidates based on either
unsupervised methods (Mihalcea and Tarau, 2004)
or supervised learning methods (Nguyen and Kan,
2007; Hulth, 2003). Recently, neural-based se-

1097

quence labeling methods (Gollapalli et al., 2017;
Luan et al., 2017; Zhang et al., 2016) are also
explored in keyphrase extraction problem. How-
ever, these extractive methods cannot predict ab-
sent keyphrase which is also an essential part of a
keyphrase set.

2.2 Keyphrase Generation

To produce both present and absent keyphrases,
Meng et al. (2017) introduced a generative model,
CopyRNN, which is based on an attentional
encoder-decoder framework (Bahdanau et al.,
2014) incorporating with a copy mechanism (Gu
et al., 2016). A wide range of extensions of Copy-
RNN are recently proposed (Chen et al., 2018,
2019b; Ye and Wang, 2018; Chen et al., 2019a;
Zhao and Zhang, 2019). All of them rely on beam
search to over-generate lots of keyphrases with
large beam size and then select the top N (e.g., five
or ten) ranked ones as the final prediction. That
means these over-generated methods will always
predict N keyphrases for any input documents.
Nevertheless, in a real situation, the keyphrase num-
ber should be determined by the document content
and may vary among different documents.

To this end, Yuan et al. (2018) introduced a new
setting that the KG model should predict multiple
keyphrases and simultaneously decide the suitable
keyphrase number for the given document. Two
models with a sequential decoding process, catSeq
and catSeqD, are proposed in Yuan et al. (2018).
The catSeq is also an attentional encoder-decoder
model (Bahdanau et al., 2014) with copy mecha-
nism (See et al., 2017), but adopting new training
and inference setup to fit the new setting. The cat-
SeqD is an extension of catSeq with orthogonal
regularization (Bousmalis et al., 2016) and target
encoding. Lately, Chan et al. (2019) proposed a
reinforcement learning based fine-tuning method,
which fine-tunes the pre-trained models with adap-
tive rewards for generating more sufficient and ac-
curate keyphrases. We follow the same setting
with Yuan et al. (2018) and propose an exclusive
hierarchical decoding method for the KG problem.
To the best of our knowledge, this is the first time
the hierarchical decoding is explored in the KG
problem. Different from the hierarchical decoding
in other areas (Fan et al., 2018; Yarats and Lewis,
2018; Tan et al., 2017; Chen and Zhuge, 2018), we
rescale the attention score of each WD step with the
corresponding PD attention score to provide aspect

guidance when generating keyphrases. Moreover,
either a soft or a hard exclusion mechanism is in-
novatively incorporated in the decoding process to
improve generation diversity.

3 Notations and Problem Definition

We denote vectors and matrices with bold lower-
case and uppercase letters respectively. Sets are
denoted with calligraphy letters. We use W to
represent a parameter matrix.

We define the keyphrase generation problem as
follows. The input is a document x, the output is a
keyphrase set Y = {yi}i=1,...,|Y|, where |Y| is the
keyphrase number of x. Both the x and each yi

are sequences of words, i.e., x = [x1, ..., xlx] and
yi = [yi1, ..., y

i
lyi

], where lx and lyi are the word

numbers of x and yi correspondingly.

4 Our Methodology

We first encode each word of the document into
a hidden state and then employ our exclusive hi-
erarchical decoding shown in Figure 2 to produce
keyphrases for the given document. Our hierarchi-
cal decoding process consists of phrase-level decod-
ing (PD) and word-level decoding (WD). Each PD
step decides an appropriate aspect to summarize
based on both the context of the document and the
aspects summarized by previous PD steps. Then,
the hidden representation of the captured aspect is
employed to initialize the WD process to generate
a new keyphrase word by word. The WD process
terminates when producing a “[eowd]” token. If
the WD process output a “[eopd]” token, the whole
hierarchical decoding process stops. Both PD and
WD attend the document content. The PD atten-
tion score is used to re-weight the WD attention
score to provide aspect guidance. To improve the
diversity of the predicted keyphrases, we incorpo-
rate either an exclusive loss when training (i.e., the
soft exclusion mechanism) or an exclusive search
mechanism when inference (i.e., the hard exclusion
mechanism).

4.1 Sequential Encoder

To obtain the context-aware representation of each
document word, we employ a two-layered bidirec-
tional GRU (Cho et al., 2014) as the document en-
coder: mk = BiGRU(exk

,−→mk−1,
←−mk+1), where

k = 1, 2, ..., lx and exk
is the embedding vector

of xk with de dimensions. mk = [−→mk;←−mk] ∈ Rd

1098

𝐡1,0

𝐡1,1

𝐡1,2

𝐡1,3

𝐡2,0

𝐡2,1

𝐡2,2

𝐡4,0𝐡3,0

𝐡3,1

𝐡3,2

𝐡3,3

[eowd]

[eopd]

[eowd]

[eowd]

[neopd] [neopd] [neopd]

y1
1

y2
1

y1
2 y1

3

y2
3

𝐡1 𝐡2 𝐡4𝐡3𝐡0

Phrase-level
Decoding (PD)

𝐡3

𝐡3,0

𝐡3,1

𝐡3,2

[neopd]

y1
3

WD-Attention

PD-Attention

ሚ𝐡2,2

𝐡2

𝜷3 = [𝛽3,1, … , 𝛽3,𝑙𝐱]

𝑦1
3

EL/ES

ሚ𝐡3,1

…

ሚ𝐡3,0

ሚ𝐡3,1

[𝐦1, … ,𝐦𝑙𝐱]

…

Word-level
Decoding (WD)

(a) The simplified framework of our exclusive hierarchical decoding (b) The intermediate step to predict 𝑦1
3

EL/ES EL/ES EL/ES

Figure 2: Illustration of our exclusive hierarchical decoding. hi is the hidden state of i-th PD step. hi,j is the
corresponding j-th WD hidden state. The “[neopd]” token means PD does not end. The “[eowd]” token means
WD terminates. The “[eopd]” token means PD ends and the whole decoding process finishes. “[m1, . . . ,mlx]”
represents the encoded hidden states from the document. “PD-Attention” and “WD-Attention” are the attention
mechanisms in PD and WD respectively. “βi” is the PD attention score at i-th step. h̃i,j is the WD attentional
vector. “EL/ES” indicates either the exclusive loss or the exclusive search is incorporated.

is the encoded context-aware representation of xk.
Here, “[· ; ·]” means concatenation.

4.2 Hierarchical Decoder

Our hierarchical decoding process is controlled by
the hierarchical decoder, which utilizes a phrase-
level decoder and a word-level decoder to handle
the PD process and the WD process respectively.
We present our hierarchical decoder first and then
introduce the exclusion mechanisms. In our de-
coders, all the hidden states and attentional vectors
are d-dimensional vectors.

4.2.1 Phrase-level Decoder

We adopt a unidirectional GRU layer as our phrase-
level decoder. After the WD process under last
PD step is finished, the phrase-level decoder will
update its hidden state as follows:

hi =
−−→
GRU1(h̃i−1,end,hi−1), (1)

where h̃i−1,end is the attentional vector for the end-
ing WD step under the (i-1)-th PD step (e.g., h̃2,2

in Figure 2(b)). hi is regarded as the hidden repre-
sentation of the captured aspect at the i-th PD step.
h0 is initialized as the document representation
[−→mlx ;←−m1]. h̃0,end is initialized with zeros.

In PD-Attention process, the PD attentional
score βi = [βi,1, βi,2, . . . , βi,lx] is computed from
the following attention mechanism employing hi

as the query vector:

βi,k = exp(si,k)/

lx∑
n=1

exp(si,n), (2)

si,n = (hi)
TW1mn. (3)

4.2.2 Word-level Decoder
We choose another unidirectional GRU layer to
conduct word-level decoding. Under the i-th PD
step, the word-level decoder updates its hidden
state first:

hi,j =
−−→
GRU2([h̃i,j−1; eyij−1

],hi,j−1), (4)

where h̃i,j−1 is the WD attentional vector of the
(j-1)-th WD step and eyij−1

is the de-dimensional

embedding vector of the yij−1 token. We define

hi,0 =
−−→
GRU2([0; es],hi), where hi is the current

hidden state of the phrase-level decoder, 0 is a zero
vector, and es is the embedding of the start token.
Then, the WD attentional vector is computed:

h̃i,j = tanh(W2[hi,j ; ai,j]), (5)

ai,j =

lx∑
k=1

ᾱ(i,j),kmk, (6)

ᾱ(i,j),k =
α(i,j),k × βi,k∑lx
n=1 α(i,j),n × βi,n

, (7)

where α(i,j),k is the original WD attention score
which is computed similar to βi,k except that a

1099

new parameter matrix is used and hi,j is employed
as the query vector. The purpose of the rescaling
operation in Eq. (7) is to indicate the focused aspect
of the current PD step for each WD step.

Finally, the h̃i,j is utilized to predict the proba-
bility distribution of current keyword with the copy
mechanism (See et al., 2017):

P i
j = (1− gij)P i

j,V + gijP
i
j,X , (8)

where gij = sigmoid(wT
g h̃i,j + bg) ∈ R is the copy

gate. P i
j,V = softmax(W3h̃i,j + bV) ∈ R|V| is

the probability distribution over a predefined vo-
cabulary V . P i

j,X =
∑

k:xk=yij
ᾱ(i,j),k ∈ R|X | is

the copying probability distribution over X which
is a set of all the words that appeared in the docu-
ment. P i

j ∈ R|V∪X | is the final predicted probabil-
ity distribution. Finally, greedy search is applied to
produce the current token.

The WD process terminates when producing a
“[eowd]” token. The whole hierarchical decoding
process ends if the word-level decoder produces a
“[eopd]” token at the 0-th step, i.e., yi0 is predicted
as “[eopd]”.

4.3 Training
A standard negative log-likelihood loss is employed
as the generation loss to train our hierarchical de-
coding model:

Lg = −
|Ȳ|∑
i=1

lȳi∑
j=0

logP i
j (ȳij |x; Ȳi−1; ȳi

j−1), (9)

where Ȳi−1 = ȳ1, . . . , ȳi−1 are the target
keyphrases of previously-finished PD steps and
ȳi
j−1 = ȳi0, . . . , ȳ

i
j−1 are target keyphrase words

of previous WD steps under the i-th PD step. When
training, each original target keyphrase is extended
with a “[neopd]” token and a “[eowd]” token, i.e.,
ȳi = [“[neopd]”, yi1, . . . , y

i
lyi
, “[eowd]”]. Besides,

a “[eopd]” token is also incorporated into the tar-
gets to indicate the ending of whole decoding pro-
cess. Teacher forcing is employed when training.

4.4 Soft and Hard Exclusion Mechanisms
To alleviate the duplication generation problem, we
propose a soft and a hard exclusion mechanisms.
Either of them can be incorporated into our hi-
erarchical decoding process to form one kind of
exclusive hierarchical decoding method.
Soft Exclusion Mechanism. An exclusive loss
(EL) is introduced in the training stage as shown

Algorithm 1 Training with Exclusive Loss
Require: The window size KEL. The target keyphrases

[ȳ1, . . . , ȳi, . . . , ȳ|Ȳ|]. The predicted probability distri-
bution P i

j for the j-th WD step under the i-th PD step
where i = 1, . . . , |Ȳ| and j = 0, 1, . . . , lȳi .

1: Firstly, the exclusive loss of the j-th WD step under the
i-th PD step is computed as follows.

2: KEL ← min{KEL, i− 1}
3: if KEL > 0 and j == 1 then
4: Li,j

EL =
∑i−1

idx=i−KEL,ȳidx
j 6=ȳi

j
− log(1− P i

j (ȳidx
j))

5: else
6: Li,j

EL = 0.0
7: end if
8: Secondly, the exclusive loss for the whole decoding pro-

cess is calculated as LEL =
∑

i,j L
i,j
EL.

9: Finally, the joint loss L = Lg +LEL is employed to train
the model.

Algorithm 2 Inference with Exclusive Search
Require: The window size KES . The first words of

previously-predicted keyphrases [y1
1 , . . . , y

i−1
1]. The cur-

rent WD step index j. The predicted probability distribu-
tion P i

j for current WD step.
1: KES ← min{KES , i− 1}
2: if KES > 0 and j == 1 then
3: for idx = i−KES , i−KES + 1, . . . , i− 1 do
4: P i

j (yidx
j)← 0.0

5: end for
6: end if
7: Return yi

j = arg max(P i
j) as the predicted word for

current WD step.

in Algorithm 1. “j == 1” in line “3” means the
current WD step is predicting the first word of a
keyphrase. In short, the exclusive loss punishes
the model for the tendency to generate the same
first word of the current keyphrase with the first
words of previously-generated keyphrases within
the window size KEL.

Hard Exclusion Mechanism. An exclusive
search (ES) is introduced in the inference stage
as shown in Algorithm 2. The exclusive search
mechanism forces the word-level decoding to pre-
dict a different first word with the first words of
previously-predicted keyphrases within the window
size KES .

Since a keyphrase usually has only two or three
words, the first word significantly affects the pre-
diction of the following words. Therefore, both
the soft and the hard exclusion mechanisms can
improve the diversity of generated keyphrases.

5 Experiment Setup

Our model implementations are based on the
OpenNMT system (Klein et al., 2017) using Py-
Torch (Paszke et al., 2017). Experiments of all

1100

models are repeated with three different random
seeds and the averaged results are reported.

5.1 Datasets

We employ four scientific article benchmark
datasets to evaluate our models, including
KP20k (Meng et al., 2017), Inspec (Hulth,
2003), Krapivin (Krapivin et al., 2009), and Se-
mEval (Kim et al., 2010). Following previous
work (Yuan et al., 2018; Chen et al., 2019a), we
use the training set of KP20k to train all the models.
After removing the duplicated data, we maintain
509,818 data samples in the training set, 20,000
in the validation set, and 20,000 in the testing set.
After training, we test all the models on the test-
ing datasets of these four benchmarks. The dataset
statistics are shown in Table 1.

Dataset Total Validation Testing
Inspec 2,000 1,500 500

Krapivin 2,303 1,903 400
SemEval 244 144 100
KP20k 549,818 20,000 20,000

Table 1: The statistics of validation and testing datasets.

5.2 Baselines

We focus on the comparisons with state-of-the-art
decoding methods and choose the following genera-
tion models under the new setting as our baselines:

• Transformer (Vaswani et al., 2017). A
transformer-based sequence to sequence model
incorporating with copy mechanism.

• catSeq (Yuan et al., 2018). An RNN-based atten-
tional encoder-decoder model with copy mech-
anism. Both the encoding and decoding are se-
quential.

• catSeqD (Yuan et al., 2018). An extension of
catSeq which incorporates orthogonal regulariza-
tion (Bousmalis et al., 2016) and target encoding
into the sequential decoding process to improve
the generation diversity and accuracy.

• catSeqCorr (Chan et al., 2019). Another exten-
sion of catSeq, which incorporates the sequential
decoding with coverage (See et al., 2017) and
review mechanisms to boost the generation di-
versity and accuracy. This method is adjusted
from Chen et al. (2018) to fit the new setting.

In this paper, we propose two novel models that
are denoted as follows:

• ExHiRD-s. Our Exclusive HieRarchical
Decoding model with the soft exclusion mecha-
nism. In experiments, the window size KEL is
selected as 4 after tuning on the KP20k valida-
tion dataset.

• ExHiRD-h. Our Exclusive HieRarchical
Decoding model with the hard exclusion mecha-
nism. In experiments, the values of the window
size KES are selected as 4, 1, 1, 1 for Inspec,
Krapivin, SemEval, and KP20k respectively after
tuning on the corresponding validation datasets.

We choose the bilinear attention from Luong
et al. (2015) and the copy mechanism from See
et al. (2017) for all the models.

5.3 Evaluation Metrics
We engage F1@M which is recently proposed
in Yuan et al. (2018) as one of our evaluation met-
rics. F1@M compares all the predicted keyphrases
by the model with ground-truth keyphrases, which
means it does not use a fixed cutoff for the pre-
dictions. Therefore, it considers the number of
predictions.

We also use F1@5 as another evaluation metric.
When the number of predictions is less than five,
we randomly append incorrect keyphrases until it
obtains five predictions instead of directly using
the original predictions. If we do not adopt such an
appending operation, F1@5 will become the same
with F1@M when the prediction number is less
than five.

The macro-averaged F1@M and F1@5 scores
are reported. When determining whether two
keyphrases are identical, all the keyphrases are
stemmed first. Besides, all the duplicated
keyphrases are removed after stemming.

5.4 Implementation Details
Following previous work (Meng et al., 2017; Yuan
et al., 2018; Chen et al., 2019a; Chan et al.,
2019), we lowercase the characters, tokenize the
sequences, and replace digits with “<digit>” to-
ken. Similar to Yuan et al. (2018), when training,
the present keyphrase targets are sorted accord-
ing to the orders of their first occurrences in the
document. Then, the absent keyphrase targets are
put at the end of the sorted present keyphrase tar-
gets. We use “<p start>” and “<a start>” as the

1101

Model Inspec Krapivin SemEval KP20k
F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

Transformer 0.2545 0.2107 0.32814 0.2524 0.3105 0.2574 0.3603 0.28210
catSeq 0.2765 0.2334 0.34414 0.2695 0.3138 0.26211 0.3681 0.2952
catSeqD 0.2803 0.2361 0.3449 0.2688 0.3116 0.2636 0.3682 0.2962
catSeqCorr 0.2533 0.2086 0.3439 0.2589 0.31818 0.26014 0.3673 0.2814

ExHiRD-s 0.2785 0.2353 0.3383 0.2780 0.3225 0.2765 0.3721 0.3070
ExHiRD-h 0.2913 0.2534 0.3474 0.2864 0.33517 0.28415 0.3740 0.3111

Table 2: Present keyphrase prediction results of all models on all datasets. The best results are bold. In all the tables
of this paper, the subscript represents the corresponding standard deviation (e.g., 0.3111 indicates 0.311±0.001).

Model Inspec Krapivin SemEval KP20k
F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5

Transformer 0.0131 0.0061 0.0305 0.0143 0.0201 0.0131 0.0242 0.0111
catSeq 0.0083 0.0041 0.0334 0.0152 0.0172 0.0121 0.0231 0.0100
catSeqD 0.0104 0.0041 0.0337 0.0153 0.0161 0.0111 0.0231 0.0101
catSeqCorr 0.0072 0.0041 0.0226 0.0113 0.0215 0.0143 0.0231 0.0101

ExHiRD-s 0.0217 0.0092 0.0335 0.0162 0.0245 0.0164 0.0291 0.0140
ExHiRD-h 0.0223 0.0111 0.0436 0.0223 0.0256 0.0174 0.0320 0.0160

Table 3: Absent keyphrase prediction results of all models on all datasets. The best results are bold.

“[neopd]” token of present and absent keyphrases
respectively. “;” is employed as the “[eowd]” token
for both present and absent keyphrases. “</s>” is
used as the “[eopd]” token.

The vocabulary with 50,000 tokens is shared be-
tween the encoder and decoder. We set de as 100
and d as 300. The hidden states of the encoder
layers are initialized as zeros. In the training stage,
we randomly initialize all the trainable parameters
including the embedding using a uniform distribu-
tion in [−0.1, 0.1]. We set batch size as 10, max
gradient norm as 1.0, and initial learning rate as
0.001. We do not use dropout. Adam (Kingma
and Ba, 2014) is used as our optimizer. The learn-
ing rate decays to half if the perplexity on KP20k
validation set stops decreasing. Early stopping is
applied when training. When inference, we set the
minimum phrase-level decoding step as 1 and the
maximum as 20.

6 Results and Analysis

6.1 Present and Absent Keyphrase
Predictions

We show the present and absent keyphrase pre-
diction results in Table 2 and Table 3 correspond-
ingly. As indicated in these two tables, both the
ExHiRD-s model and the ExHiRD-h outperform
the state-of-the-art baselines on most of the met-
rics, which demonstrates the effectiveness of our
exclusive hierarchical decoding methods. Besides,
the ExHiRD-h model consistently achieves the best
results on both present and absent keyphrase pre-

Model Inspec Krapivin SemEval KP20k
Transformer 0.28625 0.29746 0.22038 0.22341
catSeq 0.30211 0.2778 0.2002 0.2174
catSeqD 0.30414 0.2839 0.1991 0.2158
catSeqCorr 0.35238 0.3544 0.24923 0.28214

ExHiRD-s 0.21014 0.18212 0.1198 0.1376
ExHiRD-h 0.0306 0.1406 0.09110 0.1101

Table 4: The average DupRatios of predicted
keyphrases on all datasets. The lower the score, the
better the performance.

diction in all the datasets2.

6.2 Duplication Ratio of Predicted
Keyphrases

In this section, we study the model capability of
avoiding producing duplicated keyphrases. Dupli-
cation ratio is denoted as “DupRatio” and defined
as follows:

DupRatio =
duplications
predictions

, (10)

where # means “the number of”. For instance, the
DupRatio is 0.5 (3/6) for [A, A, B, B, A, C].

We report the average DupRatio per document
in Table 4. From this table, we observe that
our ExHiRD-s and ExHiRD-h consistently and
significantly reduce the duplication ratios on all
datasets. Moreover, we also find that our ExHiRD-
h model achieves the lowest duplication ratios on
all datasets.

2We also tried to simultaneously incorporate the soft and
the hard exclusion mechanisms into our hierarchical decoding
model, but it still underperforms ExHiRD-h.

1102

Model Inspec Krapivin SemEval KP20k
#PK #AK #PK #AK #PK #AK #PK #AK

Oracle 7.64 2.10 3.27 2.57 6.28 8.12 3.32 1.93
Transformer 3.1710 0.704 3.5729 0.634 3.2420 0.673 3.4417 0.584
catSeq 3.332 0.584 3.7010 0.635 3.455 0.643 3.704 0.512
catSeqD 3.334 0.582 3.6610 0.611 3.475 0.637 3.743 0.502
catSeqCorr 3.077 0.532 3.3914 0.561 3.153 0.621 3.364 0.501

ExHiRD-s 3.565 0.812 4.337 0.863 3.6914 0.796 3.942 0.691
ExHiRD-h 4.004 1.506 4.419 1.027 3.6513 0.994 3.973 0.811

Table 5: Results of average numbers of predicted
unique keyphrases per document. “#PK” and “#AK”
are the number of present and absent keyphrases respec-
tively. “Oracle” is the gold average keyphrase number.
The closest values to the oracles are bold.

Model Present Absent DupRatio
F1@M F1@5 #PK F1@M F1@5 #AK

ExHiRD-h 0.335 0.284 3.65 0.025 0.017 0.99 0.091
w/o HRD 0.320 0.274 3.58 0.018 0.013 0.97 0.093
w/o ES 0.330 0.278 3.51 0.022 0.014 0.70 0.191

Table 6: Ablation study of our ExHiRD-h model on
SemEval dataset. “w/o HRD” means the hierarchical
decoder is replaced with a sequential decoder and the
exclusive search is still incorporated. “w/o ES” repre-
sents our hierarchical decoding model without utilizing
exclusive search mechanism.

6.3 Number of Predicted Keyphrases

We also study the average number of unique
keyphrase predictions per document. Duplicated
keyphrases are removed. The results are shown
in Table 5. One main finding is that all the
models generate an insufficient number of unique
keyphrases on most datasets, especially for pre-
dicting absent keyphrases. We also observe that
our methods can improve the number of unique
keyphrases by a large margin, which is extremely
beneficial to solve the problem of insufficient gen-
eration. Correspondingly, it also leads to over-
generate more keyphrases than the ground-truth
for the cases that do not have this problem, such
as the present keyphrase predictions on Krapivin
and KP20k datasets. We leave solving the over-
generation of present keyphrases on Krapivin and
KP20k as our future work.

6.4 ExHiRD-h: Ablation Study

Since our ExHiRD-h model achieves the best per-
formance on almost all of the metrics, we select it
as our final model and probe it more subtly in the
following sections. In order to understand the ef-
fects of each component of ExHiRD-h, we conduct
an ablation study on it and report the results on the
SemEval dataset in Table 6.

We observe that both our hierarchical decoding
process and exclusive search mechanism are help-

KES
Present Absent DupRatio

F1@M F1@5 #PK F1@M F1@5 #AK
Oracle - - 3.32 - - 1.93 -

0 0.376 0.303 3.76 0.028 0.013 0.61 0.195
1 0.374 0.311 3.97 0.033 0.016 0.86 0.110
2 0.371 0.314 4.11 0.034 0.017 1.00 0.069
3 0.368 0.316 4.21 0.034 0.017 1.08 0.038
4 0.366 0.316 4.27 0.033 0.017 1.16 0.017
5 0.366 0.316 4.30 0.033 0.017 1.19 0.010
all 0.365 0.316 4.32 0.032 0.017 1.25 0.002

Table 7: Results of ExHiRD-h on KP20k with different
window size KES . When KES = 0, ExHiRD-h equals
to “w/o ES”. The “all” means we taking the first words
of all the previously-predicted keyphrases into consid-
eration. The “DupRatio” is the average DupRatio per
document. We show the average numbers of ground-
truth keyphrases in the “Oracle” row.

ful to generate more accurate present and absent
keyphrases. Besides, we also find that the signifi-
cant performance margins on the duplication ratio
and the keyphrase numbers are mainly from the
exclusive search mechanism.

6.5 ExHiRD-h: Window Size of Exclusive
Search

For a more comprehensive understanding of our ex-
clusive search mechanism in our ExHiRD-h model,
we also study the effects of the window size KES .
We conduct the experiments on KP20k dataset and
list the results in Table 7.

We note that a larger window size KES leads to
a lower DupRatio as we anticipated. It is because
the exclusive search can observe more previously-
generated keyphrases to avoid generating dupli-
cated keyphrases when KES is larger. When KES

is “all”, the DupRatio is not absolute zero because
we stem keyphrases when determining whether
they are duplicated. Besides, we also find that
larger KES leads to better F1@5 scores. The rea-
son is that for F1@5 scores, we append incorrect
keyphrases to obtain five predictions when the num-
ber of predictions is less than five. A larger KES

leads to predict more unique keyphrases, append
less absolutely incorrect keyphrases and improve
the chance to output more accurate keyphrases.
However, generating more unique keyphrases may
also lead to more incorrect predictions, which will
degrade the F1@M scores since F1@M considers
all the unique predictions without a fixed cutoff.

1103

Model Present Absent DupRatio
F1@M F1@5 #PK F1@M w F1@5 #AK

Oracle - - 3.32 - - 1.93 -
Transformer 0.360 0.282 3.44 0.024 0.011 0.58 0.223
catSeq 0.368 0.295 3.70 0.023 0.010 0.51 0.217
catSeqD 0.368 0.296 3.74 0.023 0.010 0.50 0.215
catSeqCorr 0.367 0.281 3.36 0.023 0.010 0.50 0.282
Transformer w/ ES 0.359 0.294 3.75 0.027 0.013 0.79 0.114
catSeq w/ ES 0.366 0.305 3.95 0.025 0.012 0.68 0.138
catSeqD w/ ES 0.366 0.306 3.99 0.026 0.012 0.65 0.137
catSeqCorr w/ ES 0.366 0.298 3.74 0.027 0.013 0.72 0.159
ExHiRD-h 0.374 0.311 3.97 0.032 0.016 0.81 0.110

Table 8: Results of applying our exclusive search to
other baselines on KP20k. The “w/ ES” means our ex-
clusive search is applied.

6.6 ExHiRD-h: Incorporate Baselines with
Exclusive Search

Our exclusive search is a general method that can
be easily applied to other models. In this section,
we study the effects of our exclusive search on
other baseline models. We show the experimental
results on KP20k dataset in Table 8.

From this table, we note that the effects of ex-
clusive search on baselines are similar to the ef-
fects on our hierarchical decoding. We also see
our ExHiRD-h still achieves the best performance
on most of the metrics, even if baselines are also
incorporated with exclusive search, which exhibits
the superiority of our hierarchical decoding again.

6.7 ExHiRD-h: Case Study

We display a prediction example in Figure 3.
Our ExHiRD-h model generates more accurate
keyphrases for the document comparing to the four
baselines. Besides, we also observe much less re-
peated keyphrases are generated by our ExHiRD-
h. For instance, all the baselines produce the
keyphrase “debugging” at least three times. How-
ever, our ExHiRD-h only generates it once, which
demonstrates that our proposed method is more
powerful in avoiding duplicated keyphrases.

7 Conclusion and Future Work

In this paper, we propose an exclusive hierarchi-
cal decoding framework for keyphrase generation.
Unlike previous sequential decoding methods, our
hierarchical decoding consists of a phrase-level
decoding process to capture the current aspect to
summarize and a word-level decoding process to
generate keyphrases based on the captured aspect.
Besides, we also propose a soft and a hard exclu-
sion mechanisms to enhance the diversity of the
generated keyphrases. Extensive experimental re-
sults demonstrate the effectiveness of our meth-

SOC HW/SW co-verification based debugging technique. Purpose –

Increasingly complex and sophisticated VLSI design, coupled with

shrinking design cycles, requires shorter verification time and

efficient debug method. … SOC HW/SW co-verification technique

seems to draw a balance, but Design Under Test (DUT) still resides

in FPGA and remains hard for debugging. The purpose of this paper

is to study a run-time RTL debugging methodology for a FPGA-

based co-verification system. …

Targets {computer hardware; computer software;

co-verification; debugging}

Transformer: 1. co-verification (1), 2. debugging (7), 3. fpga (3)

catSeq: 1. debugging (3), 2. logic programming (2)

catSeqD: 1. debugging (4), 2. design (3), 3. verification (3)

catSeqCorr: 1. debugging (3), 2. computer aided design (3)

ExHiRD-h: 1. verification (2), 2. debugging (1), 3. simulation (1),

4. co-verification (1), 5. hdl (1), 6. computer software (2),

7. logic testing (1)

Figure 3: An example of generated keyphrases by base-
lines and our ExHiRD-h. The correct predictions are
bold and the present keyphrases are underlined. The
digit in parentheses represents the frequency that the
corresponding keyphrase is generated by the model
(e.g., “debugging (3)” means the keyphrase “debug-
ging” is generated three times by the model).

ods. One interesting future direction is to explore
whether the beam search is helpful to our model.

Acknowledgments

The work described in this paper was partially
supported by the Research Grants Council of the
Hong Kong Special Administrative Region, China
(CUHK 2300174 (Collaborative Research Fund,
No. C5026-18GF)). We would like to thank our
colleagues for their comments.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. In ICLR 2014.

Gábor Berend. 2011. Opinion expression mining by
exploiting keyphrase extraction. In Proceedings of
5th International Joint Conference on Natural Lan-
guage Processing, pages 1162–1170, Chiang Mai,
Thailand. Asian Federation of Natural Language
Processing.

Konstantinos Bousmalis, George Trigeorgis, Nathan
Silberman, Dilip Krishnan, and Dumitru Erhan.
2016. Domain separation networks. In NeurIPS
2016, pages 343–351.

Hou Pong Chan, Wang Chen, Lu Wang, and Irwin King.
2019. Neural keyphrase generation via reinforce-
ment learning with adaptive rewards. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 2163–2174,
Florence, Italy. Association for Computational Lin-
guistics.

https://www.aclweb.org/anthology/I11-1130
https://www.aclweb.org/anthology/I11-1130
http://papers.nips.cc/paper/6254-domain-separation-networks
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/P19-1208

1104

Jingqiang Chen and Hai Zhuge. 2018. Abstractive text-
image summarization using multi-modal attentional
hierarchical RNN. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4046–4056, Brussels, Belgium.
Association for Computational Linguistics.

Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan, and
Zhoujun Li. 2018. Keyphrase generation with corre-
lation constraints. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4057–4066, Brussels, Belgium.
Association for Computational Linguistics.

Wang Chen, Hou Pong Chan, Piji Li, Lidong Bing,
and Irwin King. 2019a. An integrated approach for
keyphrase generation via exploring the power of re-
trieval and extraction. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2846–2856, Minneapolis, Minnesota.
Association for Computational Linguistics.

Wang Chen, Yifan Gao, Jiani Zhang, Irwin King, and
Michael R. Lyu. 2019b. Title-guided encoding for
keyphrase generation. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 6268–6275.
AAAI Press.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Sujatha Das Gollapalli, Xiaoli Li, and Peng Yang. 2017.
Incorporating expert knowledge into keyphrase ex-
traction. In AAAI 2017, pages 3180–3187.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the 2003 Conference on Empirical Meth-
ods in Natural Language Processing, pages 216–
223.

Anette Hulth and Beáta B. Megyesi. 2006. A study on
automatically extracted keywords in text categoriza-
tion. In Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th An-
nual Meeting of the Association for Computational
Linguistics, pages 537–544, Sydney, Australia. As-
sociation for Computational Linguistics.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. SemEval-2010 task 5 : Au-
tomatic keyphrase extraction from scientific articles.
In Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 21–26, Uppsala, Swe-
den. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In
Proceedings of ACL 2017, System Demonstrations,
pages 67–72, Vancouver, Canada. Association for
Computational Linguistics.

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio
Marchese. 2009. Large dataset for keyphrases ex-
traction. Technical report, University of Trento.

Yi Luan, Mari Ostendorf, and Hannaneh Hajishirzi.
2017. Scientific information extraction with semi-
supervised neural tagging. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2641–2651, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Olena Medelyan, Eibe Frank, and Ian H. Witten.
2009. Human-competitive tagging using automatic
keyphrase extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1318–1327, Singapore. As-
sociation for Computational Linguistics.

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing
He, Peter Brusilovsky, and Yu Chi. 2017. Deep
keyphrase generation. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
582–592, Vancouver, Canada. Association for Com-
putational Linguistics.

https://doi.org/10.18653/v1/D18-1438
https://doi.org/10.18653/v1/D18-1438
https://doi.org/10.18653/v1/D18-1438
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.1609/aaai.v33i01.33016268
https://doi.org/10.1609/aaai.v33i01.33016268
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/P18-1082
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14628
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14628
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://www.aclweb.org/anthology/W03-1028
https://www.aclweb.org/anthology/W03-1028
https://doi.org/10.3115/1220175.1220243
https://doi.org/10.3115/1220175.1220243
https://doi.org/10.3115/1220175.1220243
https://www.aclweb.org/anthology/S10-1004
https://www.aclweb.org/anthology/S10-1004
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
https://doi.org/10.18653/v1/D17-1279
https://doi.org/10.18653/v1/D17-1279
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://www.aclweb.org/anthology/D09-1137
https://www.aclweb.org/anthology/D09-1137
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.18653/v1/P17-1054

1105

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into text. In Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 404–411, Barcelona, Spain.
Association for Computational Linguistics.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. In
ICADL 2007, pages 317–326.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017.
Abstractive document summarization with a graph-
based attentional neural model. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1171–1181, Vancouver, Canada. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Lu Wang and Claire Cardie. 2013. Domain-
independent abstract generation for focused meeting
summarization. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1395–1405,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of Human
Language Technology Conference and Conference
on Empirical Methods in Natural Language Process-
ing, pages 347–354, Vancouver, British Columbia,
Canada. Association for Computational Linguistics.

Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl
Gutwin, and Craig G. Nevill-Manning. 1999. KEA:
practical automatic keyphrase extraction. In Pro-
ceedings of the Fourth ACM conference on Digital
Libraries 1999, pages 254–255.

Denis Yarats and Mike Lewis. 2018. Hierarchical text
generation and planning for strategic dialogue. In
ICML 2018, pages 5587–5595.

Hai Ye and Lu Wang. 2018. Semi-supervised learning
for neural keyphrase generation. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4142–4153, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Xingdi Yuan, Tong Wang, Rui Meng, Khushboo
Thaker, Peter Brusilovsky, Daqing He, and Adam
Trischler. 2018. One size does not fit all: Gener-
ating and evaluating variable number of keyphrases.
CoRR, abs/1810.05241.

Qi Zhang, Yang Wang, Yeyun Gong, and Xuanjing
Huang. 2016. Keyphrase extraction using deep re-
current neural networks on twitter. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 836–845,
Austin, Texas. Association for Computational Lin-
guistics.

Jing Zhao and Yuxiang Zhang. 2019. Incorporat-
ing linguistic constraints into keyphrase generation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
5224–5233, Florence, Italy. Association for Compu-
tational Linguistics.

https://www.aclweb.org/anthology/W04-3252
https://www.aclweb.org/anthology/W04-3252
https://doi.org/10.1007/978-3-540-77094-7_41
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1108
https://doi.org/10.18653/v1/P17-1108
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://www.aclweb.org/anthology/P13-1137
https://www.aclweb.org/anthology/P13-1137
https://www.aclweb.org/anthology/P13-1137
https://www.aclweb.org/anthology/H05-1044
https://www.aclweb.org/anthology/H05-1044
https://doi.org/10.1145/313238.313437
https://doi.org/10.1145/313238.313437
http://proceedings.mlr.press/v80/yarats18a.html
http://proceedings.mlr.press/v80/yarats18a.html
https://doi.org/10.18653/v1/D18-1447
https://doi.org/10.18653/v1/D18-1447
http://arxiv.org/abs/1810.05241
http://arxiv.org/abs/1810.05241
https://doi.org/10.18653/v1/D16-1080
https://doi.org/10.18653/v1/D16-1080
https://doi.org/10.18653/v1/P19-1515
https://doi.org/10.18653/v1/P19-1515

