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Abstract
Text generation from a knowledge base aims
to translate knowledge triples to natural-
language descriptions. Most existing methods
ignore the faithfulness between a generated
text description and the original table, lead-
ing to generated information that goes beyond
the content of the table. In this paper, for the
first time, we propose a novel Transformer-
based generation framework to achieve the
goal. The core techniques in our method to
enforce faithfulness include a new table-text
optimal-transport matching loss and a table-
text embedding similarity loss based on the
Transformer model. Furthermore, to evaluate
faithfulness, we propose a new automatic met-
ric specialized to the table-to-text generation
problem. We also provide detailed analysis
on each component of our model in our ex-
periments. Automatic and human evaluations
show that our framework can significantly out-
perform state-of-the-art by a large margin.

1 Introduction

Understanding structured knowledge, e.g., infor-
mation encoded in tables, and automatically gen-
erating natural-language descriptions is an impor-
tant task in the area of Natural Language Gen-
eration. Table-to-text generation helps making
knowledge elements and their connections in ta-
bles easier to comprehend by human. There have
been a number of practical application scenarios
in this field, for example, weather report genera-
tion, NBA news generation, biography generation
and medical-record description generation (Liang
et al., 2009; Barzilay and Lapata, 2005; Lebret
et al., 2016a; Cawsey et al., 1997).

Most existing methods for table-to-text gen-
eration are based on an encoder-decoder frame-
work (Sutskever et al., 2014; Bahdanau et al.,

∗Zhenyi Wang was a research intern student at Tencent AI
Lab in Bellevue, WA when doing this work.

Figure 1: An example of table-to-text generation. This
generation is unfaithful because there exists informa-
tion in table not covered by generated text (marked in
blue); At the same time, hallucinated information in
text does not appear in table (marked in red).

2015), most of which are RNN-based Sequence-
to-Sequence (Seq2Seq) models (Lebret et al.,
2016b; Liu et al., 2018; Wiseman et al., 2018; Ma
et al., 2019; Wang et al., 2018; Liu et al., 2019a).
Though significant progress has been achieved, we
advocate two key problems in existing methods.
Firstly, because of the intrinsic shortage of RNN,
RNN-based models are not able to capture long-
term dependencies, which would lose important
information reflected in a table. This drawback
prevents them from being applied to larger tables,
for example, a table describing a large Knowledge
Base (Wang et al., 2018). Secondly, little work
has focused on generating faithful text descrip-
tions, which is defined, in this paper, as the level
of matching between a generated text sequence
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and the corresponding table content. An unfaith-
ful generation example is illustrated in Figure 1.
The training objectives and evaluation metrics of
existing methods encourage generating texts to be
as similar as possible to reference texts. One prob-
lem with this is that the reference text often con-
tains extra information that is not presented in the
table because human beings have external knowl-
edge beyond the input table when writing the text,
or it even misses some important information in
the table (Dhingra et al., 2019) due to the noise
from the dataset collection process. As a result,
unconstrained training with such mis-matching in-
formation usually leads to hallucinated words or
phrases in generated texts, making them unfaith-
ful to the table and thus harmful in practical uses.

In this paper, we aim to overcome the above
problems to automatically generate faithful texts
from tables. In other words, we aim to pro-
duce the writing that a human without any ex-
ternal knowledge would do given the same table
data as input. In contrast to existing RNN-based
models, we leverage the powerful attention-based
Transformer model to capture long-term depen-
dencies and generate more informative paragraph-
level texts. To generate descriptions faithful to
tables, two content-matching constraints are pro-
posed. The first one is a latent-representation-
level matching constraint encouraging the latent
semantics of the whole text to be consistent with
that of the whole table. The second one is an
explicit entity-level matching scheme, which uti-
lizes Optimal-Transport (OT) techniques to con-
strain key words of a table and the corresponding
text to be as identical as possible. To evaluate the
faithfulness, we also propose a new PARENT-T
metric evaluating the content matching between
texts and tables, based on the recently proposed
PARENT (Dhingra et al., 2019) metric. We train
and evaluate our model on a large-scale knowl-
edge base dataset (Wang et al., 2018). Automatic
and human evaluations both show that our method
achieve the state-of-the-art performance, and can
generates paragraph-level descriptions much more
informative and faithful to input tables.

2 The Proposed Method

The task of text generation for a knowledge
base is to take the structured table, T =
{(t1, v1), (t2, v2), , (tm, vm)}, as input, and out-
puts a natural-language description consisting of a

Figure 2: The architecture of our proposed model for
table-to-text generation. To enhance the ability of gen-
erating multi-sentence faithful texts, our loss consists
of three parts, including a maximum-likelihood loss
(green), a latent matching disagreement loss (orange),
and an optimal-transport loss (blue).

sequence of words y = {y1, y2, , yn} that is faith-
ful to the input table. Here, ti denotes the slot type
for the ith row, and vi denotes the slot value for
the ith row in a table.

Our model adopts the powerful Transformer
model (Vaswani et al., 2017) to translate a table
to a text sequence. Specifically, the Transformer is
a Seq2Seq model, consisting of an encoder and a
decoder. Our proposed encoder-to-decoder Trans-
former model learns to estimate the conditional
probability of a text sequence from a source table
input in an autoregressive way:

P (y|T ;θ) =

n∏
i=1

P (yi|y<i,T ;θ) , (1)

where θ is the Transformer parameters and y<i

denotes the decoded words from previous steps.
Existing models for table-to-text generation ei-

ther only focus on generating text to match the
reference text (Liu et al., 2018; Ma et al., 2019),
or only require a generated text sequence to be
able to cover the input table (Wang et al., 2018).
However, as the only input information is the ta-
ble, the generated text should be faithful to the
input table as much as possible. Therefore, we
propose two constraint losses, including a table-
text disagreement constraint loss and a constrained
content matching loss with optimal transport, to
encourage the model to learn to match between
the generated text and the input table faithfully.
Figure 2 illustrates the overall architecture of our
model. In summary, our model loss contains three
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parts: 1) a maximum likelihood loss (green) that
measures the matching between a model predic-
tion and the reference text sequence; 2) a latent
feature matching disagreement loss (orange) that
measures the disagreement between a table encod-
ing and the corresponding reference-text encod-
ing; and 3) an optimal-transport loss (blue) match-
ing the key words of an input table and the corre-
sponding generated text.

2.1 Table Representation

The entities of a table simply consists of Slot
Type and Slot Value pairs. To apply the Trans-
former model, we first linearize input tables into
sequences. Slot types and slot values are separated
by special tokens “<” and “>”. As an example,
the table in Figure 1 is converted into a sequence:
{< Name ID >,Willie Burden, < date of birth >
, July 21 1951, · · · }. We note that encoding a table
in this way might lose some high-order structure
information presented in the original knowledge
graph. However, our knowledge graph is relatively
simple. According to our preliminary studies, a
naive combination of feature extracted with graph
neural networks (Beck et al., 2018) does not seem
helpful. As a result, we only rely on the sequence
representation in this paper.

2.2 The Base Objective

Our base objective comes from the standard Trans-
former model, which is defined as the negative
log-likelihood loss Lmle of a target sentence y
given its input T , i.e.,

Lmle = − logP (y|T ;θ) (2)

with P (y|T ;θ) defined in (1).

2.3 Faithfulness Modeling with a Table-Text
Disagreement Constraint Loss

One key element of our model is to enforce a gen-
erated text sequence to be consistent with (or faith-
ful to) the table input. To achieve this, we propose
to add some constraints so that a generated text se-
quence only contains information from the table.
Our first idea is inspired by related work in ma-
chine translation (Yang et al., 2019). Specifically,
we propose to constrain a table embedding to be
close to the corresponding target sentence embed-
ding. Since the embedding of a text sequence (or
the table) in our model is also represented as a

sequence, we propose to match the mean embed-
dings of both sequences. In fact, the mean embed-
ding has been proved to be an effective represen-
tation for the whole sequence in machine transla-
tion (Yang et al., 2019; Wang et al., 2017). Let
V̂table and V̂text be the mean embeddings of a table
and the target text embeddings in our Transformer-
based model, respectively. A table-target sentence
disagreement loss Ldisagree is then defined as

Ldisagree = ‖V̂table − V̂text‖2 (3)

2.4 Faithfulness Modeling with Constrained
Content Matching via Optimal Transport

Our second strategy is to explicitly match the key
words in a table and the corresponding gener-
ated text. In our case, key words are defined as
nouns, which can be easily extracted with exist-
ing tools such as NLTK (Loper and Bird, 2002).
To match key words, a mis-matching loss should
be defined. Such a mis-matching loss could be
non-differentiable, e.g., when the loss is defined
as the number of matched entities. In order to
still be able to learn by gradient descent, one can
adopt the policy gradient algorithm to deal with
the non-differentiability. However, policy gradi-
ent is known to exhibit high variance. To over-
come this issue, we instead propose to perform
optimization via optimal transport (OT), inspired
by the recent techniques in (Chen et al., 2019a).

Optimal-Transport Distance In the context of
text generation, a generated text sequence, y =
(y1, · · · , yn), can be represented as a discrete dis-
tribution µ =

∑n
i=1 uiδyi(·), where ui ≥ 0

and
∑

i ui = 1, δx(·) denotes a spike distribu-
tion located at x. Given two discrete distribu-
tions µ and ν, written as µ =

∑n
i=1 uiδxi and

ν =
∑m

j=1 vjδyj , respectively, the OT distance
between µ and ν is defined as the solution of the
following maximum network-flow problem:

LOT = min
U∈Π(µ,ν)

n∑
i=1

m∑
j=1

Uij · d(xi,yj) , (4)

where d(x,y) is the cost of moving x to y (match-
ing x and y). In this paper, we use the cosine
distance between the two word-embedding vectors
of x and y, defined as d(x,y) = 1 − xy

‖x‖2‖y‖2
.

Π(µ,ν) is the set of joint distributions such that
the two marginal distributions equal to µ and ν,
respectively.
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Figure 3: Illustration of the OT loss, which is defined with OT distance to only match key words in both the table
and the generated sentence. Left: the generated sentence not only contains extra information not presented in the
table (shown as orange), but also lacks some information presented in the table (shown as red). This is unfaithful
generation. The OT lost is thus high. Right: all information in the table is covered in the generated sentence, and
the generated sentence does not contain extra information not presented in the table. This is faithful generation.
The OT cost is thus low. This example is borrowed and modified from (Dhingra et al., 2019).

Exact minimization over U in the above
problem is in general computational intractable
(Genevay et al., 2018). Therefore, we adopt the
recently proposed Inexact Proximal point method
for Optimal Transport (IPOT) (Xie et al., 2018) as
an approximation. The details of the IPOT algo-
rithm are shown in Appendix C.

Constrained Content Matching via OT To ap-
ply the OT distance to our setting, we need to
first specify the atoms in the discrete distributions.
Since nouns typically are more informative, we
propose to match the nouns in both an input ta-
ble and the decoded target sequence. We use
NLTK (Loper and Bird, 2002) to extract the nouns
that are then used for computing the OT loss. In
this way, the computational cost can also be signif-
icantly reduced comparing to matching all words.

The OT loss can be used as a metric to measure
the goodness of the match between two sequences.
To illustrate the motivation of applying the OT loss
to our setting, we provide an example illustrated
in Figure 3, where we try to match the table with
the two generated text sequences. On the left plot,
the generated text sequence contains “California
brand Grateful Dead”, which is not presented in
the input table. Similarly, and the phrases ”Seattle,
Washington” and “Skokie Illinois” in the table are
not covered by the generated text. Consequently,
the resulting OT loss will be high. By contrast,
on the right plot, the table contains all informa-
tion in the text, and all the phrases in the table are
also covered well by the generated text, leading to
a low OT loss. As a result, optimizing over the
OT loss in (4) would enforce faithful matching be-

tween a table and its generated text.

Optimization via OT When optimizing the OT
loss with the IPOT algorithm, the gradients of the
OT loss is required to be able to propagate back
to the Transformer component. In other words,
this requires gradients to flow back from a gen-
erated sentence. Note that a sentence is gener-
ated by sampling from a multinomial distribution,
whose parameter is the Transformer decoder out-
put represented as a logit vector St for each word
in the vocabulary. This sampling process is un-
fortunately non-differentiable. To enable back-
propagation, we follow Chen et al. (2019a) and use
the Soft-argmax trick to approximate each word
with the corresponding soft-max output.

To further reduce the number of parameters and
improve the computational efficiency, we adopt
the factorized embedding parameterization pro-
posed recently (Lan et al., 2019). Specifically,
we decompose a word embedding matrix of size
V × D into the product of two matrices of sizes
V × H and H × D, respectively. In this way,
the parameter number of the embedding matrices
could be significantly reduced as long as H is to
be much smaller than D.

2.5 The Final Objective

Combing all the above components, the final train-
ing loss of our model is defined as:

L = Lmle + λLdisagree + γLOT , (5)

where λ and γ controls the relative importance of
each component of the loss function.
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2.6 Decoder with a Copy Mechanism
To enforce a generated sentence to stick to the
words presented in the table as much as possi-
ble, we follow (See et al., 2017) to employ a copy
mechanism when generating an output sequence.
Specifically, let Pvocab be the output of the Trans-
former decoder. Pvocab is a discrete distribution
over the vocabulary words and denotes the proba-
bilities of generating the next word. The standard
methods typically generate the next word by di-
rectly sampling from Pvocab. In the copy mecha-
nism, we instead generate the next word yi with
the following discrete distribution:

P (yi) = pgPvocab(yi) + (1− pg)Patt(yi) ,

where pg = σ(W1hi + b1) is the probability of
switching sampling between Pvocab and Patt, with
learnable parameters (W1, b1) and hi as the hid-
den state from the Transformer decoder for the i-th
word. Patt is the attention weights (probability) re-
turned from the encoder-decoder attention module
in the Transformer. Specifically, when generating
the current word yi, the encoder-decoder attention
module calculates the probability vector Patt de-
noting the probabilities of attending to each word
in the input table. Note that the probabilities of the
words not presented in the table are set to zero.

3 Experiments

We conduct experiments to verify the effective-
ness and superiority of our proposed approach
against related methods.

3.1 Dataset
Our model is evaluated on the large-scale
knowledge-base Wikiperson dataset released by
Wang et al. (2018). It contains 250,186, 30,487,
and 29,982 table-text pairs for training, validation,
and testing, respectively. Compared to the Wik-
iBio dataset used in previous studies (Lebret et al.,
2016b; Liu et al., 2018; Wiseman et al., 2018;
Ma et al., 2019) whose reference text only con-
tains one-sentence descriptions, this dataset con-
tains multiple sentences for each table to cover as
many facts encoded in the input structured knowl-
edge base as possible.

3.2 Evaluation Metrics
For automatic evaluation, we apply the widely
used evaluation metrics including the standard
BLEU-4 (Papineni et al., 2002), METEOR

Figure 4: Example input for different models

(Denkowski and Lavie, 2014) and ROUGE (Lin,
2004) scores to evaluate the generation quality.
Since these metrics rely solely on the reference
texts, they usually show poor correlations with hu-
man judgments when the references deviate too
much from the table. To this end, we also apply the
PARENT (Dhingra et al., 2019) metric that con-
siders both the reference texts and table content
in evaluations. To evaluate the faithfulness of the
generated texts, we further modify the PARENT
metric to measure the level of matching between
generated texts and the corresponding tables. We
denote this new metric as PARENT-T. Please see
Appendix A for details. Note that the precision
in PARENT-T corresponds to the percentage of
words in a text sequence that co-occur in the ta-
ble; and the recall corresponds to the percentage
of words in a table that co-occur in the text.

3.3 Baseline Models

We compare our model with several strong base-
lines, including

• The vanilla Seq2Seq attention model (Bah-
danau et al., 2015).

• The method in (Wang et al., 2018): The state-
of-art model on the Wikiperson dataset.

• The method in (Liu et al., 2018): The state-
of-the-art method on the WikiBio dataset.

• The pointer-generator (See et al., 2017): A
Seq2Seq model with attention, copying and
coverage mechanism.

3.4 Implementation Details

Our implementation is based on OpenNMT (Klein
et al., 2017). We train our models end-to-end to
minimize our objective function with/without the
copy mechanism. The vocabulary is limited to
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BLEU METEOR ROUGE PARENT PARENT-T
(Wang et al., 2018) 16.20 19.01 40.10 51.03 54.22

Seq2Seq (Bahdanau et al., 2015) 22.24 19.50 39.49 43.41 44.55
Pointer-Generator (See et al., 2017) 19.32 19.88 40.68 49.52 52.62

Structure-Aware Seq2Seq (Liu et al., 2018) 22.76 20.27 39.32 46.47 48.47
Ours 24.56 22.37 42.40 53.06 56.10

Table 1: Comparison of our model and baseline. PARENT and PARENT-T are the average of PARENT and
PARENT-T scores of all table-text pairs.

P-recall P-precision PT-recall PT-precision

(Wang et al., 2018) 44.83 63.92 84.34 41.10
Seq2Seq (Bahdanau et al., 2015) 41.80 49.09 76.07 33.13

Pointer-Generator (See et al., 2017) 44.09 61.73 81.65 42.03
Structure-Aware Seq2Seq (Liu et al., 2018) 46.34 51.18 83.84 35.99

Ours 48.83 62.86 85.21 43.52

Table 2: Comparison of our model and baseline. P-recall and P-precision refer to the average of PARENT pre-
cisions and recalls of all table-text pairs. Similarly, PT-recall and PT-precision are the average of PARENT-T
precisions and recalls of all table-text pairs.

Copy EF OT (N/W) latent BLEU METEOR ROUGE PARENT PARENT-T params

7 7 7 7 24.49 22.01 40.98 48.31 49.89 98.92M
X 7 7 7 24.57 22.43 42.26 51.87 54.29 98.92M
X X 7 7 25.07 22.38 42.37 51.76 54.36 45.94M
X X 7 X 23.86 22.08 42.65 52.72 55.30 45.94M
X X W 7 24.64 22.39 42.52 52.77 55.46 45.94M
X X N 7 25.29 22.60 42.25 52.74 55.80 45.94M
X X N X 24.56 22.37 42.40 53.06 56.10 45.94M

Table 3: Ablation study of our model components. Xmeans the corresponding column component is used. 7means
do not use the corresponding column component. Specifically, “Copy” means using copy mechanism, “EF” means
using embedding factorization, “OT” means using optimal transport constraint loss, “N” means extracting nouns
from both the table and text, and “W” means using the whole table and text to compute OT. Lastly, “latent” means
using latent similarity loss.

the 50, 000 most common words in the training
dataset. The hidden units of the multi-head com-
ponent and the feed-forward layer are set to 2048.
The baseline embedding size is 512. Following
(Lan et al., 2019), the embedding size with em-
bedding factorization is set to be 128. The num-
ber of heads is set to 8, and the number of Trans-
former blocks is 3. Beam size is set to be 5. Label
smoothing is set to 0.1.

For the optimal-transport based regularizer, we
first train the model without OT for about 20,000
steps, then fine tune the network with OT for about
10,000 steps. We use the Adam (Kingma and Ba,
2015) optimizer to train the models. We set the
hyper-parameters of Adam optimizer accordingly,
including the learning rate α = 0.00001, and the
two momentum parameters, batch size = 4096 (to-
kens) and β2 = 0.998.

3.5 Results

Table 1 and 2 show the experiment results in terms
of different evaluation metrics compared with dif-
ferent baselines. “Ours” means our proposed
model with components of copy mechanism, em-
bedding factorization, OT-matching with nouns,
and latent similarity loss1. We can see that our
model outperforms existing models in all of the
automatic evaluation scores, indicating high qual-
ity of the generated texts. The superiority of the
PARENT-T scores (in terms of precision and re-
call) indicates that the generated text from our
model is more faithful than others. Example out-

1The result of the method by (Wang et al.,
2018) is different from the score reported in their
paper, as we use their publicly released code
https://github.com/EagleW/Describing a Knowledge Base
and data that is three times larger than the original 106,216
table-text pair data used in the paper. We have confirmed the
correctness of our results with the author.
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Precision Recall F-1 measure Fluency Grammar

(Wang et al., 2018) 76.3 62.1 68.02 2.98 3.06
Seq2Seq (Bahdanau et al., 2015) 70.3 60.8 66.16 2.86 2.88

Pointer-Generator (See et al., 2017) 76.6 61.5 67.95 3.03 3.02
Structure-Aware Seq2Seq (Liu et al., 2018) 75.2 61.7 67.69 2.92 2.83

Ours 79.8 65.3 71.56 3.01 3.10

Table 4: Human Evaluation of various aspects of generated text.

Model Miss Generated texts
(Wang et al., 2018) 9 William Edward Ayrton Fellow of the Royal Society ( 14 September 1847 – 8

November 1908 ) was a British Physicist . Brompton Cemetery he was born
in London the son of Sir Thomas and his wife Mary ( née Fleming ) . he
was educated at University College School and University College London .

Pointer generator 2, 9 William Edward Ayrton-Gould Fellow of the Royal Society (14 September
1847 – 8 November 1908) was an English Physicist who was born in London
and was educated at Brompton College and University College London . he
died in London on 8 November 1908 . William was elected a Fellow of the
Royal Society in 1902.

Seq2Seq 1, 2, 3, 9 William Edward Sandys Fellow of the Royal Society (14 September 1847 –
8 November 1908) was a British Physicist . he was educated at the University
College London and the University College London . he was a Fellow of the
Royal Society and a Fellow of the Royal Society.

Structure-Aware 1, 2, 9 William Edward Keeler Fellow of the Royal Society (14 September 1847 –
8 November 1908) was a British Physicist and Physicist . he was elected a
Fellow of the Royal Society in 1889 and was a member of the Royal Society
of London and the Royal Society of London and the Royal Society of Lon-
don . he was educated at the University College London and at the University
College London where he was a pupil of the chemist William.

Ours None William Edward Ayrton Fellow of the Royal Society (14 September 1847 – 8
November 1908) was an English Physicist . William was born in London and
educated at University College London. he is buried in Brompton Cemetery
London . he was elected a Fellow of the Royal Society in 1901. he was the
father of Barbara Ayrton-Gould .

Table 5: Example outputs from different methods with an input table shown in Figure 4. The blue color indicates
the corresponding row appears in the input table, but not in the output generation text. The red color indicates that
these entities appear in the text but do not appear in the input table.

puts from different models are shown in Table 5
with an input table shown in Figure 4. In this
example, our model covers all the entities in the
input, while all other models miss some entities.
Furthermore, other models hallucinate some in-
formation that does not appear in the input, while
our model generates almost no extra information
other than that in the input. These results indicate
the faithfulness of our model. More examples are
shown in Appendix E.

3.6 Ablation Study

We also conduct extensive ablation studies to bet-
ter understand each component of our model, in-
cluding the copy mechanism, embedding factor-
ization, optimal transport constraint loss, and la-
tent similarity loss. Table 3 shows the results in
different evaluation metrics.

Effect of copy mechanism The first and sec-
ond rows in Table 3 demonstrate the impacts of
the copy mechanism. It is observed that with
the copy mechanism, one can significantly im-
prove the performance in all of the automatic met-
rics, especially on the faithfulness reflected by the
PARENT-T score.

Effect of embedding factorization We com-
pare our model with the one without embedding
factorization. The comparisons are shown in the
second and third rows of Table 3. We can see that
with embedding factorization, around half of the
parameters can be reduced, while comparable per-
formance can still be maintained.

Effect of table-text embedding similarity loss
We also test the model by removing the table-text
embedding similarity loss component. The third
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and fourth rows in Table 3 summarize the results.
With the table-text embedding similarity loss, the
BLEU and METEOR scores drop a little, but the
PARENT and PARENT-T scores improve over the
model without the loss. This is reasonable because
the loss aims at improving faithfulness of gener-
ated texts, reflected by the PARENT-T score.

Effect of the OT constraint loss We further
compare the performance of the model (a) with-
out using OT loss, (b) with using the whole ta-
ble and text to compute OT, and (c) with using
the extracted nouns from both table and text to
compute OT. Results are presented in the third,
fifth, and sixth rows of Table 3, respectively. The
model with the OT loss improve performance on
almost all scores, especially on the PARENT-T
score. Furthermore, with only using the nouns
to compute the OT loss, one can obtain even bet-
ter results. These results demonstrate the effec-
tiveness of the proposed OT loss on enforcing the
model to be faithful to the original table.

3.7 Human Evaluation

Following (Wang et al., 2018; Tian et al., 2019),
we conduct extensive human evaluation on the
generated descriptions and compare the results to
the state-of-the-art methods. We design our eval-
uation criteria based on (Wang et al., 2018; Tian
et al., 2019), but our criteria differs from (Tian
et al., 2019) in several aspects. Specifically, for
each group of generated texts, we ask the hu-
man raters to evaluate the grammar, fluency, and
faithfulness. The human evaluation metrics of
faithfulness is defined in terms of precision, re-
call and F1-score with respect to the reconstructed
Knowledge-base table from a generated text se-
quence. To ensure accurate human evaluation,
the raters are trained with word instructions and
text examples of the grading standard beforehand.
During evaluation, we randomly sample 100 ex-
amples from the predictions of each model on the
Wikiperson test set, and provide these examples to
the raters for blind testing. More details about the
human evaluation are provided in the Appendix B.
The human evaluation results in Table 4 clearly
show the superiority of our proposed method.

4 Related Work

Table-to-text generation has been widely studied,
and Seq2Seq models have achieved promising per-
formance. (Lebret et al., 2016b; Liu et al., 2018;

Wiseman et al., 2018; Ma et al., 2019; Wang et al.,
2018; Liu et al., 2019a). For Transformer-based
methods, the Seq2Seq Transformer is used by Ma
et al. (2019) for table-to-text generation in low-
resource scenario. Thus, instead of encoding an
entire table as in our approach, only the predicted
key facts are encoded in (Ma et al., 2019). Ex-
tended transformer has been applied to game sum-
mary (Gong et al., 2019) and E2E NLG tasks
(Gehrmann et al., 2018). However, their goals fo-
cus on matching the reference text instead of being
faithful to the input.

Another line of work attempts to use external
knowledge to improve the quality of generated
text (Chen et al., 2019b). These methods allow
generation from an expanded external knowledge
base that may contain information not relevant to
the input table. Comparatively, our setting re-
quires the generated text to be faithful to the in-
put table. Nie et al. (2018) further study fidelity-
data-to-text generation, where several executable
symbolic operations are applied to guide text gen-
eration. Both models do not consider the matching
between the input and generated output.

Regarding datasets, most previous methods are
trained and evaluated on much simpler datasets
like WikiBio (Lebret et al., 2016b) that contains
only one sentence as a reference description. In-
stead, we focus on the more complicated struc-
tured knowledge base dataset (Wang et al., 2018)
that aims to generate multi-sentence texts. Wang
et al. (2018) propose a model based on the pointer
network that can copy facts directly from the input
knowledge base. Our model uses a similar strategy
but obtains much better performance.

In terms of faithfulness, one related parallel
work is Tian et al. (2019). However, our method
is completely different from theirs. Specifically,
Tian et al. (2019) develop a confidence oriented
decoder that assigns a confidence score to each
target position to reduce the unfaithful informa-
tion in the generated text. Comparatively, our
method enforces faithfulness by including the pro-
posed table-text optimal-transport matching loss
and table-text embedding similarity loss. More-
over, the faithfulness of Tian et al. (2019) only
requires generated texts to be supported by either
a table or the reference; whereas ours constrains
generated texts to be faithful only to the table.

Other related works are (Perez-Beltrachini and
Lapata, 2018; Liu et al., 2019b). For (Perez-
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Beltrachini and Lapata, 2018), the content selec-
tion mechanism training with multi-task learning
and reinforcement learning is proposed. For (Liu
et al., 2019b), they propose force attention and re-
inforcement learning based method. Their learn-
ing methods are completely different from our
method that simultaneously incorporates optimal-
transport matching loss and embedding similar-
ity loss. Moreover, the REINFORCE algorithm
(Williams, 1992) and policy gradient method used
in (Perez-Beltrachini and Lapata, 2018; Liu et al.,
2019b) exhibits high variance when training the
model.

Finally, the content-matching constraints be-
tween text and table is inspired by ideas in ma-
chine translation (Yang et al., 2019) and Seq2Seq
models (Chen et al., 2019a).

5 Conclusion

In this paper, we propose a novel Transformer-
based table-to-text generation framework to ad-
dress the faithful text-generation problem. To en-
force faithful generation, we propose a new table-
text optimal-transport matching loss and a table-
text embedding similarity loss. To evaluate the
faithfulness of the generated texts, we further pro-
pose a new automatic evaluation metric special-
ized to the table-to-text generation problem. Ex-
tensive experiments are conducted to verify the
proposed method. Both automatic and human
evaluations show that our framework can signifi-
cantly outperform the state-of-the-art methods.
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A PARENT-T Metric

PARENT-T evaluates each instance (T i, Gi) sep-
arately, by computing the precision and recall of
generated text Gi against table T i. In other words,
PARENT-T is a table-focused version of PARENT
(Dhingra et al., 2019).

When computing precision, we want to check
what fraction of the n-grams inGi

n are correct. We
consider an n-gram g to be correct if it has a high
probability of being entailed by the table. We use
the word overlap model for entailment probability
w(g). The precision score Ep for one instance is
computed as follows:

w(g) =

∑n
j=1 1(gj ∈ T̄ i)

n
(6)

En
p =

∑
g∈Gin w(g)#Gin

(g)∑
g∈Gin #Gin

(g)
(7)

Ep = exp

(
4∑

n=1

1

4
logEn

p

)
(8)

where T̄ i denotes all the lexical items present in
the table T i, n is the length of g, and gj is the jth
token in g. w(g) is the entailment probability, and
En

p is the entailed precision score for n-grams of
order n. #Gin

(g) denotes the count of n-gram g in
Gi

n. The precision score Ep is a combination of
n-gram orders 1-4 using a geometric average.

For recall, we only compute it against table to
ensure that texts that mention more information
from the table get higher scores. Er(T

i) is com-
puted in the same way as in Dhingra et al. (2019):

Er = Er(T
i) =

1

K

K∑
k=1

1

|r̄k|
LCS(r̄k, G

i) (9)

where a table is a set of records T i = {rk}Kk=1,
r̄k denotes the value string of record rk, and
LCS(x, y) is the length of the longest common
subsequence between x and y. Higher values of
Er(T

i) denote that more records are likely to be
mentioned in Gi.

Thus, the PARENT-T score (i.e. F score) for
one instance is:

PARENT-T =
2EpEr

Ep + Er
(10)

The system-level PARENT-T score for a modelM
is the average of instance-level PARENT-T scores
across the evaluation set.

B Details of Human Evaluation

The following are the details for instructing our
human evaluation raters how to rate each gener-
ated sentence:

We only provide the input table and the gener-
ated text for the raters. There are 20 well-trained
raters participating in the evaluation.

Fluency :
4: The sentence meaning is clear and flow nat-

urally and smoothly.
3: The sentence meaning is clear, but there are

a few interruptions.
2: The sentence does not flow smoothly but peo-

ple can understand its meaning.
1: The sentence is not fluent at all and people

cannot understand its meaning.

Grammar :
4 : There are no grammar errors.
3: There are a few grammar errors, but sentence

meaning is clear.
2: There are some grammar errors, but not in-

fluencing its meaning.
1: There are many grammar errors. People can-

not understand the sentence meaning.

Faithfulness A sentence is faithful if it contains
only information supported by the table. It should
not contain additional information other than the
information provided by the table or inferred from
the table. Also, the generated sentence should
cover as much information in the given table as
possible. The raters first manually extract entities
from the generated sentences and then calculate
the precision as the percentage of entities in the
generated text also appear in the table; calculate
the recall as the percentage of entities in the table
also appear in the generated text. For each table-
text pair, its F-1 score is then calculated according
to the precision and recall.

C IPOT algorithm

Given a pair of table and its corresponding text de-
scription, we can obtain table words embedding as
S = {xi}i=n

i=1 , and the model output for sentence
words embedding asS′ = {yj}j=m

j=1 . The cost ma-
trix C is then computed as in Section 2.4. Both S
and S′ are used as inputs to the IPOT algorithm in
Algorithm 1 to obtain the OT-matching distance.
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Algorithm 1 IPOT algorithm.

Require: Feature vector S = {xi}i=n
i=1 , S′ =

{yj}j=m
j=1 , and stepsize 1/β

σ = 1
m1m T 1 = 1n1

T
m

Cij = d(xi,yj),Aij = e
−
Cij
β

for t = 1 to N do
Q = A� T t

for k = 1 to K do
δ = 1

nQσ ,σ = 1
mQT δ

end for
T t+1 = diag(δ)Qdiag(σ)

end for
return T

D Details of Optimal Transport Loss

Figure 5 illustrates three matching cases from top
to bottom, namely hard matching, soft bipartite
matching, and optimal transport matching. The
hard matching stands for exactly matching words
between the table and the target sequences. This
operation is non-differentiable. The soft bipartite
matching, on the other hand, supposes the simi-
larity between the word embedding vik and v′jk
is d(vik ,v

′
jk

), and finds the matching such that
L =

∑
k d(vik ,v

′
jk

) is minimized. This mini-
mization can be solved exactly by the Hungarian
algorithm (Kuhn, 1955). But, its objective is still
non-differentiable. Our proposed optimal trans-
port matching can be viewed as the relaxed prob-
lem of the soft bipartite matching by computing
the distance between the distribution over the input
table and the decoded text sentence. This distance
in optimal transport matching is differentiable.

E More generation examples

More generation examples from different models
are shown in Figure 6, 7, and Table 6, 7. Specifi-
cally, Table 7 and Figure 7 show a more challeng-
ing example, as its table has 22 rows. In this exam-
ple, we can observe that all the RNN-based models
cannot capture such long term dependencies and
miss most of the input records in the table. By
contrast, our model miss much less input records.
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Figure 5: Hard matching (top), soft bipartite matching (middle), and optimal transport matching (bottom).

Figure 6: Example input for different models.
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Model Miss Generated texts
(Wang et al., 2018) 7, 8 Aaron Miller ( born August 11 1971 ) is an United States former profes-

sional Ice hockey Defenceman who played in the National Hockey League
( NHL ) for the Quebec Nordiques and the Colorado Avalanche . he was
born in Buffalo, New York and played for the Quebec Nordiques and the
Ottawa Senators .

Pointer generator 2, 7, 8 Aaron Miller (born August 11 1971) is a retired United States professional
Ice hockey Defenceman who played in the National Hockey League (NHL)
for the Quebec Nordiques Quebec Nordiques Quebec Nordiques and the
Quebec Nordiques . he was born in Buffalo, New York and grew up in
New York City,

Seq2Seq 3, 7, 8 Aaron Miller (born August 11 1971) is an United States former profes-
sional Ice hockey Defenceman who played in the National Hockey League
. miller was born in Buffalo, New York . he was drafted by the Colorado
Avalanche in the second round of the 1994 NHL Entry Draft . he was
drafted in the sixth round of the 1994 NHL Entry Draft by the Col-
orado Avalanche . he was drafted in the sixth round of the 1994 NHL
Entry Draft by the Colorado Avalanche .

Structure-Aware 7, 8 Aaron Miller (born August 11 1971 in Buffalo, New York New York) is a
retired United States professional Ice hockey Defenceman who played in
the National Hockey League (NHL) for the Quebec Nordiques Colorado
Avalanche Colorado Avalanche Colorado Avalanche Colorado Avalanche
and Quebec Nordiques. he was drafted in the 2nd round of overall of
the 2002 NHL Entry Draft.

Ours None Aaron Miller (born August 11 1971 in Buffalo, New York) is an United
States former professional Ice hockey Defenceman who played in the Na-
tional Hockey League (NHL) for the Quebec Nordiques and Colorado
Avalanche . he was a member of the United States men’s national Ice
hockey team at the 2002 Winter Olympics and 2006 Winter Olympics.

Table 6: Example outputs from different methods with an input table shown in Figure 6. The “Miss” column
indicates the corresponding row appears in the input table, but does not appear in the output generation text. The
red color indicates that these entities appear in the text but do not appear in the input table.

Figure 7: Example input for different models.
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Model Miss Generated texts
(Wang et al., 2018) 2, 3, 4, 5, 6, 8, 10,

11, 12, 13, 14, 15,
16, 21, 22

Émile Mbouh ( born 30 May 1966 ) is a former Cameroon national foot-
ball team Association football . he was born in Douala and played for the
Tanjong Pagar United FC in the 1994 FIFA World Cup .

Pointer generator 2, 4, 5, 6, 7, 8, 10,
11, 12, 13, 14, 16,
16, 20

Émile Mbouh, (born 30 May 1966) is a Cameroon retired Association foot-
ball who played as a Midfielder . he played for Cameroon national football
team in the 1990 FIFA World Cup . he also played for Perlis FA and Liaon-
ing Whowin F.C. . Émile was born in Douala,

Seq2Seq 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13,
14, 15, 16, 20

Émile Mbouh, (born 30 May 1966) is a retired Cameroonian Association
football who played as a Midfielder . he was born in Douala . he was a
member of the Cameroon national football team at the 1990 FIFA World
Cup . he was a member of the Cameroon national football team at the 1990
FIFA World Cup . he was a member of the Cameroon national football
team at the 1990 FIFA World Cup . he was a member of the Cameroon
national football team at the 1990 FIFA World Cup .

Structure-Aware 2, 3, 4, 5, 6, 8, 10,
11, 12, 13, 14, 15,
16, 17, 21

Émile Mbouh, (born 30 May 1966) is a Cameroonian retired Association
football who played as a Midfielder . Le represented Cameroon national
football team at the 1994 FIFA World Cup and 1994 FIFA World Cup . he
played for Le FC Sport Yaoundé, United Yaoundé and Tanjong Pagar
United FC

Ours 2, 3, 5, 6, 8, 12,
13, 14

Émile Mbouh (born 30 May 1966) is a Cameroonian retired Association
football who played as a Midfielder . born in Douala Émile began his career
with Sport Benfica e Castelo Branco and Tanjong Pagar United FC . he also
represented Cameroon national football team at the 1994 FIFA World Cup
and 1990 FIFA World Cup . he also played for Sabah FA and Liaoning
Whowin F.C. in the Malaysia Super League . he also played for Tanjong
Pagar United FC and Liaoning Whowin F.C. in the Chinese Super League.

Table 7: Example outputs from different models with an input table shown in Figure 7. The “Miss” column
indicates the corresponding row appears in the input table, but does not appear in the output generation text. The
red color indicates that these entities appear in the text but do not appear in the input table.


