
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 380–387
July 5 - July 10, 2020. c©2020 Association for Computational Linguistics

380

What’s The Latest? A Question-driven News Chatbot

Philippe Laban
UC Berkeley

phillab@berkeley.edu

John Canny
UC Berkeley

canny@berkeley.edu

Marti A. Hearst
UC Berkeley

hearst@berkeley.edu

Abstract

This work describes an automatic news chat-
bot that draws content from a diverse set of
news articles and creates conversations with
a user about the news. Key components of
the system include the automatic organization
of news articles into topical chatrooms, inte-
gration of automatically generated questions
into the conversation, and a novel method for
choosing which questions to present which
avoids repetitive suggestions. We describe the
algorithmic framework and present the results
of a usability study that shows that news read-
ers using the system successfully engage in
multi-turn conversations about specific news
stories.

1 Introduction

Chatbots offer the ability for interactive informa-
tion access, which could be of great value in the
news domain. As a user reads through news con-
tent, interaction could enable them to ask clarifying
questions and go in depth on selected subjects. Cur-
rent news chatbots have minimal capabilities, with
content hand-crafted by members of news organi-
zations, and cannot accept free-form questions.

To address this need, we design a new approach
to interacting with large news collections. We de-
signed, built, and evaluated a fully automated news
chatbot that bases its content on a stream of news
articles from a diverse set of English news sources.
This in itself is a novel contribution.

Our second contribution is with respect to the
scoping of the chatbot conversation. The system
organizes the news articles into chatrooms, each
revolving around a story, which is a set of auto-
matically grouped news articles about a topic (e.g.,
articles related to Brexit).

The third contribution is a method to keep track
of the state of the conversation to avoid repetition of
information. For each news story, we first generate

a set of essential questions and link each question
with content that answers it. The motivating idea
is: two pieces of content are redundant if they an-
swer the same questions. As the user reads content,
the system tracks which questions are answered
(directly or indirectly) with the content read so far,
and which remain unanswered. We evaluate the
system through a usability study.

The remainder of this paper is structured as fol-
lows. Section 2 describes the system and the con-
tent sources, Section 3 describes the algorithm for
keeping track of the conversation state, Section 4
provides the results of a usability study evaluation
and Section 5 presents relevant prior work.

The system is publicly available at https://
newslens.berkeley.edu/ and a demonstration
video is available at this link: https://www.

youtube.com/watch?v=eze9hpEPUgo.

2 System Description

This section describes the components of the chat-
bot: the content source, the user interface, the sup-
ported user actions and the computed system an-
swers. Appendix A lists library and data resources
used in the system.

2.1 Content Sources
We form the content for the chatbot from a set of
news sources. We have collected an average of
2,000 news articles per day from 20 international
news sources starting in 2010. The news articles
are clustered into stories: groups of news articles
about a similar evolving topic, and each story is
automatically named (Laban and Hearst, 2017).
Some of the top stories at the time of writing are
shown in Figure 1(a).

2.2 User Interface
The chatbot supports information-seeking: the user
is seeking information and the system delivers in-

https://newslens.berkeley.edu/
https://newslens.berkeley.edu/
https://www.youtube.com/watch?v=eze9hpEPUgo
https://www.youtube.com/watch?v=eze9hpEPUgo

381

(a) Homepage (b) Initiating a Chatroom (c) Chatroom Q&A

Figure 1: Screenshots of the news chatbot (a) Homepage lists most recently active chatrooms (Zone 1 is an ex-
ample chatroom) (b) Newly opened chatroom: Zone 2 is an event message, Zone 3 the Question Recommendation
module, and Zone 4 a text input for user-initiated questions. Event messages are created via abstractive summa-
rization. (c) Conversation continuation with Q&A examples. Sentences shown are extracted from original articles,
whose sources are shown. Answers to questions are bolded.

formation in the form of news content.
The homepage (Figure 1(a)) lists the most active

stories, and a user can select a story to enter its
respective chatroom (Figure 1(b)). The separation
into story-specific rooms achieves two objectives:
(1) clarity to the user, as the chatrooms allow the
user to exit and enter chatrooms to come back to
conversations, and (2) limiting the scope of each
dialogue is helpful from both a usability and a tech-
nical standpoint, as it helps reduce ambiguity and
search scope. For example, answering a question
like: “What is the total cost to insurers so far?”
is easier when knowing the scope is the Australia
Fires, compared to all of news.

Articles in a story are grouped into events, corre-
sponding to an action that occurred in a particular
time and place. For each event, the system forms
an event message by combining the event’s news
article headlines generated by an abstractive sum-
marizer model (Laban et al., 2020).

Zone 2 in Figure 1(b) gives an example of an
event message. The event messages form a chrono-
logical timeline in the story.

Because of the difference in respective roles, we
expect user messages to be shorter than system
responses, which we aim to be around 30 words.

2.3 User Actions

During the conversation, the user can choose
among different kinds of actions.

Explore the event timeline. A chatroom con-
versation starts with the system showing the two
most recent event messages of the story (Fig-
ure 1(b)). These messages give minimal context to
the user necessary to start a conversation. When
the event timeline holds more than two events, a
“See previous events” button is added at the top of
the conversation, allowing the user to go further
back in the event timeline of the story.

Clarify a concept. The user can ask a clarifi-
cation question regarding a person or organization
(e.g., Who is Dennis Muilenburg?), a place (e.g.,
Where is Lebanon?) or an acronym (e.g., What
does NATO stand for?). For a predetermined list
of questions, the system will see if an appropriate
Wikipedia entry exists, and will respond with the

382

 Since October in Australia, fires scorched
 more than 10.3 million hectares and 27
 people have been killed

 what else should I know

 The fires, which have been raging since
 October, have killed at least 24 people and
 burned 10 million hectares

 you said that already...

Figure 2: Example of repetition from the system. Re-
peating facts with different language is undesirable in a
news chatbot. We introduce a novel question tracking
method that attempts to minimize repetition.

first two paragraphs of the Wikipedia page. For
geographical entities, the system additionally re-
sponds with a geographic map when possible.

Ask an open-ended question. A text box (Zone
4 in Figure 1(b)) can be used to ask any free-form
question about the story. A Q&A system described
in Section 3 attempts to find the answer in any
paragraph of any news article of the story. If the
Q&A system reaches a confidence level about at
least one paragraph containing an answer to the
question, the chatbot system answers the question
using one of the paragraphs. In the system reply
the Q&A selected answer is bolded. Figure 1(c)
shows several Q&A exchanges.

Select a recommended question. A list of
three questions generated by the algorithm de-
scribed in Section 3 is suggested to the user at the
bottom of the conversation (Zone 3 in Figure 1(b)).
Clicking on a recommended questions corresponds
to asking the question in free-form. However, be-
cause recommended questions are known in ad-
vance, we pre-compute their answers to minimize
user waiting times.

3 Conversation State

One key problem in dialogue systems is that of
keeping track of conveyed information, and avoid-
ing repetition in system replies (see example in
Figure 2). This problem is amplified in the news
setting, where different news organizations cover
content redundantly.

We propose a solution that takes advantage of
a Question and Answer (Q&A) system. As noted
above, the motivating idea is that two pieces of

Q

Q

Q

Q

Q

Q

P

P

P

P

P

P

P

PQuestions

Paragraphs

Conversation Start

Q

Q

Q

Q

Q

Q

P

P

P

P

P

P

P

PQuestions

Paragraphs

Mid Conversation

Q Unanswered Question Q Answered question

P Informative Paragraph P Read Paragraph P Uninformative Paragraph

Legend

Conversation

advances

Figure 3: Conversation state is tracked with the P/Q
graph. As the conversation advances, the system keeps
track of answered questions. Any paragraph that does
not answer a new question is discarded. Questions that
are not answered yet are recommended.

content are redundant if they answer the same ques-
tions. In the example of Figure 2, both system
messages answer the same set of questions, namely:
“When did the fires start?”, “How many people have
died?” and “How many hectares have burned?”,
and can therefore be considered redundant.

Our procedure to track the knowledge state
of a news conversation consists of the following
steps: (1) generate candidate questions spanning
the knowledge in the story, (2) build a graph con-
necting paragraphs with questions they answer, (3)
during a conversation, use the graph to track what
questions have been answered already, and avoid
using paragraphs that do not answer new questions.

Question Candidate Generation. We fine-tune
a GPT2 language model (Radford et al., 2019) on
the task of question generation using the SQuAD
2.0 dataset (Rajpurkar et al., 2018). At training, the
model reads a paragraph from the training set, and
learns to generate a question associated with the
paragraph. For each paragraph in each article of
the story (the paragraph set), we use beam search to
generate K candidate questions. In our experience,
using a large beam size (K=20) is important, as one
paragraph can yield several valid questions. Beam
search enforces exploration, with the first step of
beam search often containing several interrogative
words (what, where...).

For a given paragraph, we reduce the set of ques-
tions by deduplicating questions that are lexically
close (differ by at most 2 words), and removing
questions that are too long (>12 words) or too

383

short (<5 words).

Building the P/Q graph. We train a standard
Q&A model, a Roberta model (Liu et al., 2019)
finetuned on SQuAD 2.0 (Rajpurkar et al., 2018),
and use this model to build a paragraph / question
bipartite graph (P/Q graph). In the P/Q graph, we
connect any paragraph (P node), with a question
(Q node), if the Q&A model is confident that para-
graph P answers question Q. An example bipartite
graph obtained is illustrated in Figure 3, with the
question set on the left, the paragraph set on the
right, and edges between them representing model
confidence about the answer.

Because we used a large beam-size when gener-
ating the questions, we perform a pruning step on
the questions set. Our pruning procedure is based
on the realization that two questions are redundant
if they connect to the same subset of paragraphs
(they cover the same content). Our objective is
to find the smallest set of questions that cover all
paragraphs. This problem can be formulated as a
standard graph theory problem known as the set
cover problem, and we use a standard heuristic al-
gorithm (Caprara et al., 1999). After pruning, we
obtain a final P/Q graph, a subgraph of the original
consisting only of the covering set questions.

The P/Q graph embodies interesting properties.
First, the degree of a question node measures how
often a question is answered by distinct paragraphs,
providing a measure of the question’s importance to
the story. The degree of a paragraph node indicates
how many distinct questions it answers, an estimate
of its relevance to a potential reader. Finally, the
graph can be used to measure question relatedness:
if two questions have non-empty neighboring sets
(i.e., some paragraphs answer both questions), they
are likely to be related questions, which can be
used as a way to suggest follow-up questions.

Using the P/Q graph. At the start of a conver-
sation, no question is answered, since no paragraph
has been shown to the user. Therefore, the system
initializes a blank P/Q graph (left graph in Figure 3).
As the system reveals paragraphs in the conversa-
tion, they are marked as read in the P/Q graph
(shaded blue paragraphs in the right graph of Fig-
ure 3). According to our Q&A model, any question
connected to a read paragraph is answered, so we
mark all neighbors of read paragraphs as answered
questions (shaded blue questions on the right graph
of Figure 3). At any stage in the conversation, if a
paragraph is connected to only answered questions,

it is deemed uninformative, as it will not reveal the
answer to a new question.

As the conversation moves along, more para-
graphs are read, increasing the number of answered
questions, which in turn, increases the number of
uninformative paragraphs. We program the sys-
tem to prioritize paragraphs that answer the most
unanswered questions, and disregard uninforma-
tive paragraphs. We further use the P/Q graph
to recommend questions to the user. We select
unanswered questions and prioritize questions con-
nected to more unread paragraphs, recommending
questions three at a time.

4 Study Results

We conducted a usability study in which partici-
pants were assigned randomly to one of three con-
figurations:

• TOPQR: the recommended questions are the
most informative according to the algorithm
in Section 3 (N=18),

• RANDQR: the recommended questions are
randomly sampled from the questions TOPQR
would not select (however, near duplicates
will appear in this set) (N=16),

• NOQR: No questions are recommended, and
the Question Recommendation module (Zone
3 in Figure 1(b)) is hidden (N=22).

These are contrasted in order to test (a) if show-
ing automatically generated questions is beneficial
to news readers, and (b) to assess the question track-
ing algorithm against a similar question recommen-
dation method with no conversation state.

4.1 Study Setup

We used Amazon Mechanical Turk to recruit par-
ticipants, restricting the task to workers in English-
speaking countries having previous completed
1500 tasks (HITs) and an acceptance rate of at least
97%. Each participant was paid a flat rate of $2.50
with the study lasting a total of 15 minutes. During
the study, the participants first walked through an
introduction to the system, then read the news for
8 minutes, and finally completed a short survey.

During the eight minutes of news reading, par-
ticipants were requested to select at least 2 stories
to read from a list of the 20 most recently active

384

Measured Value TOPQR RANDQR NOQR
participants 18 16 22
chatrooms opened 3.2 2.9 3.1
msgs. / chatroom 24.9 ∗ 15.3 ∗ 8.1
rec. questions asked 11.9 ∗ 8.2 ∗ -
own questions asked 1.5 1.1 2.2
total questions asked 13.4 ∗ 9.3 ∗ 2.2
latency (seconds) 1.84 ∗ 1.88 ∗ 4.51

Table 1: Usage statistics of the news chatbot during
the usability study. Participants either saw most infor-
mative recommended questions (TOPQR), randomly
selected recommended questions (RANDQR) or no
recommended questions (NOQR). ∗ signifies statistical
difference with NOQR (p < 0.05).

news stories.1 The participants were prompted to
choose stories they were interested in.

The survey consisted of two sections: a satisfac-
tion section, and a section for general free-form
feedback. The satisfaction of the participants was
surveyed using the standard Questionnaire for User
Interaction Satisfaction (QUIS) (Norman et al.,
1998). QUIS is a series of questions about the
usability of the system (ease of use, learning curve,
error messages clearness, etc.) answered on a 7-
point Likert scale. We modify QUIS by adding two
questions regarding questions and answers: “Are
suggested questions clear?” and “Are answers to
questions informative?” A total of fifty-six partici-
pants completed the study. We report on the usage
of the system, the QUIS Satisfaction results and
textual comments from the participants.

4.2 Usage statistics

We observed that participants in the QR-enabled
interfaces (TOPQR and RANDQR) had longer con-
versations than the NOQR setting, with an average
chatroom conversation length of 24.9 messages in
the TOPQR setting. Even though the TOPQR set-
ting had average conversation length longer than
RANDQR, this was not statistically significant.

This increase in conversation length is mostly
due to the use of recommended questions, which
are convenient to click on. Indeed, users clicked
on 8.2 questions on average in RANDQR and 11.9
in TOPQR. NOQR participants wrote on average
2.2 of their own questions, which was not statis-
tically higher than TOPQR (1.5) and RANDQR
(1.1), showing that seeing recommended questions

1We manually removed news stories that were predomi-
nantly about politics, to avoid heated political questions, which
were not under study here.

Measured Value TOPQR RANDQR NOQR
(1) dull ... stimulating (7) 5.28 ∗ 5.06 4.20
(1) frustrating ... satisfying (7) 5.00 ∗ 4.43 4.00
(1) rigid ... flexible (7) 4.71 4.66 4.14
(1) terrible ... wonderful (7) 4.79 4.69 4.20
exploring new features 5.80 5.50 5.14
learning to operate 5.40 5.25 5.06
performing task is
straightforward

5.40 5.56 5.20

system reliability 5.80 5.19 5.67
system speed 6.20 5.87 5.44
rec. questions are clear 5.78 ∗ 4.87 4.28
answers are informative 5.07 ∗ 4.44 3.64

Table 2: QUIS satisfaction results. Likert values on
a scale from 1 to 7, higher is better unless stated other-
wise. ∗ signifies statistical difference with NOQR (p <
0.05).

did not prevent participants from asking their own
questions.

When measuring the latency of system answers
to participant questions, we observe that the av-
erage wait time in TOPQR (1.84 seconds) and
RANDQR (1.88 seconds) settings is significantly
lower than NOQR (4.51 seconds). This speedup is
due to our ability to pre-compute answers to rec-
ommended questions, an additional benefit of the
QR graph pre-computation.

4.3 QUIS Satisfaction Scores

Overall, the systems with question recommenda-
tion enabled (TOPQR and RANDQR) obtained
higher average satisfaction on most measures than
the NOQR setting. That said, statistical signif-
icance was only observed in 4 cases between
TOPQR and NOQR, with participants judging the
TOPQR interface to be more stimulating and satis-
fying.

Although not statistically significant, partici-
pants rated the suggested questions for TOPQR
almost 1 point higher than RANDQR, providing
some evidence that incorporating past viewed in-
formation into question selection is beneficial.

Participants judged the answers to be more in-
formative in the TOPQR setting. We interpret this
as evidence that the QR module helps teach users
what types of questions the system can answer, en-
abling them to get better answers. Several NOQR
participants asked “What can I ask?” or equivalent.

4.4 Qualitative Feedback

Thirty-four of the fifty-six participants opted to
give general feedback via an open ended text box.
We tagged the responses into major themes:

385

1. 19 participants (7 TOPQR, 7 RANDQR, 5
NOQR) expressed interest in the system (e.g.,
I enjoyed trying this system out. I particu-
larly liked that stories are drawn from various
sources.)

2. 11 participants (4, 3, 4) mentioned the sys-
tem did not correctly reply to questions asked
(e.g., Some of the questions kind of weren’t
answered exactly, especially in the libya arti-
cle),

3. 10 participants (2, 3, 5) found an aspect of
the interface confusing (e.g., This system has
potential, but as of right now it seems too
overloaded and hard to sort through.)

4. 6 participants (4, 2, 0) thought the questions
were useful (e.g., I especially like the ques-
tions at the bottom. Sometimes it helps to
remember some basic facts or deepen your
understanding)

The most commonly mentioned limitation was
Q&A related errors, a limitation we hope to miti-
gate as automated Q&A continues progressing.

5 Related Work

News Chatbots. Several news agencies have ven-
tured in the space of dialogue interfaces as a way
to attract new audiences. The chatbots are often
manually curated for the dialogue medium and ad-
vanced NLP machinery such as a Q&A systems are
not incorporated into the chatbot.

On BBC’s Messenger chatbot2, a user can en-
ter search queries, such as “latest news” or “Brexit
news” and obtain a list of latest BBC articles match-
ing the search criteria. In the chatbot produced by
Quartz3, journalists hand-craft news stories in the
form of pre-written dialogues (aka choose-your-
own adventure). At each turn, the user can choose
from a list of replies, deciding which track of the
dialogue-article is followed. CNN4 has also experi-
mented with choose-your-own adventure articles,
with the added ability for small talk.

Relevant Q&A datasets. NewsQA (Trischler
et al., 2017) collected a dataset by having a crowd-
worker read the summary of a news article and ask a
follow-up question. Subsequent crowd-workers an-
swered the question or marked it as not-answerable.

2https://www.messenger.com/t/BBCPolitics
3https://www.messenger.com/t/quartznews
4https://www.messenger.com/t/cnn

NewsQA’s objective was to collect a dataset, and
we focus on building a usable dialogue interface
for the news with a Q&A component.

CoQA (Reddy et al., 2019) and Quac (Choi
et al., 2018) are two datasets collected for ques-
tions answering in the context of a dialogue. For
both datasets, two crowd-workers (a student and
a teacher) have a conversation about a piece of
text (hidden to the student in Quac). The student
must ask questions of the teacher, and the teacher
answers using extracts of the document. In our sys-
tem, the questions asked by the user are answered
automatically, introducing potential errors, and the
user can choose to ask questions or not.

In this work, the focus is not on the collection
of naturally occurring questions, but in putting a
Q&A system in use in a news dialogue system, and
observing the extent of its use.

Question Generation (QG) has become an ac-
tive area for text generation. A common approach
is to use a sequence to sequence model (Du et al.,
2017), encoding the paragraph (or context), an
optional target answer (answer-aware (Sun et al.,
2018)), and decoding a paired question. This com-
mon approach focuses on the generation of a sin-
gle article, from a single piece of context, often a
paragraph. We argue that our framing of the QG
problem as the generation of a series of questions
spanning several (possibly redundant) documents
is a novel task.

Krishna and Iyyer (2019) build a hierarchy of
questions generated for a single document; the doc-
ument is then reorganized into a “Squashed” doc-
ument, where paragraphs and questions are inter-
leaved. Because our approach is based on using
multiple documents as the source, compiling all
questions into a single document would be long to
read, so we opt for a chatbot.

6 Discussion

During the usability study, we obtained direct and
indirect feedback from our users, and we summa-
rize limitations that could be addressed in the sys-
tem.

Inability to Handle Small Talk. 4 participants
attempted to have small talk with the chatbot (e.g.
asking “how are you”). The system most often
responded inadequately, saying it did not under-
stand the request. Future work may include gently
directing users who engage in small talk to a chit-
chat-style interface.

386

Inaccurate Q&A system. 32% of the partici-
pants mentioned that answers are often off-track or
irrelevant. This suggests that further improvements
in Q&A systems are needed.

Dealing with errors. Within the current frame-
work, errors are bound to happen, and easing the
user’s path to recovery could improve the user ex-
perience.

7 Conclusion

We presented a fully automated news chatbot sys-
tem, which leverages an average of 2,000 news arti-
cles a day from a diverse set of sources to build cha-
trooms for important news stories. In each room,
the system takes note of generated questions that
have already been answered, to minimize repetition
of information to the news reader.

A usability study reveals that when the chat-
bot recommends questions, news readers tend to
have longer conversations, with an average of 24
messages exchanged. These conversation consist
of combination of recommended and user-created
questions.

Acknowledgments

We would like to thank Ruchir Baronia for early
prototyping and the ACL reviewers for their help-
ful comments. This work was supported by a
Bloomberg Data Science grant. We also gratefully
acknowledge support received from an Amazon
Web Services Machine Learning Research Award
and an NVIDIA Corporation GPU grant.

References
Alberto Caprara, Matteo Fischetti, and Paolo Toth.

1999. A heuristic method for the set covering prob-
lem. Operations research, 47(5):730–743.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. Quac: Question answering in context.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2174–2184.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1342–
1352.

Kalpesh Krishna and Mohit Iyyer. 2019. Generating
question-answer hierarchies. In ACL.

Philippe Laban and Marti A Hearst. 2017. newslens:
building and visualizing long-ranging news stories.
In Proceedings of the Events and Stories in the News
Workshop, pages 1–9.

Philippe Laban, Andrew Hsi, John Canny, and Marti A
Hearst. 2020. The summary loop: Learning to write
abstractive summaries without examples. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). To appear.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kent L Norman, Ben Shneiderman, B Harper, and
L Slaughter. 1998. Questionnaire for user interac-
tion satisfaction. University of Maryland (Norman,
1989) Disponı́vel em.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun
Ma, and Shi Wang. 2018. Answer-focused and
position-aware neural question generation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3930–
3939.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. Newsqa: A machine compre-
hension dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages
191–200.

387

A Resources Used

The libraries and data sources used in the described
system are as follows:

Transformers library5 used to train the GPT2-
based Question Generation model and the Roberta-
based Q&A model.

spaCy library6 used to do named-entity extrac-
tion, phrase and keyword extraction.

Wikidata7 for entity linking and collection of
textual content of relevant Wikipedia pages used in
special case questions.

MongoDB8 and Flask9 for storing and serving
the content to the user.

SetCoverPy10 for its implementation of stan-
dard set cover algorithms in Python.

List of news sources present in the dataset used
by the system, in alphabetical order: Aa.com.tr,
Afp.com, Aljazeera.com, Allafrica.com, Ap-
news.com, Bbc.co.uk, Bloomberg.com, Chicagotri-
bune.com, Chinadaily.com.cn, Cnet.com, Cnn.com,
Foxnews.com, France24.com, Independent.co.uk,
Indiatimes.com, Latimes.com, Mercopress.com,
Middleeasteye.net, Nytimes.com, Reuters.com,
Rt.com, Techcrunch.com, Telegraph.co.uk, The-
guardian.com, Washingtonpost.com

5https://github.com/huggingface/transformers
6https://github.com/explosion/spaCy
7https://www.wikidata.org/
8https://www.mongodb.com/
9https://flask.palletsprojects.com/en/1.1.x/

10https://github.com/guangtunbenzhu/SetCoverPy

