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Abstract

Dietary supplements are used by a large por-
tion of the population, but information on
their pharmacologic interactions is incom-
plete. To address this challenge, we present
SUPP.AI, an application for browsing evi-
dence of supplement-drug interactions (SDIs)
extracted from the biomedical literature. We
train a model to automatically extract supple-
ment information and identify such interac-
tions from the scientific literature. To address
the lack of labeled data for SDI identifica-
tion, we use labels of the closely related task
of identifying drug-drug interactions (DDIs)
for supervision. We fine-tune the contextu-
alized word representations of the RoBERTa
language model using labeled DDI data, and
apply the fine-tuned model to identify supple-
ment interactions. We extract 195k evidence
sentences from 22M articles (P=0.82, R=0.58,
F1=0.68) for 60k interactions. We create
the SUPP.AI application for users to search
evidence sentences extracted by our model.
SUPP.AI is an attempt to close the informa-
tion gap on dietary supplements by making up-
to-date evidence on SDIs more discoverable
for researchers, clinicians, and consumers.

1 Introduction

More than half of US adults use dietary supple-
ments (Kantor et al., 2016). Supplements include
vitamins, minerals, enzymes, and other herbal and
animal products. Supplements and pharmaceutical
drugs, when taken together, can cause adverse in-
teractions (Sprouse and van Breemen, 2016; Asher
et al., 2017; Ronis et al., 2018). Some studies
describe the prevalence of supplement-drug inter-
actions (SDIs) in the hospital setting (Levy et al.,
2016, 2017a,b) or among groups such as patients
with cancer (Alsanad et al., 2014), cardiac disease
(Karny-Rahkovich et al., 2015), HIV/AIDS (Jal-
loh et al., 2017), or Alzheimer’s disease (Spence

et al., 2017). However, these studies largely rely
on manual curation of the literature, and are slow
and expensive to produce and update. It is also
difficult to aggregate their results, and researchers,
clinicians, and consumers can lack appropriate up-
to-date information to make informed decisions
about supplement use.

A resource that provides experimental evidence
for SDIs could serve as a good intermediary tool,
allowing experts to quickly access information and
translate it for healthcare providers and consumers.
Such a tool could ease the bottleneck of manual cu-
ration by directing researcher attention to the most
pertinent and novel interactions appearing in recent
trials and case reports. Our goal is to create such a
resource using state-of-the-art methods in NLP and
IE, and allow users to better identify appropriate
uses of supplements as well as risks for SDIs.

Automated approaches have been used to extract
drug-drug interactions (DDIs) from literature and
other documents (Tari et al., 2010; Percha et al.,
2011; Segura-Bedmar et al., 2011; Kim et al., 2014;
Zhang et al., 2016; Noor et al., 2017; Lim et al.,
2018), complementing broadly-used but primarily
manual methods (Grizzle et al., 2019). We ex-
pand upon this work to automatically extract evi-
dence for SDIs, as well as supplement-supplement
interactions (SSIs), from a large corpus of 22M
biomedical and clinical texts derived from Seman-
tic Scholar.1 We leverage labeled datasets for DDI
identification for supervision, and train a model
that transfers to the related task of identifying sup-
plement interactions. We surface the resulting evi-
dence on SUPP.AI for browsing and search.

To summarize, our contributions are:

1. A model for identifying SDI/SSI evidence

2. A dataset of 195k evidence sentences support-
ing supplement interactions, publicly accessi-

1https://www.semanticscholar.org/
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ble for download or via a web API, and

3. SUPP.AI, an application for browsing and
searching the extracted evidence.

2 Supplement interaction browser

Information on supplement interactions have imme-
diate implications on public health, which can only
be realized by making the data easily accessible
to any interested researcher, clinician or consumer.
We note that many medical providers in develop-
ing countries do not have subscriptions to clinical
databases such as TRC2 and UpToDate,3 and may
lack an easy way to identify possible supplement in-
teractions before prescribing drugs to their patients.
To fill this gap, we develop SUPP.AI (available
at https://supp.ai/), an application for brows-
ing evidence of supplement interactions extracted
from clinical and biomedical literature. SUPP.AI
allows users to:

• Search for supplements or drugs,

• Search through potential interactions,

• Browse evidence sentences with supplement
and drug entities highlighted,

• Navigate links to source papers

We design SUPP.AI to be a rapid way for users
to access and search extracted SDI and SSI evi-
dence. Our goal for this application is to provide a
high quality, broadly-sourced, up-to-date, and eas-
ily accessible platform for searching through SDI
and SSI evidence, while providing sufficient infor-
mation for users to judge the quality of each piece
of evidence. In Section 3, we describe the NLP
pipeline used to extract evidence from scientific
papers. Below, we describe the user interface and
data features of SUPP.AI.

2.1 User interface
Besides the main search page seen by users when
they first navigate to the site, SUPP.AI consists
of two other types of pages: entity and interac-
tion pages. Entity pages provide information about
one supplement or drug, and a list of potential in-
teracting entities, sorted by quantity of evidence.
We provide information such as synonyms, drug
trade names, and definitions about each entity upon
hover over or expansion. Interaction pages display

2https://naturalmedicines.therapeuticresearch.com/
3https://www.uptodate.com/

all discovered pieces of evidence supporting an in-
teraction between a pair of entities. The evidence is
sorted by additional features extracted from source
papers, such as the level of evidence and recency,
discussed in Section 2.2.

Figure 1 shows the interface, with results for
the ginkgo supplement. Results on the entity page
(left) list 140 possible interactions to entities such
as Warfarin and Nitric Oxide. When a result is
selected, the interaction page is displayed (right),
showing evidence sentences supporting the interac-
tion along with metadata and links to each source
paper. Spans linked to supplement and drug entities
in evidence sentences are highlighted. To see more
context or detail about the interaction, the user can
navigate to the source paper to continue reading.

2.2 Supporting data for search
We extract additional paper metadata as a way to
judge evidence quality. From Semantic Scholar, we
retrieve the paper title, authors, publication venue,
and year of publication. Medical Subject Head-
ings (MeSH) tags associated with each paper are
used to determine whether its results are derived
from clinical trials, case reports, or animal studies.
We also attempt to identify the retraction status
of each paper, again using MeSH tags. Evidence
sentences are ordered and presented based on as-
sociated paper metadata, prioritizing non-retracted
studies, clinical trials, human studies, and recency
(year of publication).

Using the RxNorm relationship has_tradename
via the Unified Medical Language System (UMLS)
Metathesaurus (Bodenreider, 2004), we derive
trade names associated with drug ingredients, e.g.
Prozac and Sarafem are trade names of the ingredi-
ent fluoxetine. Trade drugs are associated with ac-
tive drug ingredients and indexed for search. Users
can query a trade name rather than an active ingre-
dient and be directed to the relevant interactions.

2.3 Data & API
Data on the site are periodically updated as new pa-
pers are incorporated into the Semantic Scholar
corpus. Snapshots of the data are available
for download at https://api.semanticscholar.
org/supp/. Live data on the site, which is up-
dated more frequently, can be accessed through
our search API, documented at https://supp.ai/
docs/api. Additionally, we provide training data,
evaluation data, and the curated drug/supplement
identifier lists (discussed in Section 3) used to

https://supp.ai/
https://api.semanticscholar.org/supp/
https://api.semanticscholar.org/supp/
https://supp.ai/docs/api
https://supp.ai/docs/api


364

Figure 1: Top results for interactions with Ginkgo (left), and top evidence sentences for the SDI between Ginkgo
and Warfarin (right). Source paper metadata are given below each evidence sentence.

produce the dataset of interactions at https://

github.com/allenai/sdi-detection. We en-
courage others to reuse our data and model to im-
prove information availability around supplement
interactions and safety.

3 Methods

An overview of our NLP pipeline is given in Figure
2. We first retrieve Medline-indexed articles using
the Semantic Scholar API,4 and pre-process the
text to generate candidate evidence sentences (Sec-
tion 3.1). We then use our DDI-detection model,
a neural network classifier based on BERT (De-
vlin et al., 2018) and fine-tuned on labeled DDI
data from Ayvaz et al. (2015) (Section 3.2), to clas-
sify sentences for the existence of an interaction.
Sentences classified as positive by our model are
collated and surfaced on SUPP.AI (Section 2).

3.1 Generating candidate evidence

Approximately 22M Medline-indexed articles are
downloaded using the Semantic Scholar API. The
scispaCy library (Neumann et al., 2019) is used
to perform sentence tokenization, NER, and entity
linking over all paper abstracts. Entity mentions
are linked to Concept Unique Identifiers (CUIs)
from the UMLS Metathesaurus. An example sen-
tence from Vaes and Hendeles (2000) is shown
with linked entity mentions:

Hemorrhage
C0019080

and tendencies were noted in

four cases
C0868928

with ginkgo
C0330205

use and in three

4https://api.semanticscholar.org/

cases
C0868928

with garlic
C0017102

; in none of these

cases
C0868928

were patients
C0030705

receiving warfarin
C0043031

.

Of these linked entities, we preserve entities
on a list of curated supplements and drugs (en-
tities in blue). We generate these curated lists in a
semi-automatic fashion, by querying the children of
UMLS supplement and drug classes and perform-
ing fuzzy name matching to known supplements
or drugs crawled from the web. We also perform
clustering of similar entities to reduce redundancy
in the final dataset, e.g., combining several variants
of Vitamin D together into a single entity. Details
on identifier curation and clustering are given in
Appendix A.

We retain all sentences containing at least two
entity mentions. For each sentence, we generate
candidate evidence as each combination of two
entity spans from that sentence.

3.2 DDI-detection model

We train a DDI-detection model to predict whether
a given candidate sentence provides evidence of
an interaction between two drug entities. Our
DDI-detection model uses pre-trained BERT mod-
els (Bidirectional Encoder Representations from
Transformers) (Devlin et al., 2018) to encode in-
put sequences. These models have been shown
to be effective at domain transfer, and are able
to achieve high performance using small amounts
of task-specific annotated data. In particular, we
use the large version of the pre-trained RoBERTa
model, a further-optimized BERT model, that has
approximately 340M parameters (Liu et al., 2019).

https://github.com/allenai/sdi-detection
https://github.com/allenai/sdi-detection
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Figure 2: Pipeline for identifying sentences containing evidence of SDIs and SSIs.

We fine-tune the pre-trained embeddings of the
RoBERTa language model using labeled data for
DDI classification, and we call the resulting model
RoBERTa-DDI.

Input layer: The input layer consists of the se-
quence of byte-pair encoding word pieces (Radford
et al., 2019) in a sentence. We replace entity men-
tion spans with the special tokens [Arg1] and
[Arg2]. This helps generalization by preventing
the model from memorizing entity pairs with posi-
tive interactions in the training set. For example:

[CLS] Combination [Arg1] may also
decrease the plasma concentration of
[Arg2]. [SEP]

where [Arg1] and [Arg2] replace the spans
“hormonal contraceptives” and “acetaminophen” re-
spectively. We add special tokens [CLS] and
[SEP] at the beginning and end of each sentence
to leverage their representations learned in pre-
training. At prediction time, candidate sentences
are masked similarly and fed to the trained model.

Model architecture: As the name implies,
RoBERTa-DDI uses the pre-trained RoBERTa rep-
resentations (Liu et al., 2019) to encode input se-
quences. We refer readers to Liu et al. (2019),
Devlin et al. (2018), and Vaswani et al. (2017) for
more details on BERT and transformer architecture.
For the RoBERTa-DDI model, we add a dropout
layer followed by one feedforward (output) layer
with a softmax non-linearity, which takes the repre-
sentation of the [CLS] token at the top transformer
layer as input and outputs probabilities for labels
{0, 1}, where 1 indicates an interaction.

Model training: Due to similarities between
DDIs and SDIs/SSIs, we hypothesize that a clas-
sifier trained to identify DDI evidence should per-
form well in identifying SDI and SSI evidence. We
therefore take advantage of existing labeled data

for categorizing DDIs to fine-tune the model. We
use pre-trained weights distributed by the authors
of Liu et al. (2019), and further fine-tune the model
parameters (as well as parameters of the output
layer) using labeled DDI data from the Merged-
PDDI dataset (Ayvaz et al., 2015).

In particular, we use training data from the
DDI-2013 (Segura-Bedmar et al., 2013) and NLM-
DailyMed (Stan et al., 2014) datasets, as they are
relatively large and contain evidence sentences with
annotated drug mention spans. The DDI-2013
dataset consists of sentences extracted from Drug-
Bank and Medline; the NLM-DailyMed dataset
draws sentences from cardiovascular drug prod-
uct labels retrieved from DailyMed. Both datasets
contain multi-class labels for different types of in-
teractions. We distinguish between detection, a
binary classification problem where the goal is to
determine whether an interaction exists or not, and
multi-class classification, where the goal is to de-
termine the type of interaction. In this work, we
focus on detection, but provide results for a variant
of our model trained on classification that obtains
SOTA performance compared to prior work.

For detection, we collapse labels corresponding
to all interaction types (e.g., mechanism, advise,
effect, etc.) into binary labels of 0 and 1, where 0
means no interaction, and 1 means an interaction of
some type exists. Collapsing the positive labels is
necessary for training one DDI-detection model on
both the DDI-2013 and NLM-DailyMed datasets,
since the two datasets are annotated with inconsis-
tent interaction types. We preserve the train/test
splits used in Ayvaz et al. (2015), and create a de-
velopment set from the training set for iteration on
model design and tuning.

A sentence from the training data can contain
multiple drug entities. For training, we generate
pairwise combinations of drug mention spans in
each sentence. We note that many sentences are
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seen multiple times by our model with different
labeled spans. Due to combinatorial explosion,
and to prevent our model from learning excessively
from a few instances containing lots of entity men-
tions, we restrict the training data to sentences con-
taining less than or equal to 100 pairwise entity
combinations. Table 1 shows the resulting data
splits for the two datasets.

Dataset Train Dev. Test Label=1

DDI-2013 18362 2069 5688 17.2%
NLM-DailyMed 11372 1255 927 22.7%

Table 1: DDI training data split.

Our training hyperparameters follow those pre-
sented by Liu et al. (2019) (learning rate = 1e-5; 4
epochs). No additional hyperparameter tuning is
performed.

4 Results & evaluation

Of the 22M articles we retrieve, around 4.6M
abstracts contain candidate sentences. After ini-
tial filtering, 33.0M candidate sentences contain-
ing supplement entity mentions are classified by
RoBERTa-DDI. Around 625k (1.9%) of these sen-
tences are classified as positive for an interaction.
We perform entity normalization across positive
sentences based on CUI clusters, and perform ad-
ditional ad hoc filtering of evidence to eliminate
incorrectly detected spans resulting from poor NER
and linking, such as the span “retina” linking to Vi-
tamin A (C0040845). The resulting 195k sentences
contain mentions of 2044 unique supplements and
2772 unique drugs, and provide evidence sentences
for 60k interactions sourced from 133k papers.

Comparisons of model variants on DDI classi-
fication and detection (including SOTA results on
both tasks) are given in Appendix B. To evaluate
the transferability of DDI detection to the related
task of SDI/SSI detection, we use a test set con-
sisting of 500 sentences annotated for the presence
or absence of a supplement interaction. To ob-
tain a balanced test set despite the rare presence
of a positive interaction, we sample half the in-
stances from the set of sentences labeled as posi-
tive by a previous variant of our model based on
fine-tuning BERT-large, and the other half from
those labeled as negative. After manual annotation,
40% of the sampled instances were positive for
an interaction. Annotation was performed by two
authors without seeing model predictions, with an

inter-annotator agreement of 94%. This test set was
used for final evaluation, and never for model devel-
opment or tuning. Table 2 shows the performance
of RoBERTa-DDI on the DDI and supplement test
sets. Performance on the SDI test set has preci-
sion 0.82, recall 0.58, and F1-score 0.68. Although
there is performance degradation during transfer,
the precision of detection remains high at 0.82.

Decrease in recall can be attributed to a larger
percentage of positive instances in the SDI test
set (roughly 40%, compared to 20% in the DDI
training data). Another factor is the presence of
incorrectly labeled entity spans in the supplements
test set due to NER/linking errors. To better un-
derstand this second source of errors, we attempt
to evaluate the performance of the scispaCy entity
linker. Processing each sentence from the two DDI
training sets using scispaCy, we determine that only
80% of drug entities from DDI-2013 and 76% from
NLM-DailyMed are recognized and linked. The
likelihood of supplement entities being success-
fully linked is likely lower, due to sparse training
data for supplement NER and linking. These num-
bers provide an estimate of the global ceiling on
recall for our model. In future work, we aim to
explore ways to improve NER and linking and as-
sess their impact on the results of SDI detection.
SDI/SSI sentences in our output set can also be
labeled by biomedical expert annotators and used
to further tune the model for SDI/SSI detection.

Evaluation set Prec. Rec. F1

Drugs (DDI-2013) 0.90 0.87 0.88
Drugs (NLM-DailyMed) 0.83 0.85 0.84
Supplements-500 0.82 0.58 0.68

Table 2: The RoBERTa-DDI model (trained on drug-
drug interaction labels) is evaluated on two DDI evalu-
ation sets (first two rows) and our supplement interac-
tion evaluation set (last row).

5 Discussion

Information describing the safety and efficacy of
dietary supplements can be difficult to find. The
inability to locate evidence of SDIs can challenge
clinician ability to advise patients and cause risks
for consumers of dietary supplements. It is our
hope that extracting evidence for SDIs/SSIs from
a large corpus of scientific literature and making
the evidence available through an easily accessible
search interface can offset some of these risks.
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This work demonstrates how NLP techniques
can be extraordinarily useful for extracting infor-
mation and relationships specific to an application
domain in healthcare. Re-purposing existing la-
beled data from related domains (that would be ex-
pensive to generate in a new domain) can be a way
to derive maximum utility from curation efforts.
Continuing, we look to investigate fine-grained in-
teraction types, and provide better classification of
the level of evidence provided by each sentence or
document towards a particular SDI or SSI. We also
aim to leverage similar techniques for identifying
evidence of indications, contraindications, and side
effects of dietary supplements from the biomedical
and clinical literature, and make these discoverable
on SUPP.AI.

5.1 Related Work

Consumer-facing websites such as the NIH Office
of Dietary Supplements5 or WebMD6 provide facts
about common supplements, but this information
can be incomplete and may not support researcher
or clinician needs. TRC Natural Medicines7 and
UpToDate8, two dedicated clinical resources, con-
tain high-quality, curated evidence, but may not
be broadly accessible due to their subscription for-
mat. Drug databases like DrugBank (Wishart et al.,
2018), RxNorm (Nelson et al., 2011), and the Na-
tional Drug File Reference Terminology (NDFRT)
(Simonaitis and Schadow, 2010) contain only par-
tial coverage of supplement terminology (Manohar
et al., 2015b), and primarily focus on aggregating
drug information.

Several prior studies have experimented with
extracting safety information of supplements and
supplement interactions from various forms of text.
Zhang et al. (2015) employ machine learning tech-
niques to filter supplement interaction relationships
in SemMedDB, a database of relationships ex-
tracted from Medline articles. Jiang et al. (2017)
develop a model for identifying adverse effects
related to dietary supplements as reported by con-
sumers on Twitter, and discover 191 adverse ef-
fects pertaining to 4 dietary supplements. Fan et al.
(2016) and Fan and Zhang (2018) analyze unstruc-
tured clinical notes to predict whether a patient
started, continued or discontinued a dietary sup-
plement, which can be useful as a building block

5https://ods.od.nih.gov/
6https://www.webmd.com/vitamins/index
7https://naturalmedicines.therapeuticresearch.com/
8https://www.uptodate.com/

for identifying adverse effects in clinical notes (as
attempted by the same authors in Fan et al. (2017)
for the drug warfarin). Wang et al. (2017) proposes
using topic models to analyze the adverse effects
of dietary supplements as mentioned in the Dietary
Supplement Label Database, and finds that Latent
Dirichlet Allocation models (Blei et al., 2003) can
be used to group dietary supplements with similar
adverse effects based on their labels. As far as we
know, there are no other studies investigating the
task of sentence-level identification of SDI/SSI ev-
idence from the scientific literature. No previous
work has investigated the utility of using labeled
DDI data for transfer learning to SDI/SSI identifi-
cation.

5.2 Limitations
There are several limitations of this work. First, we
distinguish between supplements and drugs. Both
supplements and drugs are pharmacologic entities,
with their separate classification more attributable
to marketing and social pressures rather than func-
tional differences. However, due to this somewhat
arbitrary distinction, supplement entities are not
well represented in databases of pharmaceutical
entities, and less information is publicly available
on their interactions. We also use UMLS CUIs as
a way of identifying supplement and drug entities.
The lack of a standardized terminology to describe
dietary supplements is discussed in Manohar et al.
(2015a) and Wang et al. (2016), which estimate
UMLS coverage of these terms to be between 14-
54%. This limitation prevents us from identifying
many supplement entities. Lastly, our dependence
on NLP-pipeline tools sets a performance ceiling
due to unsolved problems in NER and linking. Al-
though scispaCy is performant and detects a large
number of relevant entities, our evaluations show
that many supplement and drug entities are missed.
A system such as MetaMapLite (Demner-Fushman
et al., 2017) has higher recall, but performance is
slow and there are practical challenges to using it
to process large numbers of documents.

Conclusion
Insufficient regulation in the supplement space in-
troduces dangers for the many users of these sup-
plements. Claims of interactions are difficult to val-
idate without links to source evidence. We create
an NLP pipeline to detect SDI/SSI evidence from
scientific literature, leveraging UMLS identifiers,
scispaCy for NER and entity linking, BERT-based
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language models for classification, and labeled data
from a related domain for training. We use this
pipeline to extract evidence from 22M biomedi-
cal and clinical articles with high precision. The
extracted SDI/SSI evidence are made search-able
through a public web interface, SUPP.AI, where
we integrate additional metadata about source pa-
pers to help users make decisions about the relia-
bility of evidence. Our dataset and web interface
can be leveraged by researchers, clinicians, and cu-
rious individuals to increase understanding about
supplement interactions. We hope to encourage ad-
ditional research to improve the safety and benefits
of dietary supplements for their consumers.
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A Supplement and drug identifiers

We generate lists of supplement and drug enti-
ties based on UMLS Concept Unique Identifiers
(CUIs) using a semi-automated method. For supple-
ments, we identify NCI thesaurus (NCIT) concepts

Test dataset Num.
pairwise
instances

RoBERTa-
DDI
(Trained on
DDI-2013
and NLM-
DailyMed)

RoBERTa-
DDI
(Trained on
DDI-2013
only)

DDI-2013 (All) 5688 0.88 0.89
DDI-2013 (DrugBank) 5251 0.89 0.90
DDI-2013 (Medline) 437 0.73 0.77
NLM-DailyMed 927 0.84 0.70

All 6615 0.87 0.85

Table 3: F1-scores of RoBERTa-DDI trained using dif-
ferent training data. Test data contains all pairwise com-
binations of entities in test sentences.

such as “Dietary Supplement” (NCIT: C1505, CUI:
C0242295), “Vascular Plant” (NCIT: C14336, CUI:
C0682475), and “Antioxidant” (NCIT: C275, CUI:
C0003402) as likely parents of supplement terms.
We recursively extract child entities of these par-
ent classes from UMLS, deriving an initial list of
supplements. To improve recall, we extract sup-
plement names from the TRC Natural Medicines
database,9 perform fuzzy string matching to enti-
ties in UMLS, and add any identified CUIs to our
list of supplements. The list is manually reviewed
to remove non-supplement entities, those for which
we could not identify any marketed supplement or
medicinal uses. Following curation, we retain 2139
unique supplement entities.

Similarly, we generate a corresponding list of
drug CUIs from parent entity “Pharmacologic Sub-
stance” (NCIT: C1909, CUI: C1254351) and any
UMLS entity with a DrugBank identifier. Fuzzy
name matching between drugs on drugs.com10 and
UMLS entities is used to identify drugs and exper-
imental chemicals missed through UMLS search
alone. Due to the significantly larger number of
drugs compared to supplements, manual curation
of this list is impractical at this time. This process
generates a list of 15252 unique drug CUIs. Any
entity that is identified as both a supplement and a
drug is categorized exclusively as a supplement for
the purposes of this work.

Similar supplement and drug entities are merged,
such as those with overlapping names, e.g., enti-
ties corresponding to UMLS C0006675, C0006726,
C0596235, and C3540037 all describe variants of
Calcium and are merged under the supplement
entity C3540037 (“Calcium Supplement”). The

9https://naturalmedicines.therapeuticresearch.com/
10https://drugs.com/
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Model Reference F1 (classification) F1 (detec-
tion)

Bi-LSTM (w/ max and attentive pooling) Sahu and Anand (2017) 0.69 (macro-F1) -
Hierarchical Bi-LSTM + Attention + dependency path Zhang et al. (2018) 0.73 (unspecified) -
Bi-LSTM (w/ attention and negative instance filtering) Zheng et al. (2017) 0.77 (unspecified) 0.84
BioBERT embeddings Chauhan et al. (2019) 0.72 (macro-F1) 0.87
BERT-large embeddings fine-tuned on DDI-2013 Peng et al. (2019) 0.79 (micro-F1) -
RoBERTa-DDI fine-tuned on DDI-2013 - 0.82 (micro-F1) 0.89

Table 4: Baseline models for DDI detection and reported performance on the DDI-2013 test set. Results are shown
for classification (5-way classification) and detection (binary classification).

canonical CUI representing a cluster is selected
manually. Drug, supplement, and canonical map-
pings are provided in our data repository.

B DDI model performance

We train RoBERTa-DDI on a combination of DDI-
2013 and NLM-DailyMed training data. In Table
3, we report the F1-scores of model variants on the
test data. We show the performance of the final
variant of RoBERTa-DDI (trained on both DDI-
2013 and NLM-DailyMed) as well as a variant
trained only on DDI-2013 training data (last col-
umn), which performs best on the DDI-2013 test
set, but suffers when tested on NLM-DailyMed.
We also further break down performance on the
DrugBank and Medline sub-corpora within DDI-
2013.

The DDI-2013 dataset is used as a bench-
mark dataset for DDI detection and classification,
and is part of the BLUE benchmark suite (Peng
et al., 2019). RoBERTa-DDI outperforms recently-
reported SOTA performance on DDI detection in
the DDI-2013 dataset using BioBERT (Lee et al.,
2019) (F1 = 0.87) (Chauhan et al., 2019). Peng
et al. (2019) also report SOTA performance on
the DDI-2013 classification task, achieving 0.79
micro-F1 using a tuned BERT-large model. For
comparison, we show the results of RoBERTa-
DDI trained on DDI-2013 multi-class classification,
which achieves 0.82 micro-F1 on DDI-2013 clas-
sification. We provide previously reported SOTA
performance metrics on DDI-2013 in Table 4. We
note that because the interaction classes are unbal-
anced in the DDI-2013 dataset, reported classifica-
tion micro- and macro-F1-scores in previous work
are not directly comparable.

The inclusion of the NLM-DailyMed corpus in-
creases training data diversity and should improve
generalization for the task of detecting SDI/SSI ev-
idence. Thus, although RoBERTa-DDI trained on

DDI-2013 has the highest performance on the DDI-
2013 test set, RoBERTa-DDI trained over all train-
ing data performs the best overall, and we use this
model variant to classify evidence for SUPP.AI.


